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Objects are represented in sensory systems by continuous manifolds due to sensitivity of neu-
ronal responses to changes in physical features such as location, orientation, and intensity. What
makes certain sensory representations better suited for invariant decoding of objects by downstream
networks? We present a theory that characterizes the ability of a linear readout network, the per-
ceptron, to classify objects from variable neural responses. We show how the readout perceptron
capacity depends on the dimensionality, size, and shape of the object manifolds in its input neural
representation.

PACS numbers: 87.18.Sn, 87.19.lt, 87.19.lv

High-level perception in the brain involves classifying or
identifying objects which are represented by continuous
manifolds of neuronal states in all stages of sensory hi-
erarchies [1–7] Each state in an object manifold corre-
sponds to the vector of firing rates of responses to a par-
ticular variant of physical attributes which do not change
object’s identity, e.g., intensity, location, scale, and orien-
tation. It has been hypothesized that object identity can
be decoded from high level representations, but not from
low level ones, by simple downstream readout networks
[1, 2, 6, 8–12]. A particularly simple decoder is the per-
ceptron, which performs classification by thresholding a
linear weighted sum of its input activities [13, 14]. How-
ever, it is unclear what makes certain representations well
suited for invariant decoding by simple readouts such as
perceptrons. Similar questions apply to the hierarchy
of artificial deep neural networks for object recognition
[10, 15–18]. Thus, a complete theory of perception re-
quires characterizing the ability of linear readout net-
works to classify objects from variable neural responses
in their upstream layer.

A theoretical understanding of the perceptron was pio-
neered by Elizabeth Gardner who formulated it as a sta-
tistical mechanics problem and analyzed it using replica
theory [19–28]. In this work, we generalize the statisti-
cal mechanical analysis and establish a theory of linear
classification of manifolds synthesizing statistical and ge-
ometric properties of high dimensional signals. We apply
the theory to simple classes of manifolds and show how
changes in the dimensionality, size, and shape of the ob-
ject manifolds affect their readout by downstream per-
ceptrons.
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Line segments: One-dimensional object manifolds
arise naturally from variation of stimulus intensity, such
as visual contrast, which leads to approximate linear
modulation of the neuronal responses of each object.
We model these manifolds as line segments and consider
classifying P such segments in N dimensions, expressed
as {xµ +Rsuµ}, −1 ≤ s ≤ 1, µ = 1, ..., P . The N -
dimensional vectors xµ ∈ RN and uµ ∈ RN denote re-
spectively, the centers and directions of the µ-th seg-
ment, and the scalar s parameterizes the continuum of
points along the segment. The parameter R measures the
extent of the segments relative to the distance between
the centers (Fig. 1).

We seek to partition the different line segments into two
classes defined by binary labels yµ = ±1 . To classify
the segments, a weight vector w ∈ RN must obey yµw ·
(xµ +Rsuµ) ≥ κ for all µ and s. The parameter κ ≥ 0 is
known as the margin; in general, a larger κ indicates that
the perceptron solution will be more robust to noise and
display better generalization properties [29]. Hence, we
are interested in maximum margin solutions, i.e., weight
vectors w that yield the maximum possible value for κ.
Since line segments are convex, only the endpoints of each
line segment need to be checked, namely min hµ0±Rhµ =
hµ0 −R |hµ| ≥ κ where hµ0 = ||w||−1yµw ·xµ are the fields
induced by the centers and hµ = ||w||−1yµw ·uµ are the
fields induced by the line directions.

Replica theory: The existence of a weight vector w that
can successfully classify the line segments depends upon
the statistics of the segments. We consider random line
segments where the components of xµ and uµ are i.i.d.
Gaussians with zero mean and unit variance, and random
binary labels yµ. We study the thermodynamic limit
where the dimensionality N → ∞ and number of seg-
ments P → ∞ with finite α = P/N and R. Following
Gardner [19] we compute the average of log V where V



FIG. 1: (a) Linear classification of points. (solid) points on
the margin, (striped) internal points. (b) Linear classification
of line segments. (solid) lines embedded in the margin, (dot-
ted) lines touching the margin, (striped) interior lines. (c)
Capacity α = P/N of a network N = 200 as a function of
R with margins κ = 0 (red) and κ = 0.5 (blue). Theoretical
predictions (lines) and numerical simulation (markers, see SM
for details) are shown. (d) Fraction of different line configura-
tions at capacity with κ = 0. (red) lines in the margin, (blue)
lines touching the margin, (black) internal lines.

is the volume of the space of perceptron solutions:

V =

ˆ
‖w‖2=N

dNw

P∏
µ=1

Θ (hµ0 −R |hµ| − κ) . (1)

Θ(x) is the Heaviside step function. According to replica
theory, the fields are described as sums of random Gaus-
sian fields hµ0 = tµ0 + zµ0 and hµ = tµ + zµ where t0 and
t are quenched components arising from fluctuations in
the input vectors xµ and uµ respectively, and the z0,
z fields represent the variability in hµ0 and hµ resulting
from different solutions of w. These fields must obey
the constraint z0 + t0−R |z + t| ≥ κ. The capacity func-
tion α1(κ,R) (the subscript 1 denotes the dimensional-
ity of the manifolds) describes for which P/N ratio the
perceptron solution volume shrinks to a unique weight
vector. The reciprocal of the capacity is given by the
replica symmetric calculation (details provided in sup-
plementary materials, SM):

α−1
1 (κ,R) =

〈
min

z0+t0−R|z+t|≥κ

1

2

[
z2

0 + z2
]〉

t0,t

(2)

where the average is over the Gaussian statistics of t0 and
t. To compute Eq. (2), three regimes need to be consid-
ered. First, when t0 is large enough so that t0 > κ+R |t|,
the minimum occurs at z0 = z = 0 which does not con-
tribute to the capacity. In this regime, hµ0 > κ and hµ > 0
implying that neither of the two segment endpoints reach
the margin. In the other extreme, when t0 < κ−R−1|t|,

the minimum is given by z0 = κ − t0 and z = − |t|, i.e.
hµ0 = κ and hµ = 0 indicating that both endpoints of the
line segment lie on the margin planes. In the intermedi-
ate regime where κ−R−1 |t| < t0 < κ+R |t|, z0 = κ− t0
but z > − |t|, i.e. hµ0 = κ but hµ > 0, corresponding
to only one of the line segment endpoints touching the
margin. In this regime, the solution is given by minimiz-
ing the function (R |z + t| + κ − t0)2 + z2 with respect
to z. Combining these contributions, we can write the
perceptron capacity of line segments:

α−1
1 (κ,R) =

ˆ ∞
−∞

Dt

ˆ κ+R|t|

κ−R−1|t|
Dt0

(R |t|+ κ− t0)
2

R2 + 1

+

ˆ ∞
−∞

Dt

ˆ κ−R−1|t|

−∞
Dt0

[
(κ− t0)2 + t2

]
(3)

with integrations over the Gaussian measure, Dx ≡
1√
2π
e−

1
2x

2

dx. It is instructive to consider special lim-

its. When R → 0, Eq. (3) reduces to α1(κ, 0) = α0(κ)
where α0(κ) is Gardner’s original capacity result for per-
ceptrons classifying P points (the subscript 0 stands for
zero-dimensional manifolds) with margin κ 1-(a). Inter-

estingly, when R = 1, then α1(κ, 1) = 1
2α0(κ/

√
2). This

is because when R = 1 there are no statistical correla-
tions between the line segment endpoints and the prob-
lem becomes equivalent to classifying 2P random points
with average norm

√
2N .

Finally, when R → ∞, the capacity is further reduced:
α−1

1 (κ,∞) = α−1
0 (κ)+1. This is because when R is large,

the segments become unbounded lines. In this case, the
only solution is for w to be orthogonal to all P line di-
rections. The problem is then equivalent to classifying P
center points in theN−P null space of the line directions,
so that at capacity P = α0(κ)(N − P ).

We see this most simply at zero margin, κ = 0. In this
case, Eq. (3) reduces to a simple analytic expression
for the capacity: α−1

1 (0, R) = 1
2 + 2

π arctanR (SM). The
capacity is seen to decrease from α1(0, R = 0) = 2 to
α1(0, R = 1) = 1 and α1(0, R = ∞) = 2

3 for unbounded
lines, and can be related to a perceptron model with vary-
ing correlations between pairs of points [28].We have also
calculated analytically the distribution of the center and
direction fields hµ0 and hµ [27]. The distribution consists
of three contributions, corresponding to the regimes that
determine the capacity. One component corresponds to
line segments fully embedded in these planes. The frac-
tion of these manifolds is simply the volume of phase
space of t and t0 in the last term of Eq. (3). Another
fraction, given by the volume of phase space in the first
integral of (3) corresponds to line segments touching the
margin planes at only one endpoint. The remainder of
the manifolds are those interior to the margin planes.
Fig. 1 shows that our theoretical calculations correspond
nicely with our numerical simulations for the perceptron
capacity of line segments, even with modest input di-
mensionality N = 200. Note that as R→∞, half of the
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manifolds lie in the plane while half only touch it; how-
ever, the angles between these segments and the margin
planes approach zero in this limit. As R→ 0 , half of the
points lie in the plane [27].

D-dimensional balls: Higher dimensional manifolds
arise from multiple sources of variability and their nonlin-
ear effects on the neural responses. An example is vary-
ing stimulus orientation, resulting in two-dimensional ob-
ject manifolds under the cosine tuning function (Fig.
2(a)). Linear classification of these manifolds depends
only upon the properties of their convex hulls [30]. We
consider simple convex hull geometries as D-dimensional

balls embedded in N -dimensions:
{
xµ +R

∑D
i=1 siu

µ
i

}
,

so that the µ-th manifold is centered at the vector xµ ∈
RN and its extent is described by a set of D basis vectors{
uµi ∈ RN , i = 1, ..., D

}
. The points in each manifold

are parameterized by the D-dimensional vector ~s ∈ RD
whose Euclidean norm is constrained by: ‖~s‖ ≤ 1 and
the radius of the balls are quantified by R .

Statistically, all components of xµ and uµi are i.i.d. Gaus-
sian random variables with zero mean and unit variance.
We define hµ0 = N−1/2yµw·xµ as the field induced by the

manifold centers and hµi = N−1/2yµw ·uµi as the D fields
induced by each of the basis vectors and with normaliza-
tion ‖w‖ =

√
N . To classify all the points on the mani-

folds correctly with margin κ, w ∈ RN must satisfy the

inequality hµ0 −R||~hµ|| ≥ κ where ||~hµ|| is the Euclidean

norm of the D-dimensional vector ~hµ whose components
are hµi . This corresponds to the requirement that the
field induced by the points on the µ-th manifold with the
smallest projection on w be larger than the margin κ.

We solve the replica theory in the limit of N, P → ∞
with finite α = P/N , D, and R. The fields for each
of the manifolds can be written as sums of Gaussian
quenched and entropic components,

(
t0 ∈ R, ~t ∈ RD

)
and

(
z0 ∈ R, ~z ∈ RD

)
, respectively. The capacity for

D-dimensional manifolds is given by the replica symmet-
ric calculation (SM):

α−1
D (κ,R) =

〈
min

t0+z0−R‖~t+~z‖>κ
1

2

[
z2

0 + ‖~z‖2
]〉

t0,~t

. (4)

The capacity calculation can be partitioned into three
regimes. For large t0 > κ + Rt, where t =

∥∥~t∥∥, z0 = 0
and ~z = 0 corresponding to manifolds which lie interior
to the margin planes of the perceptron. On the other
hand, when t0 < κ − R−1t, the minimum is obtained
at z0 = κ − t0 and ~z = −~t corresponding to manifolds
which are fully embedded in the margin planes. Finally,
in the intermediate regime, when κ−R−1t < t0 < κ+Rt,
z0 = R

∥∥~t+ ~z
∥∥− t0 + κ but ~z 6= −~t indicating that these

manifolds only touch the margin plane. Decomposing
the capacity over these regimes and integrating out the
angular components, the capacity of the perceptron can

be written as:

α−1
D (κ,R) =

ˆ ∞
0

dt χD(t)

ˆ κ+Rt

κ− 1
R t

Dt0
(Rt+ κ− t0)

2

R2 + 1

+

ˆ ∞
0

dt χD(t)

ˆ κ− 1
R t

−∞
Dt0

[
(κ− t0)

2
+ t2

]
(5)

where χD(t) = 21−D
2

Γ( D
2 )
tD−1e−

1
2 t

2

is the D-Dimensional Chi

probability density function. For large R → ∞, Eq. (5)
reduces to: α−1

D (κ,∞) = α−1
0 (κ)+D which indicates that

w must be in the null space of the PD basis vectors {uµi }
in this limit. This case is equivalent to the classification
of P points (the projections of the manifold centers) by
a perceptron in the N − PD dimensional null space.

To probe the fields, we consider the joint distribution
of the field induced by the center, h0, and the norm of

the fields induced by the manifold directions, h ≡
∥∥∥~h∥∥∥ .

There are three contributions. The first term corresponds
to h0 −Rh > κ, i.e. balls that lie interior to the percep-
tron margin planes; the second component corresponds
to h0 − Rh = κ but h > 0, i.e. balls that touch the
margin planes; and the third contribution represents the
fraction of balls obeying h0 = κ and h = 0, i.e. balls
fully embedded in the margin. The dependence of these
contributions on R for D = 2 is shown in Fig. 2(b). In-
terestingly, when κ = 0 , the case of R = 1 is particularly
simple for all D . The capacity is αD = 2/(D + 1) ; in
addition, the fraction of embedded and interior balls are
equal and the fraction of touching balls have a maximum,
see Fig. 2(b) and SM.

In a number of realistic problems, the dimensionalityD of
the object manifolds could be quite large. Hence, we ana-
lyze the limit D � 1. In this situation, for the capacity to
remain finite, R has to be small, scaling as R ∝ D− 1

2 , and
the capacity is αD(κ,D) ≈ α0(κ+R

√
D). In other words,

the problem of separating P high dimensional balls with
margin κ is equivalent to separating P points but with a
margin κ + R

√
D. This is because when the distance of

the closest point on the D-dimensional ball to the mar-
gin plane is κ, the distance of the center is κ + R

√
D

(see Fig. 2). When R is larger, the capacity vanishes as
αD(0, R) ≈

(
1 +R−2

)
/D. When D is large, making w

orthogonal to a significant fraction of high dimensional
manifolds incurs a prohibitive loss in the effective dimen-
sionality. Hence, in this limit, the fraction of manifolds
that lie in the margin plane is zero. Interestingly, when
R is sufficiently large, R ∝

√
D, it becomes advantageous

for w to be orthogonal to a finite fraction of the mani-
folds.

Lp balls: To study the effect of changing the geomet-
rical shape of the manifolds, we replace the Euclidean
norm constraint on the manifold boundary by a con-
straint on their Lp norm. Specfically, we consider D-

dimensional manifolds
{
xµ +R

∑D
i=1 siu

µ
i

}
where the D

dimensional vector ~s parameterizing points on the man-
ifolds is constrained: ‖~s‖p ≤ 1. For 1 < p <∞, these Lp

3



FIG. 2: Random D-dimensional balls: (a) Linear classifica-
tion of D = 2 balls. (b) Fraction of 2-D ball configurations
as a function of R at capacity with κ = 0, comparing the-
ory (lines) with simulations (markers). (red) balls embedded
in the plane, (blue) balls touching the plane, (black) interior
balls. (c) Linear classification of balls with D = N at margin
κ (black circles) is equivalent to point classification of centers

with effective margin κ+R
√
N (purple points). (d) Capacity

α = P/N for κ = 0 for large D = 50 and R ∝ D−1/2 as a func-

tion of R
√
D. (blue solid) αD(0, R) compared with α0(R

√
D)

(red square). (Inset) Capacity α at κ = 0 for 0.35 ≤ R ≤ 20
and D = 20: (blue) theoretical α compared with approximate
form (1 +R−2)/D (red dashed).

manifolds are smooth and convex. Their linear classifica-
tion by a vector w is determined by the field constraints

hµ0 − R||~hµ||q ≥ κ where, as before, hµ0 are the fields in-

duced by the centers, and ||~hµ||q, q = p/(p − 1), are the
Lq dual norms of the D-dimensional fields induced by uµi
(SM). The resultant solutions are qualitatively similar to
what we observed with L2 ball manifolds.

However, when p ≤ 1, the convex hull of the mani-
fold becomes faceted, consisting of vertices, flat edges
and faces. For these geometries, the constraints on
the fields associated with a solution vector w becomes:
hµ0 − Rmaxi |hµi | ≥ κ for all p < 1 . We have solved in
detail the case of D = 2 (SM). There are four manifold
classes: interior; touching the margin plane at a single
vertex point; a flat side embedded in the margin; and
fully embedded. The fractions of these classes are shown
in Fig. 3.

Discussion: We have extended Gardner’s theory of the
linear classification of isolated points to the classification
of continuous manifolds. Our analysis shows how linear
separability of the manifolds depends intimately upon the

dimensionality, size and shape of the convex hulls of the
manifolds. Some or all of these properties are expected to
differ at different stages in the sensory hierarchy. Thus,
our theory enables systematic analysis of the degree to
which this reformatting enhances the capacity for object
classification at the higher stages of the hierarchy.

FIG. 3: L1 balls: (a) Linear classification of 2-D L1 balls. (b)
Fraction of manifold configurations as a function of radius R
at capacity with κ = 0 comparing theory (lines) to simulations
(markers). (red) entire manifold embedded, (blue) manifold
touching margin at a single vertex, (gray) manifold touching
with two corners (one side), (purple) interior manifold.

We focused here on the classification of fully observed
manifolds and have not addressed the problem of general-
ization from finite input sampling of the manifolds. Nev-
ertheless, our results about the properties of maximum
margin solutions can be readily utilized to estimate gen-
eralization from finite samples. The current theory can
be extended in several important ways. Additional geo-
metric features can be incorporated, such as non-uniform
radii for the manifolds as well as heteogeneous mixtures
of manifolds. The influence of correlations in the struc-
ture of the manifolds as well as the effect of sparse la-
bels can also be considered. The present work lays the
groundwork for a computational theory of neuronal pro-
cessing of objects, providing quantitative measures for
assessing the properties of representations in biological
and artificial neural networks.
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