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Pathogenic protein fibrils have been shown in vitro to have nucleation dependent kinetics despite
the fact that one-dimensional structures do not have the size dependent surface energy responsible
for the lag time in classical theory. We present a theory showing that the conformational entropy
of the peptide chains creates a free energy barrier that is analogous to the translational entropy
barrier in higher dimensions. Interestingly, the dynamics of polymer rearrangement make it very
unlikely for nucleation to succeed along the lowest free energy trajectory, meaning that most of the
nucleation flux avoids the free energy saddle point. We use these results to construct a 3D model
for amyloid nucleation that accounts for conformational entropy, backbone H-bonds, and sidechain
interactions to compute nucleation rates as a function of concentration.

Amyloids are linear protein aggregates associated with
conditions like Alzheimer’s, Huntington’s, and prion dis-
eases [1]. When studied in vitro, amyloidogenic proteins
remain soluble through a pronounced lag phase before
undergoing a nucleation event that initiates exponential
growth of fibrils [2, 3]. Previous theoretical work has
shown that the proliferation of fibrils is dominated by
secondary nucleation events that follow primary nucle-
ation [4–8]. But these works do not address the underly-
ing molecular mechanism of either primary or secondary
nucleation and, therefore, it is not clear if they can be
extrapolated to the low concentrations found in vivo. In
particular, it is a puzzle why linear aggregates have a lag
phase in the first place. In bulk phase transitions the nu-
cleation lag time occurs because the surface energy of the
new phase, which arises from the translational entropy
loss of the bound particles, initially grows faster than the
favorable bulk energy. This does not apply to 1D systems
where the surface energy is independent of the cluster
size. The reason for nucleation kinetics in amyloids is
almost certainly because fibrils are only pseudo-1D. Sev-
eral authors have noted that the steric zipper motif [9, 10]
gives the fibrils a thickness in a direction perpendicular
to the fibril axis [11–13]. These theories model the fib-
ril as a 2D object, thereby achieving the size-dependent
surface energy needed for a lag time.

In this Rapid Communication we investigate the effect
of the third dimension: the direction parallel to the pep-
tide backbones. In a growing post-nucleation fibril, each
backbone H-bond and steric zipper interaction must over-
come a free energy increase fCE from the conformational
entropy cost of trapping the backbone in the extended
β-sheet conformation. This contrasts with the initial
dimerization of two molecules where each intermolecular
contact results in the loss of entropy from both chains for
a free energy gain of 2fCE (the Ramachandran analysis
shows that both molecules must adopt β conformation
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to maintain the intermolecular bonds). Importantly, the
increased entropic penalty for the initial dimerization re-
sults in a free energy barrier that will contribute to the
nucleation time [14, 15].

We focus on intrinsically disordered molecules at low
concentration where monomer assembly pathways are ex-
pected to be dominant [16–18]. As a first step we com-
pute the kinetics of a nucleating trimer as a toy model
to explore the competition between binding energy and
the conformational entropy of the polymers. Using the
intermolecular H-bonds as a reaction coordinate [19–21],
we map the kinetics to a 2D diffusion problem for which
we can obtain an exact solution (albeit in the contin-
uum limit). This model shows that the saddle point
state is particularly prone to dissociation so that most
of the nucleation flux avoids the saddle point. This im-
plies that self-assembly in this system requires trajecto-
ries that are ‘far’ from equilibrium [22]. Next, we use
these results to build a second model that allows us to
account for both H-bond and steric zipper interactions as
well as the growth of a cluster beyond the trimer stage.
This model allows us to treat the nucleus as a 3D object
and include the contributions of both conformational and
translational entropy to the free energy barrier.

The nucleation rate is the product of a free en-
ergy barrier, an attempt rate, and a success prob-
ability. We develop our theory by modifying the nucle-
ation rate from classical nucleation theory (CNT)

kCNT = kaddZe
−F ‡/kBT . (1)

The terms in Eq. 1 can be understood as follows. The
exponential term is an Arrhenius factor giving the proba-
bility of finding a cluster at the free energy maximum F ‡.
Hereafter, we refer to the highest free energy state along
a given trajectory as the “critical” state with quantities
associated with this state denoted by the (‡) superscript.
kadd is the rate at which a molecule attaches to the clus-
ter making it super-critical. Finally, the Zeldovich factor,
Z, describes the probability that a newly super-critical
cluster will nucleate the new phase without returning to
a sub-critical size. Eq. 1 was derived using the cluster
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size as a 1D reaction coordinate and applying a saddle
point approximation [23]. We find that a 1D reaction co-
ordinate is not sufficient to describe amyloid nucleation.
Rather than re-deriving an analogous expression in 2D,
we use Eq. 1 as a heuristic and independently compute
each of the three terms.
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FIG. 1: Cartoon of a nucleating trimer illustrating the two-
dimensional reaction coordinate used in the theory. A config-
uration of the trimer is mapped to the x-y plane where the
x coordinate is the number of H-bonds between the middle
and lower molecules and y is the number of H-bonds between
the top and middle molecules. The formation and breakage
of H-bonds results in a random walk in this 2D space. The
unequal free energies of H-bond formation mean that the ran-
dom walk is biased by drift velocities that push the system
toward the x = y diagonal.

2D model describes competition between H-
bonds and conformational entropy. We first con-
sider a toy model of nucleation consisting of three
molecules forming one β-sheet. This model is the sim-
plest one that captures the entropy penalty of initial
dimerization and the attractive free energy of a “bulk”
binding event. There are two reaction coordinates; x is
the number of H-bonds between molecules 1 and 2 and y
is the number of H-bonds between molecules 2 and 3 (see
Fig. 1). The system can evolve in four ways; it can add
or break a H-bond between the first two molecules with
rates k+x and k−x, respectively, or between molecules 2
and 3 with rates k+y and k−y. Despite the x↔ y symme-
try, the rates are not equal. To see this, we use detailed
balance to relate the reaction rates to the free energy of
H-bond formation

k+x

k−x
= e−fx/kBT

k+y

k−y
= e−fy/kBT . (2)

In the configuration shown in Fig. 1, x > y meaning that
the transition x→ x+ 1 will result in a loss of conforma-
tional entropy from both molecule 1 and 2 and the forma-
tion of one favorable H-bond contact. In comparison, the
transition y → y+1 only results in a loss of entropy from
molecule 3 while providing the same attractive H-bond.
Therefore, when x > y we have fx = fweak > 0 and
fy = fstrong < 0. For x < y the situation is reversed and
the energies are fx = fstrong and fy = fweak. For nucle-
ation to occur within a three molecule system we require

that the fully bound state is lower in free energy than
the unbound state so fstrong + fweak < 0. As described
below, it is unlikely that peptides satisfy this condition,
however, this model captures the effect of conformational
entropy on nucleation rate and, therefore, provides useful
intuition.

Unstable dimers provide the substrate for nu-
cleation. In analogy to Eq. 1, we write the nucleation
rate for a fibril as

knuc =

L∑
x=1

kdiffE+(x, 1)Cn‡(x), (3)

Here, Cn‡ is the concentration of a critical cluster con-
taining n‡ molecules. In the trimer model, Cn‡ = C2(x)
[40] where C2(x) represents the equilibrium concentra-
tion of dimers with x H-bonds at the supersaturated
monomer concentration C1

C2(x) = C2
1e
−xfweak/kBT , (4)

where all concentrations are scaled by the concentration
of pure water (55.5 M) to yield dimensionless number
densities and the monomer concentration plays the role
of the fugacity, C1 = eµ/kBT . The difference between Eq.
1 and Eq. 3 is the explicit summation over trajectories in
the 2D reaction coordinate space. These trajectories are
indexed by the number of H-bonds in the initial dimer,
x, which has a maximum value, L, set by the length of
the molecules.

The factor kdiff is the diffusion limited rate of
monomer-dimer collisions resulting in trimers. Following
[20], we approximate kdiff by the rate of particles striking
an absorbing sphere of radius a, kdiff = 4πaC1Dp, where
Dp is the monomer diffusion constant. This rate assumes
that all collisions result in binding and, therefore, ne-
glects sequence effects that enforce specific alignments
between the molecules. This treatment is certainly ap-
propriate for homopolymers like polyglutamine, but may
be more generally valid if small clusters have the flexibil-
ity to accommodate sidechain packing errors. The oppo-
site case, where sidechain registry is rigorously enforced,
can be described by scaling kdiff by L−1.

Finally, like the Zeldovich factor, E+ describes the
probability of successful nucleation. We assume that the
initial contact between a dimer and monomer results in
a β-sheet H-bond so that a dimer with n H-bonds be-
comes a trimer with coordinates (n, 1) in (x, y) space.
This trimer will evolve according to the rate constants in
Eq. 2 and perform a random walk in the (x, y) plane. For
successful nucleation we require that the walk proceed
to (L,L) without striking the boundaries (x, 0) or (0, y)
which signify dissolution back to the monomer+dimer
state. Therefore, E+(x, y) is the splitting probability that
a random walk starting at (x, y) reaches (L,L) before
reaching either the x or y axes.

The nucleation probability is described by 2D
diffusion. In the continuum limit the success probability
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satisfies the convection-diffusion equation [24]

∇ · (D∇E+) +∇ · (vE+) = 0, (5)

where the velocity and diffusion tensor are defined by

v =

(
vx
vy

)
=

(
k+x − k−x
k+y − k−y

)
(6)

D =

( k+x+k−x

2 0

0
k+y+k−y

2

)
. (7)

The velocity is constant on either side of the x = y di-
agonal but switches direction such that the drift always
pushes the random walk toward the diagonal (Fig. 1).

The rate constants are related to each other by the
free energy of the H-bond being broken/formed (Eqs. 2),
however, the values are unknown beyond an expectation
that the rates are on the order of ns−1 [25]. Therefore,
we adopt a convention where the forward and backward
rates have a constant average D = (k+x + k−x)/2 =
(k+y + k−y)/2 ' 1ns. This assumption is motivated by
the simplification resulting from isotropic diffusion. How-
ever, it also qualitatively captures our expectation that
weak bonds form more slowly than strong bonds because
both peptide chains must simultaneously adopt β confor-
mation. Similarly, we expect that weak bonds will break
faster than strong bonds because there are twice as many
degrees of freedom that can lead to bond breakage.

With Eqs. 2, 6, and the assumption of isotropic diffu-
sion, the drift velocities can be expressed as

vx/y(f) = 2D
e−f/kBT − 1

e−f/kBT + 1
, (8)

where f is either fweak or fstrong as appropriate. Eq. 5
can then be solved. See Supplemental Material at [URL
will be inserted by publisher] for details of the solution.
For x > y we find

E+(x, y) = e−
vx
2D (x−L)− vy

2D (y−L)

×
∑∞

m=2 Bm sin(m arctan(y/x))Im(
v
√

x2+y2

2D )∑∞
m=2 Bm sin(mπ/4)Im( v

√
2L

2D )
, (9)

where v = |v|, I is the modified Bessel function, and the
first four coefficients are B2 = 1, B3 = B5 = 2(vx−vy)/v,
and B4 = 2(vx − vy)2/v2. The solution for y > x can be
obtained by exchanging x↔ y.

Clusters with low free energy have low proba-
bility for successful nucleation. Fig. 2 shows the two
dominant contributions to the nucleation rate. Fig. 2a
shows the probability E+ that a trimer with (x, y) inter-
molecular H-bonds proceeds to the fully H-bonded state
without dissociating back to monomer+dimer. This is an
increasing function of x and y. In particular, E+ is very
small near the origin because these trimer states readily
decay by losing either terminal molecule.

Fig. 2b shows the grand free energy of the cluster as
a function of x and y. The loss of translational entropy,

µ = kBT lnC1, upon molecular binding results in a dis-
continuous jump in the free energy when x or y become
nonzero. There is a pronounced valley along the x = y
diagonal indicating the lowest free energy pathway to nu-
cleation. This is the pathway that would be chosen in an
attempt to model nucleation using a 1D reaction coordi-
nate (as in a saddle point approximation). Note that the
free energies are repulsive when there is a large mismatch
between x and y. Of particular interest are the dimer
states, where either x or y are zero, since these states
are the starting point for nucleation attempts (Eqs. 3,
4). These states have especially unfavorable free energies
due to the entropic cost of straightening both peptides
and are strongly suppressed thermodynamically.

These two plots lead us to the primary result of the
trimer model. Dimers held together by a small num-
ber of H-bonds are plentiful but have a low probabil-
ity of nucleation because, upon the addition of a third
molecule, the ensuing trimer has many trajectories that
take it back to the dimer state. Conversely, dimers that
have formed many H-bonds are rare but are likely to
proceed toward nucleation upon the addition of a third
molecule. The result of these competing trends is that
the nucleation flux is a non-monotonic function of the
starting dimer structure with the peak flux originating
from a partially ordered nucleus (Fig. 2c). Note that the
suppression of flux at the saddle point is not simply a
result of the uniqueness of this trajectory compared to
the multitude of non-saddle point trajectories, instead,
the system dynamics make is so that successful passage
through the saddle point is especially unlikely.

3D model contains both backbone and sidechain
interactions. While the trimer model presented above
provides useful intuition into the nucleation process, it
neglects major features of amyloid nucleation. To address
this we seek a model that can handle arbitrary sized clus-
ters and accounts for the contributions of both backbone
H-bond and sidechain steric zipper interactions in com-
pensating for the translational and conformational en-
tropy loss upon aggregation. In this model we consider a
cluster of N molecules, each of which have x amino acids
in the ordered β core and L − x that remain disordered
with a reference free energy of zero. Following the usage
of Eq. 3, x will be used to index trajectories.

As input for the model, we require estimates of the
free energy as a function of x and N . In a mature fibril
the free energy gain upon the addition of a new molecule
is on the order of fαα ' −0.5 kBT per amino acid in
the cross-β core [15, 26]. This free energy is the sum of
three contributions, fαα = fHB + fSZ + fCE, where the
terms represent the backbone H-bond, sidechain packing
in the steric zipper, and the loss of conformational en-
tropy. Helix-coil models have shown that fCE is on the or-
der of ∼ 2kBT [27] so the two attractive components sum
to approximately −2.5 kBT . As a crude estimate we will
say that fHB ' −1.5 kBT and fSZ ' −1 kBT . Using the
structures illustrated in Fig. 3a we estimate the energies
as x(2fCE +fHB) for the dimer, x(3fCE +fHB +2fSZ) for
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a) c)b)

FIG. 2: (a) Probability of a trimer containing x and y intermolecular bonds to proceed to the fully bound state before either
terminal molecule unbinds. (b) Grand free energy (in units of kBT ) of a trimer as a function of the number of intermolecular
bonds. The increase in free energy when x or y increase from 0 to 1 arises from the loss of translational entropy upon molecular
binding. This jump, given by kBT lnC1, is arbitrarily set to 2kBT for convenient visualization. There is a pronounced trough
along the x = y diagonal (green line), however, due to the low probability of nucleation when x and y are both small (panel
a) most nucleation trajectories (blue arrows) avoid this path. (c) The nucleation flux as a function of the number of bonds in
the starting dimer (see Eq. 3). This is proportional to the product of the nucleation probability (panel a) along the y = 1 line
and the dimer Boltzmann weight (y = 0 line in panel b). The competition between these terms gives a non-monotonic function
that has a peak significantly removed from the lowest free energy pathway (x = 1). This is shown schematically by the blue
arrows in the middle panel. L = 10, fstrong = −0.5, fweak = 0.3 unless noted.

the trimer, and x(4fCE + 2fHB + 2fSZ) for the tetramer.
Therefore, the highest free energy cluster is a trimer.
This analysis is valid for molecules that form a single β-
strand in the fibril. An important second case to consider
is molecules like Aβ and IAPP [28–30] that form a hairpin
and contribute β-strands to both layers of the fibril (Fig.
3b). For these molecules the highest free energy state is
a hairpin monomer. The formation of a hairpin incurs an
entropic cost of kBT lnxloop, where xloop is the number
of disordered amino acids between the β segments. This
term is ∼2-3 kBT , which is less than the translational en-
tropy cost of making the equivalent structure from two
molecules. The looping penalty can be mitigated by at-
tractive sidechain interactions, which may be responsible
for the difference in aggregation propensity between Aβ40

and Aβ42 [31]. With these calculations, the Arrhenius
terms for single strand and hairpin molecules are

Cn‡ =

{
C3

1e
−x(3fCE+fHB+2fSZ)/kBT single strand

C1e
−2xfCE/kBT−ln(xloop) hairpin

(10)
These calculations show that the population of critical

clusters is exponentially sensitive to both the number of
molecules in the cluster and the size of the ordered core.
As the cluster grows the bulk interactions in the core,
contributing a free energy (N − 2)xfαα, will gradually
overwhelm the surface energy 2xfCE + N lnC1. Adding
these terms together and requiring that the resulting free
energy is stationary in x, we obtain the minimum num-
ber of β-strands, N? = 2− 2fCE/fαα, necessary for it to
be energetically favorable for x to grow. Thus, when the
cluster exceeds N? ' 10 β-strands, fibril growth transi-
tions from nucleation to elongation.

Next, we need to evaluate the size evolution of clusters
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FIG. 3: Schematic of the assembly process described by the
3D model for (a) peptides that form a single β-sheet and (b)
peptides that form two β-sheets separated by a hairpin. Each
block represents a β strand consisting of x amino acids. Dis-
ordered peptide segments have been omitted for clarity. The
two β-sheets of the nascent fibril are color coded so red/blue
(light grey/dark grey) interfaces represent sidechain steric zip-
per interactions while red/red and blue/blue interfaces repre-
sent backbone H-bond interactions.

smaller than N?. These clusters will add a molecule with
rate kdiff and lose a molecule when either terminal strand
breaks all x bonds with the neighboring molecules. The
rate of such loss events is given by [20]

k−1
loss = − 1

2vf
+

D

2v2
f

evfx/D(1− e−vf/D), (11)

where vf is given by Eq. 8 with f = fαα, the fac-
tor of two accounts for the two ends of the fibril, and
the substitution x → 2x should be made for hairpin
molecules. The probabilities that a cluster gains or loses
a molecule are p+mol = kdiff(kdiff + kloss)

−1 and p−mol =
kloss(kdiff + kloss)

−1. We expect that in vivo kloss greatly
exceeds kdiff , so nucleation depends on the unlikely event
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where many molecules add with few detachments [32].
The tendency for backwards steps is prohibitive for nu-
cleation unless the cluster can present a binding surface
large enough to prolong the residence time of incoming
molecules. Thus, the present model contains the same
physics obtained from the trimer model; that successful
nucleation events are dominated by highly ordered states
that are significantly displaced from the saddle point.

To compute the nucleation rate in our 3D model, we
make the approximation that x remains constant until
the cluster reaches a stable size and compute the nu-
cleation rate by summing the rates of clusters of all core
sizes. This rough approximation is the simplest approach
to take without knowing the relative timescales for the
evolution of N and x. The reduction of the 2D Markov
process (in N and x) to a 1D walk (in N only) assumes
that the energetically favorable H-bonds will bias the
bonding states of the molecules toward the maximum
number of bonds until the actual unbinding event. With
this simplification, the required Zeldovich factor in Eq.
3 is the probability of a super-critical cluster with size
n‡ + 1 reaching the stable size N? without becoming
smaller than n‡. The probability of such walks is (see
Supplemental Material for derivation)

Emol(1) =

1
p+mol

− 2(
1

p+mol
− 1
)N?−n‡

− 1

. (12)

Theory predicts two power law regimes. The
nucleation rate for the 3D model is given by Eq. 3 with
Eqs. 10 and 12 for the Arrhenius and Zeldovich terms.
At low concentrations, representative of in vivo systems,
the nucleation rate scales like CN

?

1 (Fig. 4). This gives
knuc ∝ C10

1 and knuc ∝ C5
1 for single strand and hair-

pin molecules, respectively, although this prediction is
sensitive to sequence dependent binding energetics. At
high concentrations it becomes more likely that molecules
bind than unbind and the Zeldovich factor saturates at
unity giving a concentration dependence of Cn

‡+1
1 . This

corresponds to knuc ∝ C4
1 for single strand molecules and

knuc ∝ C2
1 for hairpin molecules in agreement with pre-

vious theory and experiment [33–35].
Measured nucleation rates range from ∼ 10−11 L−1s−1

at µM concentrations (Aβ) to ∼ 106 L−1s−1 at mM con-
centrations (insulin) [3, 8, 34]. Assuming these molecules
nucleate by the hairpin mechanism, these rates are con-
siderably slower than the predictions of our theory. While
it is well known that nucleation theories often suffer from
quantitative discrepancies despite capturing the scaling
trends [36–39], there are several features of the theory

that may also be contributing. These include approxi-
mations like the projection of the nucleus growth onto a
1D random walk, the absorbing boundary condition at
a cluster size of N?, and the neglect of sequence effects.
In particular, the latter contribution is particularly large
because the requirement of in-register binding is equiva-
lent to reducing the effective concentration by ∼ L−1.
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FIG. 4: Nucleation rate of hairpin and single strand
molecules. Molecules that form hairpin structures nucleate
much faster than molecules that only contribute one strand
because of the reduced translational entropy penalty to form
the nucleus. The curvature at high concentration is due to
the saturation of the Zeldovich factor.

Despite the over-estimate of nucleation rates at in vitro
concentrations, the predicted rates shown in Fig. 4 lead
to the conclusion that homogenous nucleation is too slow
to be significant at physiological concentrations. There-
fore, nucleation under these conditions will require het-
erogeneous mechanisms to ameliorate the nucleation bar-
rier. This will be the subject of future work.

With these quantitative limitations, the primary re-
sults of our model are the predictions of two different
power law regimes and the observation that nucleation
is dominated by trajectories that avoid the saddle point.
Primary nucleation is a difficult subject to study because
it is difficult to disentangle from the background of sec-
ondary nucleation events [4–8]. Our hope is that sim-
ple models like ours will inspire further studies into the
mechanism of amyloid nucleation.
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