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In section IV of our original paper [1] we assumed a particular conservation law Eq. (4.6), which was true in the
absence of external potentials, to derive some particular potentials for which we obtained solutions to the nonlinear
Dirac equation (NLDE). Because the conservation law of Eq. (4.6) for the component T 11 of the energy-momentum
tensor is not true in the presence of these external potentials, the solutions we found do not satisfy the NLDEs in
the presence of these potentials. Thus all the equations from Eq (4.6) through Eq. (4.44) are not correct, since the
exact solutions that followed in that section presumed Eq. (4.6) was true. Also the equations Eq. (A4) and Eq.
(A5) are a restatement of Eq. (4.6) and also are not correct. These latter equations are also not used in section V
and beyond. The rest of our original paper (starting with section V) was not concerned with exact solutions, but
instead was concerned with how the exact solitary wave solutions to the NLDE in the absence of an external potential
responded to being in the presence of various external potentials.
In this erratum, we correct this mistake and show how to directly find exact solutions of the NLDE in a particular

class of external potentials. That is, we show how to directly solve the equations for the two components of the

NLDE in 1+1 dimension with scalar-scalar self interaction g2

κ+1(Ψ̄Ψ)κ in the presence of an external electromagnetic

potential in the Axial Gauge eA0(x) = V (x), A1(x) = 0 without resorting to the conservation law of Eq. (4.6).
Writing the two components of the bound state solution of the NLDE as Ψ = e−iωt{R cos θ, iR sin θ} and assuming

that V (x) depends on x only through its dependence on R2 = y, we are able to find new exact solutions of the NLDE
for arbitrary κ in these potentials.
We start with the NLDE in the presence of an external electromagnetic potential:

(iγµ∂µ −m)Ψ− eγµAµΨ+ g2(Ψ̄Ψ)κΨ = 0 . (0.1)

Using the freedom of gauge invariance, one can choose the axial gauge A1 = 0, eA0 = V (x). One can also rescale the
fields so that we can set the coupling constant g = 1. In the axial gauge the NLDE becomes

iγµ∂µΨ−mΨ+ (Ψ̄Ψ)κΨ− γ0V (x)Ψ = 0. (0.2)

Going into the rest frame and choosing Ψ(x, t) = e−iωtψ(x) , and for ψ(x) the representation

ψ(x) =

(

A(x)
i B(x)

)

= R(x)

(

cos θ
i sin θ

)

, (0.3)

we find that the NLDE becomes

∂xA+ (m+ ω)B − g2[A2 −B2]κB − V (x)B = 0,

∂xB + (m− ω)A− g2[A2 −B2]κA+ V (x)A = 0. (0.4)

These two equations can also be written if we let y = R2(x) as:

dy

dx
= 2yκ+1(cos 2θ)κ sin 2θ − 2ym sin 2θ, (0.5)
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and

dθ

dx
= yκ cosκ+1 2θ −m cos 2θ + (ω − V (x)). (0.6)

We can now follow the approach that Chang, Ellis, and Lee [2] used in obtaining exact solutions when V = 0.
Dividing equation Eq. (0.5) by Eq. (0.6) and assuming that V is just a function of y = R2 and furthermore setting
V [y] = df [y]/dy then we obtain:

d

dθ

[

yκ+1

κ+ 1
cosκ+1 2θ + [ω −m cos 2θ]y − f [y]

]

= 0. (0.7)

Integrating with respect to θ and assuming that we have a no node solution going to zero at large |x| so that the
constant of integration is zero we obtain

yκ cosκ+1 2θ = −(κ+ 1)

[

ω −m cos 2θ − f [y]

y

]

. (0.8)

Substituting this result into Eq. (0.6), one obtains the equation

dθ

dx
= −κ(ω −m cos 2θ) +

(

df

dy
− (κ+ 1)

f

y

)

. (0.9)

We notice that if we choose f to be a solution of

df

dy
− (κ+ 1)

f

y
= 0. (0.10)

i.e.

f = v0
yκ+1

κ+ 1
, (0.11)

so that

V [y] = v0y
κ, (0.12)

then we obtain the same equation for θ as when V [y] = 0. Namely,

dθ

dx
= −κ(ω −m cos 2θ), (0.13)

whose solution is

θ(x) = tan−1(α tanhβκ(x), (0.14)

where α =
√

m−ω
m+ω and βκ = κ

√
m2 − ω2.

When κ = 1, this solution was obtained by different means by Nogami and Toyama [3]. Now we can solve for
y = R2 by using Eq. (0.8) to obtain

R2 =

[

(κ+ 1)(m cos 2θ − ω)

(cosκ+1 2θ − v0)

]1/κ

. (0.15)

This can also be written using the fact that

cos 2θ =
m+ ω cosh 2βκx

ω +m cosh 2βκx
(0.16)

as

R2 =









(κ+ 1)(m− ω)(m+ ω)

(m cosh(2βκx) + ω)

(

(

m+ω cosh(2βκx)
m cosh(2βκx)+ω

)κ+1

− v0

)









1

κ

. (0.17)
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FIG. 1: R2 vs. x when ω = 7/10, v0 = 0.4 (lower curve), 0.48 (upper curve) for the bound state solution in the external
potential V = v0R

2,

FIG. 2: R2 vs. x when ω = 1/2, v0 = −1 for the bound state solution in the external Potential V = −R2,

This reduces to our previous result when v0 → 0., i.e.

R2 =

(

m cosh(2βκx) + ω

m+ ω cosh(2βκx)

)[

(κ+ 1)β2
κ

κ2(m+ ω cosh 2βκx)

]1/κ

. (0.18)

Now R2 has to be positive and vanish when |x| → ∞ which means that v0 < ω2/m2 . When v0 < 0 one has an
attractive potential and this type of solution always exists. As v0 approaches ω2/m2, R2 can start becoming double
humped. We show some results for κ = 1 in the figures. For example when ω = 7/10 and we go from v0 = 0.4 to
v0 = 0.48 the shape of R2 shifts from single humped to double humped as seen in Fig. (1). For v0 ≥ 0.49 there are
no solutions which vanish when |x| → ∞. Choosing v0 = −1 and ω = 1/2 we obtain instead the results of Fig. (2)
for the Bound State solution.
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