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Utilizing the sparsity ubiquitous in real-world network connectivity, we develop a theoretical
framework for efficiently reconstructing sparse feed-froward connections in a pulse-coupled nonlinear
network through its output activities. Using only a small ensemble of random inputs, we solve this
inverse problem through the compressive sensing theory based on a hidden linear structure intrinsic
to the nonlinear network dynamics. The accuracy of the reconstruction is further verified by the
fact that complex inputs can be well recovered using the reconstructed connectivity. We expect
this work provides a new perspective for understanding the structure-function relationship as well
as compressive sensing principle in nonlinear network dynamics.
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The structural connectivity in a network is often key
to the understanding of its function. However, for many
physical systems, e.g., neuronal networks, it is currently
infeasible to obtain the full network connectivity due
to experimental difficulties [1–7]. Recently, network
analysis approaches, such as partial spectral coherence,
Granger causality, and dynamic Bayesian network anal-
ysis, have been developed in an attempt to reconstruct
network connectivity based on measured network outputs
[8–12]. However, these methods generally demand long
observational data, which severely limits their utility in
applications.
While the connectivity in many biological, social, and

technological networks is found to be sparse [13–18], how
to reconstruct the connectivity of such networks in gen-
eral is still a difficult task. Compressive sensing (CS)
proves to be a useful technique for reconstructing sparse
data via very few measurements [19–21], and thus may
facilitate connectivity reconstruction using relatively lit-
tle observational data. While CS has been applied in
recovering the connectivity of many networks [22–25], its
application has been restricted to static systems with ex-
plicit linear input-output relations. However, many net-
works possess nonlinear dynamics, and whether CS can
be applied to reconstructing their connectivities remains
a great theoretical challenge.
In this paper, we address under what conditions the

CS reconstruction framework can be applied to a general
class of pulse-coupled nonlinear networks, i.e., integrate-
and-fire (I&F) networks. These network systems emerge
from many applications, e.g., gene regulatory modeling,
speech recognition, and neuronal dynamics [26–29]. Since
the complete structure of the underlying network connec-
tivity usually cannot be obtained, we further address the
issue of how to verify the CS reconstructed networks.

∗ vbarran1@swarthmore.edu, zdz@sjtu.edu.cn, cai@cims.nyu.edu

To answer these questions, so as to deepen the under-
standing of network structure-function relationships as
well as the CS mechanism for sparse signal transmission
in nonlinear systems, we develop a theoretical framework
for CS reconstruction of sparse feed-forward connectivity
of nonlinear I&F networks. First, using nonequilibrium
statistical mechanics methods, we reveal a linear map-
ping between network input and output activity embed-
ded in such nonlinear network dynamics. Then, using
a significantly small set of random inputs with short-
time duration, we apply CS theory to reconstruct the
network connectivity. We further demonstrate that the
reconstructed connectivity can be verified by a success-
ful recovery of complex inputs. Our analysis indicates
that this reconstruction can even be achieved when the
dimension of network input is significantly greater than
the dimension of the measured output. In addition, the
recovery of feed-forward connectivity is still possible in
the presence of recurrent connections.
We consider the following I&F dynamics with m nodes

and the activity of the ith node with state variable xi

τ
dxi

dt
= −(xi−xR)+

n
∑

j=1

Fijpj+
S

NR

m
∑

k=1

k 6=i

Rik

∑

l

δ(t−τkl),

(1)
where the input n-vector p = (pj) is fed into the network
through connections determined by a sparse feed-forward
m × n matrix F = (Fij). Recurrent connections among
the nodes are described by an m×m matrix R = (Rik),
where S is the connection strength and NR is the aver-
aged number of connections per node. xi evolves con-
tinuously according to Eq. (1) with time-scale τ until
reaching a threshold value xT , at which point the node
is said to fire and its state is instantaneously reset to the
value xR. At the moment of the lth firing event of the ith
node, τil, the activity of all neighboring nodes is offset by
(S/NR). Integrating over the Dirac delta function δ(·) in
Eq. (1) takes into account this instantaneous offset at
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each firing event.
To illustrate the idea of CS reconstruction of sparse

feed-forward connectivity, we first consider the network
without recurrent connectivity, i.e., S = 0. As typical in
experiment, we seek to reconstruct F in the case where
we only possess information regarding r inputs, denoted
by

{

p(i)
}r

i=1
, and measure the corresponding network

output response, i.e., firing rates of network nodes, de-
noted by

{

µ
(i)
}r

i=1
, by accumulating firing events in a

short-time duration (∼ τ). Note that µ(i) is an m-vector
and p(i) is an n-vector. For our reconstruction, we use
random input for each p(i), i.e., the elements of p(i)

are chosen as independent uniformly distributed random
variables.
Note that the total number of network-output mea-

surements is mr, whereas the number of unknowns in the
feed-forward connectivity is mn. Here, the experimental
constraint is reflected in the fact that r is much less than
n. Theoretically, to reconstruct the feed-forward con-
nectivity F is an underdetermined inverse problem and
in general is ill-posed. However, since F is sparse, i.e.,
the number of unknowns in F is much less than mn, the
recently developed compressive sensing theory might pro-
vide a potential tool for such sparse data reconstruction
if the dynamics were linear. Here, we however confront
a conceptual difficulty because the dynamics of the net-
work system (1) is instead nonlinear.
As outlined in the Appendix, through techniques of

nonequilibrium statistical mechanics [30–32], we can
coarse-grain the nonlinear network dynamics in the rel-
atively high firing-rate regime and obtain an embedded
linear mapping between the network inputs p and the
network output firing rates µ as

Fp =
(

τµ+
em

2

)

(xT − xR), (2)

where em is anm-vector of ones. Note that the firing-rate
system (2) was previously derived in the population sense
for ensembles of I&F networks with stochastic inputs of
homogeneous strength in traditional coarse-graining ap-
plications [30–32]. Our work reveals that, over an ensem-
ble of network realizations differing in initial conditions,
Eq. (2) is also valid for the case where each network
realization is forced by the same set of heterogeneous de-
terministic inputs.
We are now ready to address the question of whether F

can be successfully reconstructed using CS based on the
linear mapping (2). The theory of CS demonstrates that
finite bandwidth signals with a sparse representation may
be reconstructed using particularly few measurements of
number determined by the signal sparsity rather than
the full bandwidth [19, 20]. Therefore, for most efficient
signal recovery, one should intuitively choose the recon-
struction with the most zero-components in the sparse
domain. While this optimization problem is generally
computationally expensive, it is possible to equivalently
reconstruct the sparse representation by instead minimiz-
ing the sum of the absolute values (L1 norm) of the sig-

10
−3

10
−2

10
−1

10
0

20

40

60

80

100

120

140

Density of F

N
u

m
b

e
r 

o
f 

In
p

u
ts

 

 

200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

Number of Inputs

R
e

la
ti

v
e

 E
rr

o
r

 

 

Feed−forward Network
Assuming R Known
Assuming No Recurrent Connections

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Measurement Noise Standard Deviation

R
e

la
ti

v
e

 E
rr

o
r

(b)

0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

 Recurrent Connection Strength S/NR

R
e

la
ti

v
e

 E
rr

o
r

(d)

(c)

FIG. 1. (color online). Relative reconstruction error ǫ depen-
dence on input set and matrix density. (a) ǫ as a function of
the input ensemble size for a feed-forward network (blue), and
also for a network with recurrent connections that are known
(red) or assumed negligible (dashed green). Here, m = 103

and n = 104. (b) ǫ as a function of the noise (see text). (c)
ǫ as a function of recurrent connection strength S/NR for a
square network of m = n = 100 and r = 33 inputs. (d)
Number of inputs required to produce a reconstruction of F
with ǫ less than 0.15 as a function of the connection density
of F. Network parameters are the same as in (c). In (c) and
(d), the error considered is the mean over 10 realizations of
F, exhibiting a small average variance of 10−4. Unless varied,
the parameters are chosen as S = 1, NR = 0.05m2, τ = 20ms,
xR = 0, xT = 1, f = 1

pFpcn
, and pj ∈ [0, 255], modeling input

pixel intensities. Note characteristic pixel intensity pc = 50
and f are chosen such that as the connection density of F is
varied, the feed-forward input into each node remains O(1).
In (a) and (b), the network-averaged firing rate is approxi-
mately 100Hz.
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nal components. This L1 minimization problem can be
efficiently solved through numerous algorithms, such as
the orthogonal matching pursuit, least absolute shrink-
age and selection operator, and the polytope faces pursuit
[21, 33]. For a large class of measurement matrices with
random distributions, CS theory proves that successful
reconstruction is achievable in this framework with near
certainty [19, 20, 26–29]. Therefore, recovering the full
feed-forward connectivity matrix F requires solving a to-
tal of m CS problems. Each corresponds to a distinct
row Fi∗, for i = 1 . . .m, using the full set of inputs,
P =

[

p(1) . . .p(r)
]

, and respective evoked firing rates of

node i, Ui =
[

µ
(1)
i . . . µ

(r)
i

]

. Each CS problem thus has

form

Fi∗P =
(

τUi +
er

2

)

(xT − xR), (3)

where Fi∗ is chosen to be the solution to Eq. (3) with
minimal L1 norm.
To assess the accuracy of the reconstructed connec-

tivity Frecon, we measure the relative reconstruction er-
ror, ǫ = ‖F− Frecon‖/‖F‖, using the Frobenius norm,

‖F‖ =
√

∑

i

∑

j F
2
ij . In Fig. 1(a), we consider a network

consisting of m = 103 nodes and the input dimension is
n = 104. For simplicity, each feed-forward connection Fij

is chosen as a product between a Bernoulli-distributed
random variable with success probability pF = 10−3 and
the input strength f . As will be discussed below, our
results can be naturally extended to alternative sparse
feed-forward connectivity with more complex structures,
e.g., with local receptive field properties. By using a one
order of magnitude smaller number of random inputs,
i.e., r = 103, the relative reconstruction error is ∼ 12%.
In addition, if the feed-forward connection strength is
known [34, 35], we have verified that the error can be
further reduced by thresholding the magnitudes of en-
tries in the reconstructed matrix Frecon.
Since an efficient reconstruction of F should minimize

the number of necessary measurements of network out-
put activity, we plot in Fig. 1(a) the impact of the in-
put ensemble size on the quality of the reconstruction of
F. It can be seen that the reconstruction error initially
rapidly decreases as more inputs are used and then re-
mains nearly constant with further increases in the num-
ber of inputs. Therefore, the reconstruction error in this
case is already small even using a two orders of mag-
nitude smaller number of inputs, e.g., r = 250. Since
the measurement of network dynamics may be subject to
noise in applications, we also examine the impact of zero-
mean Gaussian noise added to the measured firing rates
on the reconstruction quality in Fig. 1 (b). We observe
that there is a nearly linear increase in error with the
noise standard deviation after an initial slow rise, yield-
ing accurate reconstructions in the presence of moderate
measurement noise.
Considering that the true feed-forward connectivity F

in general is not available in applications, one encounters

(a)

(b)

(d) (g)

(e) (h)

(c) (f) (i)

FIG. 2. Input reconstructions using recovered network con-
nectivity. (a)-(c): Input images of size (a)-(b) n = 1002 and
(c) n = 2502 pixels. (d)-(f): CS reconstructions using the
original F . (g)-(i): CS reconstructions using F recon. For
images (d)-(f), ǫ are 0.23, 0.23, and 0.24, respectively. For
images (g)-(i), ǫ are 0.27, 0.27, and 0.22, respectively. Each
connection matrix was reconstructed using an ensemble of
r = 400 random inputs. For each image, the corresponding
downstream network size is m = n/10 with a feed-forward
connection density of 0.001. ǫ for F recon is 14% for the net-
works corresponding to (a)-(b) and 15% for (c).

an important issue of how to verify the accuracy of Frecon.
In fact, the linear mapping (2) can provide a methodology
to verify the quality of reconstruction by solving another
inverse problem, namely, one can apply new inputs p and
examine whether these new inputs can be well recovered
using Frecon in combination with the measured network
firing rate µ in response to these new inputs.
However, this inverse problem may also be ill-posed if

the number of measurements m is much less than the
input dimension n. Instead of designing artificial sparse
inputs, we can use inputs which are sparse under some
linear transformation. Therefore, the effective amount of
freedom in p is much less than n and CS can be applied
to reconstruct these inputs. Here, we use visual images
as an example of such inputs since it is well known that
visual images pimage are sparse in the sense that p̂ =
Dpimage, where the matrix D is a sparsifying transform
[19, 20, 36] and p̂ is a sparse n-vector. We thus rewrite
this inverse problem as

Freconpimage = FreconD−1p̂ =
(

τµimage +
em

2

)

(xT−xR),

(4)
where µimage is the network firing-rate vector correspond-
ing to visual image input pimage. Using CS based on
the linear mapping (4), we recover the sparse represen-
tation p̂, and, in turn, the original visual image pimage

even when the dimension of pimage is much greater than
the number of network-output activity measurements in
µ

image.
Visual images in Fig. 2(a)-(c) are inputs into the net-
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work of m = n/10 nodes and the corresponding network
firing rates are measured. We first obtain Frecon utilizing
r = 400 random inputs in the reconstruction, as dis-
cussed previously. Then, using Frecon and the measured
network firing rate, we recover each of the respective im-
ages as shown in Fig. 2 (g)-(i). It can be seen that the
recovered images capture major features of the original
visual images. In comparison, Fig. 2 (d)-(f) are recov-
ered images using CS with the original true feed-forward
connectivity matrix F. We note that there is no signifi-
cant difference in the reconstruction quality using Frecon

relative to F, indicating a high quality of connectivity
reconstruction. As shown in Fig. 2 (c), (f) and (i), the
recovery of inputs can be further improved for larger net-
works. In our simulations, even visual inputs varying in
time, such as videos composed of time-evolving image
frames, can also be well recovered.
Finally, we investigate the case where the network pos-

sesses recurrent connectivity R, in which the correspond-
ing linear network input-output relationship is

Fp =
(

τµ+
em

2

)

(xT − xR)−
S

NR

Rµ. (5)

If the recurrent connectivityR is also known to be sparse,
the CS theory can similarly be applied to reconstruct
both F and R through solving the above inverse prob-
lem by measuring the network firing-rate set

{

µ
(i)
}r

i=1

corresponding to given input ensemble
{

p(i)
}r

i=1
. In ad-

dition, we find that the CS reconstruction performs well
when the recurrent connection strength S/NR is rela-
tively weak as shown in Fig. 1(a), in which two cases are
also presented, i.e., the recurrent connectivity is known
or the recurrent connectivity is neglected. It can be seen
that there is only a minor increase in the reconstruction
error for F relative to the fully feed-forward network (no
recurrent connectivity). Therefore, the presence of the
recurrent connectivity often does not greatly degrade the
accuracy of reconstruction. In Fig. 1 (c), we depict the
reconstruction error dependence on the recurrent connec-
tion strength, noting that there is little change in recon-
struction quality for small S/NR and there is an approx-
imately linear increase in error for larger S/NR. There-
fore, an accurate reconstruction is not achievable once
the drive from neighboring nodes, due to strong recur-
rent connections, drowns out the feedforward input in-
formation and thus diminished reconstruction quality of
F is to be expected. In general, CS signal recovery from
observed network dynamics is feasible when the network
is in an asynchronous regime characterized by relatively
uncorrelated firing events [37].
In addition, we investigate the number of inputs suf-

ficient for successful reconstruction as a function of the
connection density of F as shown in Fig. 1(d). As the
connection density of F increases and thus more nonzero
elements need to be determined, the necessary input en-
semble size increases. Once the density of F is sufficiently
high, we observe a more rapid increase in the number of
necessary inputs. This is consistent with the fact that

CS is only effective for sparse data reconstruction.
In summary, we have shown that our framework is use-

ful in reconstructing network wiring diagrams as well as
understanding the CS principle in nonlinear network dy-
namics. Unlike other methods for connectivity recon-
struction which rely on learning or specific input design
[38, 39], our framework utilizes the intrinsic underlying
network input-output relationship and does not depend
on the input structure. In addition, the connectivity re-
construction can be verified by the recovery of any sparse-
signal inputs, without the need for comparison with the
actual but usually unknown structural connectivity.
While we have demonstrated that sparse feed-forward

connectivity can be reconstructed from measured net-
work activity in response to a relatively small ensemble
of inputs for I&F network dynamics, we remark that our
framework could be generalized to other network models
or experimentally measured networks once an underly-
ing linear input-output relationship can be determined,
such as through nonlinear system analysis [40–42]. Both
physiological neurons [43, 44] and nonlinear neuronal
models, such as the Quadratic Integrate-And-Fire, Ex-
ponential Integrate-And-Fire, and Hodgkin-Huxley mod-
els [28, 45, 46], are known to have linear input-output
mappings for specific regimes of input strength. Once
the dynamics of the nodes are in such linear regime,
our framework could be used to reconstruct the network
feed-forward connectivity. Moreover, if the sparse feed-
forward connectivity is somewhat structured, as in the
case of receptive fields in the visual system, CS tech-
niques can be similarly applied and may potentially yield
improved reconstructions [47–49].

APPENDIX

Seeking a linear input-output mapping, we perform a
coarse-graining procedure derived using non-equilibrium
statistical mechanics arguments [29, 32]. We consider a
statistical ensemble of networks, which in general con-
tain both feed-forward and recurrent connections, differ-
ing only in the initial state of nodes, xj(t = 0), and re-
sultant input for j = 1, ...,m. For each realization of the
network in the ensemble, node j is injected with a new in-
dependent spike train of pulses transmitted by neighbor-
ing nodes in addition to a constant input current, (Fp)j .
Moreover, the network possesses the same connectivity
structure in each realization.
Over the set of all such realizations considered, we an-

alyze the configuration probability, Pj(x, dx, t), of node
j having state variable inside the infinitesimally small in-
terval (x, x + dx) at a specific time, t. To compute this
probability, we introduce a probability density function,
ρj(x, t), such that the probability we seek is ρj(x, t)dx.
In determining the dynamics of Pj(x, dx, t), we consider
changes in the configuration probability over small time
interval (t, t+ dt).
There are two possible changes the configuration prob-
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ability can undergo, namely (i) smooth and (ii) instan-
taneous changes. When node j receives no spikes and
is therefore smoothly evolving, its configuration proba-
bility will update continuously by Eq. (1) with forcing
only from feed-forward input (Fp)j . However, the in-
stant node j receives a spike, its state will jump, thereby
instantaneously changing the configuration probability.
We group the smooth parts of Eq. (1) into function φ(x)
and rewrite the dynamics of node j in form

dxj

dt
= φ(xj) +

S

τNR

m
∑

k=1

k 6=j

Rjk

∑

l

δ(t− τkl),

where φ(xj) =
−(xj−xR)

τ
+

(Fp)j
τ

. Hence, for node j, the
smooth change will be

[φ(x)ρj(x, t)− φ(x + dx)ρj(x+ dx, t)] dt

and the instantaneous change will be

∑

i6=j

µi

[

ρj

(

x−
SRji

τNR

, t

)

− ρj(x, t)

]

dxdt.

Therefore, the configuration probability evolves accord-
ing to

[ρj(x, t+ dt)− ρj(x, t)] dx =

[φ(x)ρj(x, t)− φ(x + dx)ρj(x+ dx, t)] dt

+
∑

i6=j

µi

[

ρj

(

x−
SRji

τNR

, t

)

− ρj(x, t)

]

dxdt.

Taylor expanding to O(dx) and dividing by the product
of differentials dxdt in the limit as dx → 0 and dt → 0,
we obtain the Boltzmann equation for ρj(x, t)

∂ρj
∂t

= −
∂

∂x
(φρj)+

∑

i6=j

µi

[

ρj

(

x−
SRji

τNR

, t

)

− ρj(x, t)

]

,

valid for xR < x < xT . Assuming the jumps in the state
variable at firing events are small, considering the elicited
magnitude of a postsynaptic potential due to the firing
event of a single presynaptic neuron is in general small,

we Taylor expand in
SRji

τNR
to O

(

(

SRji

τNR

)2
)

, obtaining

the Fokker-Planck equation

∂ρj
∂t

=
∂

∂x

(

(x− xR)

τ
ρj − gjρj + σ2

j

∂ρj
∂x

)

,

where

gj =
∑

i6=j

µi

SRji

τNR

+
(Fp)j

τ

is the mean input injected into node j and

σ2
j =

SRji

τNR

(

SRjiµi

2τNR

)

is the variance in the input fluctuations of node j.
The Fokker-Planck equation may be expressed in terms

of the probability flux, −Jj , of the state variable in con-
servation form

∂ρj
∂t

+
∂Jj
∂x

= 0.

To derive boundary conditions, we note that when the
state variable of a node reaches threshold xT , we in-
stantaneously reset the state variable to xR. Thus, the
state variable flux at x = xT and x = xR must be iden-
tical. Furthermore, assuming node j has a firing rate
of µj , the equality of flux across the boundary requires
Jj(x = xT ) = Jj(x = xR) = µj .
To conclude the coarse-graining, we analyze the

Fokker-Planck equation in the mean-driven operating
regime. This means that σ2

j vanishes and we obtain the
reduced partial differential equation

∂ρj
∂t

=
∂

∂x

(

(x − xR)

τ
ρj − gjρj

)

.

Assuming the firing rates and corresponding configura-
tion probability density function reach a temporal steady

state in which
∂ρj

∂t
= 0, the Fokker-Planck equation is re-

duced to the ordinary differential equation

∂

∂x

(

(x− xR)

τ
ρj − gjρj

)

= −
∂Jj
∂x

= 0,

which can be solved exactly for ρj with

ρj =
τµj

τgj − (x− xR)
.

Since ρj is a probability density function over domain
[xR, xT ], it must satisfy the normalization condition
∫ xT

xR

ρj(x)dx = 1 and therefore we obtain the implicit

definition for the firing rate

1 = (τµj) ln

(

τgj
τgj − (xT − xR)

)

.

The drive from the feed-forward input, (Fp)j , can then
be explicitly solved for, yielding

(Fp)j =
(xT − xR)

1− exp( −1
τµj

)
−

S

NR

(Rµ)j .

Assuming the feed-forward input into each node is rel-
atively large, the number of firing events for each node
within time scale τ is O(1). Under this assumption, we
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Taylor expand about small parameter 1
τµj

to O( 1
τµj

) and

obtain

(Fp)j = τµj(xT − xR) +
(xT − xR)

2
−

S

NR

(Rµ)j .

The above equation can be written in vector form, yield-
ing the linear input-output mapping (2) in the absence
of recurrent connectivity and linear mapping (5) in the
presence of recurrent connectivity.
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