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Abstract

We use three different methods to compute the derivatives of Onsager matrices with respect

to strain for vacancy-mediated multi-component diffusion from kinetic Monte Carlo simulations.

We consider a finite difference method, a correlated finite difference method to reduce the relative

statistical errors, and perturbation theory approach to compute the derivatives. We investigate the

statistical error behavior of the three methods for uncorrelated single vacancy diffusion in fcc Ni,

and for correlated vacancy-mediated diffusion of Si in Ni. While perturbation theory performs best

for uncorrelated systems, the correlated finite difference method performs best for the vacancy-

mediated Si diffusion in Ni, where longer trajectories are required.
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I. INTRODUCTION

Stress or strain fields in crystalline solids play a crucial role in controlling the evolution

and migration behavior of defects, leading to changes in material properties. External stress

delays the coarsening kinetics of precipitates in superalloys[1] and influences the mobility of

dislocations and grain boundaries[2–5]. Dislocations and grain boundaries, acting as sinks or

sources of point defects, generate internal strain fields in their neighborhood, which affects

the transport and segregation of vacancies, self-interstitials and solute atoms[6–8]. In turn,

changes in the transport properties of vacancies and interstitials also modify the climb rate

of dislocations, and hence creep[9, 10]. Moreover, the presence of stress or strain changes

the formation energies of intrinsic point defects[11], which affects the migration behavior of

solutes[12, 13]. To predict mass transport in strained environments, the influence of strain

on point defect and solute diffusion properties must be investigated.

Strain affects diffusion from a thermodynamic point of view by creating or modifying

driving forces, and from a kinetic point of view by changing the transport coefficients or

Onsager matrices[14], which connect the fluxes of species with the corresponding driving

forces. Previous studies have mainly focused on strain effects on driving forces[15–18],

but the strain-induced modification of Onsager matrices can also significantly change the

diffusion behaviors. Dederichs et al.[19] have shown that the strain-induced anisotropy of

saddle point configuration leads to an anisotropic diffusion even in materials which have

cubic symmetry under zero stress. Garnier et al.[20] found that the strain field near an

edge dislocation in Ni causes complex flow patterns for Si solutes and vacancies. Chan et

al.[21] performed atomic simulations in face-centered cubic (FCC) Pt and Cu to show that

the anisotropic diffusion of vacancies and self-interstitials under strain strongly depends

on the crystal structure and the crystallographic directions in which the strain is applied.

Sivak et al.[8] investigated the diffusion of point defects near edge dislocations in body-

centered cubic (BCC) Fe and FCC Cu, and found that the dislocation strain fields induce

anisotropic migration of point defects. In all these studies, the anisotropic diffusion behavior

can be addressed from the strain dependence of Onsager matrices; however, only Garnier

has calculated this effect using an analytical self-consistent mean field (SCMF) method[20].

Transport coefficients can be computed by combining two methods: kinetic Monte Carlo

(KMC)[22] simulations and atomic-scale calculation of energy landscapes. KMC simulations
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use atomic jump rates to calculate the Onsager matrices for general systems. If the atomic

jump rates follow the Arrhenius relationship, then the rate is determined by two quantities

from the energy landscape: the attempt frequency and the migration energy. Migration

energies, as well as their strain dependence, can be obtained from density functional theory

(DFT) calculations[23]. Because KMC is a stochastic approach, the statistical errors make

the strain derivatives of Onsager matrices more difficult to obtain than Onsager matrices

themselves.

We derive three KMC-based methods to compute the derivatives of Onsager matrices

with respect to strain for vacancy-mediated solute diffusion in fcc Ni. Migration energies

for atomic jumps and their derivatives with respect to strains computed by Garnier et al.

using DFT[20, 23] inform the KMC simulations. Sec.II introduces the KMC algorithm used

to compute Onsager matrices. Sec.III describes in detail the three derivative approaches

for computing Onsager matrix derivatives with respect to strain, and the behavior of the

statistical error for each approach. In Sec.IV we use the computed statistical errors and true

errors to quantitatively compare the performance of the three approaches for uncorrelated

single vacancy diffusion in fcc Ni, and for correlated vacancy-mediated Si diffusion in Ni.

Finally, in Sec.V we consider the computational efficiency in general.

II. KMC CALCULATION OF ONSAGER MATRICES

Kinetic Monte Carlo simulations evolve a system in time using stochastic trajectories[22].

The systems we consider evolve along each trajectory by a vacancy hopping from one site

to the possible nearest neighboring sites. For state i, the hopping rate νik for transition k is

expressed from harmonic transition state theory[24]:

νik = νi0exp(−Ei
k/kBT ), (1)

where νi0 is the attempt frequency, kB is Boltzmann’s constant, T is the temperature, and Ei
k

is the corresponding migration energy. For each state in the trajectory, we calculate hopping

rates and select an event based on a pseudorandom number u from a uniform distribution.

The index q of the event selected satisfies[25]

q−1∑
k=1

νik < uνitot ≤
q∑

k=1

νik, (2)
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where νitot =
∑NNN

k=1 ν
i
k is the sum over all transition rates from state i, and NNN is the number

of nearest neighbors. The escape time is drawn from an exponential distribution, and the

average value of the sum of all escape times over the trajectory is the sum of average escape

times ∆ti from each state in the trajectory,

∆ti = 1/νitot. (3)

From KMC simulations, we can extract the evolution time tj =
∑Nstep

i=1 ∆ti for the jth

trajectory, where Nstep is the number of steps per trajectory. We also measure the total

particle displacement rAα,j for species A along direction α (α = x, y, z) during time tj.

We compute the values and relative statistical errors of Onsager matrices from KMC

simulations. The Onsager matrix LAB connects the flux ~JA of species A to the gradient of

the chemical potential µB of species B[14],

~JA = −
∑
B

LAB ~∇µB. (4)

The mean squared displacements of the moving species determine the components of Onsager

matrices [26],

LABαβ =
c

Ntraj

Ntraj∑
j=1

rAα,jr
B
β,j

2tj
, (5)

where c is a trajectory-independent constant c = 1
ΩkBT

for simulation cell volume Ω, and

Ntraj is the number of KMC trajectories. In the special case of single vacancy diffusion in

bulk system, the diffusion properties of the system are fully characterized by the transport

coefficients LV Vαβ , which are proportional to the vacancy diffusivities Dαβ in the dilute limit:

Dαβ =
1

c
LV Vαβ . (6)

Therefore, we will use variable Dαβ for single vacancy diffusion in bulk Ni, and the more

general notation LABαβ for vacancy-mediated diffusion of Si in Ni(Si) alloys. The relative

statistical error of LABαβ is

σ(LABαβ ) =

√
var(LABαβ )

LABαβ
, (7)

where var(LABαβ ) is the variance of LABαβ over different KMC trajectories.
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III. DERIVATIVE APPROACHES AND STATISTICAL ERRORS

We apply three different approaches to calculate derivatives of the Onsager matrices with

respect to strain: the finite difference (FD) method, the correlated finite difference (CFD)

method, and the perturbation theory (PT) approach. The FD method is a direct approxi-

mation to compute Onsager matrix derivatives but it has the largest statistical errors. The

CFD method is an improvement of the FD method that reduces the statistical errors by

using correlated sampling. Alternatively, we use perturbation theory to develop a new ap-

proach that works especially well for uncorrelated diffusion systems. We use two systems to

examine the performance of the three methods: one is uncorrelated single vacancy diffusion

in fcc Ni and the other is correlated vacancy-mediated diffusion of dilute Si in Ni. We apply

a tetragonal strain εαβ = εδαβ(2δαx − δαy − δαz), which causes the lattice to expand along

the x direction and contract along the y and z directions. We do not consider effects from

shear strain or volumetric strain. Garnier et al. showed for vacancy mediated diffusion of

Si in Ni the influence of shear strain on the migration energies is small compared to the

influence of tetragonal strain[23], and volumetric strain causes the migration energies of dif-

ferent atomic jumps to increase or decrease by the same amount which does not change the

relative probabilities of trajectories.

A. Finite difference method

The finite difference (FD) method approximates the derivative of the Onsager matrix

with respect to strain L′ABαβ using the central difference scheme as

L′ABαβ

∣∣
ε=0

=
LABαβ (h)− LABαβ (−h)

2h
+O(h2), (8)

where h is the finite difference step size. We obtain LABαβ (h) and LABαβ (−h) from indepen-

dent KMC simulations on the positively strained and negatively strained diffusion systems

respectively. Approximating the derivative using Eq.(8) induces a truncation error with an

asymptotic behavior of O(h2)[27, 28]. Similar to LABαβ , we compute the relative statistical

error of L′ABαβ as

σFD(L′ABαβ ) =

√
var(LABαβ (h)) + var(LABαβ (−h))

2hL′ABαβ

≈

√
var(LABαβ (0))
√

2hL′ABαβ

, (9)
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which is inversely proportional to the step size h.

Moreover, we expect σFD(L′ABαβ ) to be independent of the number of steps because the

Onsager matrix variance var(LABαβ ) is independent of Nstep. For the special case of single

vacancy diffusion, the initial configurations of all the vacancy hops are identical so the

average waiting time ∆ti defined in Eq.(3) is constant along the trajectories, i.e. ∆ti = ∆t.

The variance of the vacancy diffusivity is

var(Dαβ) =
1

Ntraj(Ntraj − 1)

Ntraj∑
j=1

var
(rVα,jrVβ,j

2tj

)
=

var(rVα,j)var(rVβ,j)

(Ntraj − 1)N2
step∆t

. (10)

In the last equality, the vacancy displacements rVα,j and rVβ,j are sums of Nstep uncorrelated

jump vectors. Therefore their variances var(rVα,j) and var(rVβ,j) are proportional to Nstep,

which cancels the N2
step term in the denominator. For the more general vacancy-mediated

solute diffusion, the analytically derived statistical error behavior is an approximation if the

solute concentration is in the dilute limit.

B. Correlated finite difference method

The correlated finite difference (CFD) method introduces an artificial correlation between

the KMC trajectories for the positively and negatively strained diffusion systems to reduce

the statistical error.[29, 30] The relative statistical error of CFD is

σCFD(L′ABαβ ) =

√
var(LABαβ (h)) + var(LABαβ (−h))− 2cov(LABαβ (h), LABαβ (−h))

2hL′ABαβ

, (11)

where cov(LABαβ (h), LABαβ (−h)) is the covariance between LABαβ (h) and LABαβ (−h). The co-

variance must be positive for the CFD method to have smaller statistical errors than the

FD method. We ensure that the two simulations are correlated by using the same ran-

dom number sequence to generate the trajectories. Since there is no difference between the

two sets of trajectories as h goes to zero, the covariance cov(LABαβ (h), LABαβ (−h)) approaches

var(LABαβ ) > 0 in this limit. Therefore, we expect cov(LABαβ (h), LABαβ (−h)) to be positive for

small h.

The covariance cov(LABαβ (h), LABαβ (−h)) quantifies the difference between statistical errors

σFD(L′ABαβ ) and σCFD(L′ABαβ ) and decreases linearly with small finite difference step size h. For

simplicity, we still confine our discussion to single vacancy diffusion in which all the initial
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configurations of vacancy hops are identical. Therefore, if the positively strained system and

the negatively strained system follow identical trajectories, the covariance yields

cov∗(Dαβ(h), Dαβ(−h)) =

∑Ntraj

j=1

[
rV ∗α,jr

V ∗
β,j

2t∗j

∣∣
ε=h
−Dαβ(h)

][
rV ∗α,jr

V ∗
β,j

2t∗j

∣∣
ε=−h −Dαβ(−h)

]
Ntraj(Ntraj − 1)

=
(
1− (

εαα
ε

)2h2
)(

1− (
εββ
ε

)2h2
) ∆t2(0)

∆t(h)∆t(−h)
var(Dαβ(0)),

(12)

where ∗ denotes that the quantity is computed by assuming that the two strained systems

follow identical trajectories. The factors
(
1− ( εαα

ε
)2h2

)(
1− (

εββ
ε

)2h2
)

and
∆t2j (0)

∆tj(h)∆tj(−h)
come

from the effects of the strain induced lattice deformation and changes in the average waiting

time, respectively. However, the trajectories of two strained systems cannot be exactly the

same due to the strain difference. We assume that at a given step i the vacancy in the

positively and negatively strained systems have a probability pi to choose different jumps

and probability 1−pi to choose the same jump. The probability pi quantifies the discrepancy

between the rate tables of the two differently strained systems, which is constant during the

simulation for the single vacancy diffusion system, i.e. pi(h) = p(h). We expand p to first

order in h,

p(h) = p(0) +
∂p

∂h
|h=0h+O(h2). (13)

A zero strain difference yields the same rate tables for the two systems so p(0) = 0. As

h increases from zero the two rate tables diverge, suggesting that ∂pi
∂h

∣∣
h=0

> 0. For the

positively strained system, a fraction 1 − pi of a trajectory is exactly the same as that of

the negatively strained system, which contributes to the covariance cov(Dαβ(h), Dαβ(−h)).

The covariance cov∗(Dαβ(h), Dαβ(−h)) changes by a factor of (1− p(h)), such that

cov(Dαβ(h), Dαβ(−h)) = (1−p(h))cov∗(Dαβ(h), Dαβ(−h)) = (1−∂p
∂h

∣∣∣
h=0

h)var(Dαβ)+O(h2),

(14)

which indicates that the covariance decreases with h. Moreover, by comparing Eq.(14) with

Eq.(11) we conclude that σCFD is proportional to 1/
√
h for small h. The statistical error

of the CFD method σCFD is independent of Nstep because there is no Nstep dependence in

Eq.(14).
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C. Perturbation theory method

An alternative approach for computing the derivatives is based on the perturbation theory,

which treats the tetragonal strain ε as a perturbation on the unstrained system. As ε is

small, the vacancy in the perturbed system follows similar trajectories to the unperturbed

system. We can compute Onsager matrices of the strained diffusion system by reweighing the

trajectories based on relative probabilities from the unstrained system. The unnormalized

probability that the vacancy in the strained system follows the jth unstrained trajectory

is
∏Nstep

i=1 γi(ε), where γi(ε) =
νiq(ε)

νitot(ε)
is the probability that the vacancy takes the qth jump

among NNN possible choices at the ith step of the jth trajectory, and q = q(i, j) is the

index of the jump that is selected at the given step for the unstrained system. Following

the importance sampling[31–33], we use the probability ratios between the strained and

unstrained systems to estimate the probability distribution for the strained trajectories and

compute the ensemble average as

LABαβ (ε) =
c∑Ntraj

j=1 Pj(ε)

Ntraj∑
j=1

Pj(ε)
rAα,j(ε)r

B
β,j(ε)

2tj(ε)
, (15)

where the re-weighting factor is

Pj(ε) =

Nstep∏
i=1

γi(ε)

γi(0)
. (16)

To obtain the strain derivative L′ABαβ from Eq.(15), we expand all the terms on the right

hand side to first order in ε. The re-weighting factor Pj(ε) deviates from one as a result

of the variation of the jump frequencies due to the migration energy changes, Ei
k(ε) =

Ei
k(0) + ε

∂Eik
∂ε

+O(ε2),

Pj(ε) = 1 +
ε

kBT

Nstep∑
i

NNN∑
k=1

νik
νitot

(∂Ei
k

∂ε
−
∂Ei

q

∂ε

)
+O(ε2). (17)

The species displacement rAα,j(ε), a sum of strain-modified jump vectors, is

rAα,j(ε) = rAα,j(0)(1 + εαα). (18)

The total evolution time tj(ε) of each trajectory is an accumulation of waiting times ∆ti(ε),

which follow

∆ti(ε) =
1

νitot(ε)
= ∆ti(0) + ε∆t2i (0)

NNN∑
k=1

νik
kBT

∂Ei
k

∂ε
+O(ε2). (19)
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We compute the re-weighted ensemble average by substituting Eq.(17), (18) and (19) into

Eq.(15), and extract the derivative L′ABαβ from the first order terms as

L′ABαβ

∣∣
ε=0

=
c

Ntraj

Ntraj∑
j=1

(Γαβ,j +Rαβ,j + ταβ,j), (20)

where

Γαβ,j =
1

kBT

Nstep∑
i

NNN∑
k=1

νik
νitot

(∂Ei
k

∂ε
−
∂Ei

q

∂ε

)[rAα,j(0)rBβ,j(0)

2tj(0)
− LABαβ (0)

]
(21)

comes from the reweighing process,

Rαβ,j =
(εαα
ε

+
εββ
ε

)rAα,j(0)rBβ,j(0)

2tj(0)
(22)

is the contribution due to the tetragonal strain induced lattice deformation, and

ταβ,j =
( 1

tj

Nstep∑
i=1

∆t2i

NNN∑
k=1

νik
kBT

∂Ei
k

∂ε

)rAα,j(0)rBβ,j(0)

2tj(0)
(23)

is due to the change in the average waiting time for each vacancy hop. We compute the

relative statistical error as

σPT(L′ABαβ ) =
c

L′ABαβ

√
var(Γαβ,j +Rαβ,j + ταβ,j)

Ntraj − 1
. (24)

Unlike the FD and CFD methods, the statistical error of the PT approach increases

proportionally to the square root of number of steps. According to Eq.(24) the behavior of

σPT is determined by the behavior of var(Γαβ,j +Rαβ,j + ταβ,j), which is

var(Γαβ,j +Rαβ,j + ταβ,j) = var(Γαβ,j) + var(Rαβ,j) + var(ταβ,j)

+2cov(Rαβ,j,Γαβ,j) + 2cov(ταβ,j,Γαβ,j) + 2cov(Rαβ,j, ταβ,j),
(25)

where Γαβ,j, Rαβ,j and ταβ,j are terms defined in Eq.(21), (22) and (23) characterizing

the contributions from the re-weighting process, lattice deformation, and average wait-

ing time changes, respectively. For the case of single vacancy diffusion, Rαβ,j and ταβ,j

equal the term (rVα,j)(r
V
β,j)/2tj multiplied by constants. Therefore, according to Eq.(10)

their variances var(Rαβ,j) and var(ταβ,j) as well as their covariance cov(Rαβ,j, ταβ,j) are

independent of Nstep. However, Γαβ,j is a sum of Nstep terms that are identically dis-

tributed and independent of each other, so its variance var(Γαβ,j) as well as the covariance

cov(Rαβ,j,Γαβ,j) and cov(ταβ,j,Γαβ,j) are proportional to Nstep. The net effect is that the

variance var(Γαβ,j +Rαβ,j + ταβ,j) changes linearly with the number of steps, or equivalently

σPT ∝
√
Nstep, for Nstep � 1.
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IV. COMPUTATIONAL RESULTS

A. Single vacancy diffusion in fcc Ni

We first compare the performance of the three approaches outlined above for single va-

cancy diffusion in Ni. We introduce one vacancy into a 6 × 6 × 6 fcc Ni supercell with

periodic boundary conditions imposed in all three directions. The vacancy diffusion in the

unstrained system is isotropic and the random walk is uncorrelated. Introducing tetragonal

strain εαβ breaks the cubic symmetry but does not introduce correlation between succes-

sive hopping steps. We use KMC to generate trajectories of vacancy hops and compute

the derivative of the vacancy diffusivity component Dxx with respect to strain ε using the

three different derivative approaches. For the special case of single vacancy diffusion, the

analytical solution for D′xx is[14]

D′AS
xx

∣∣
ε=0

=
1

2

NNN∑
k=1

(
2
εxx
ε
− 1

kBT

∂Ek
∂ε

)
l2kxν0 exp

(
− Ek
kBT

)
, (26)

which we use as a reference value to evaluate the relative true errors εM =
∣∣D′M−D′AS

D′M

∣∣ (M

= FD, CFD, PT). The jump vectors ~lk, attempt frequency ν0, migration energies Ek, and

their derivatives ∂Ek
∂ε

are from the DFT calculation by Garnier et al.[20, 23] When ε = 0

all the migration energies are identical, i.e. Ek = E, but their derivatives with respect

to strain ε are not. We use the relative statistical errors σM calculated from Eq.(9), (11)

and (24), and the relative true errors εM to quantitatively compare the performance of the

three methods. The relative true errors εM in Figures 1–8 are root-mean-square (R.M.S)

true errors computed from multiple KMC runs with identical parameters. The true error

contains the contributions from statistical fluctuations, as well as systematic errors which

are difficult to assess quantitatively. However, the systematic errors are negligible when the

statistical error is a good estimate of the true error.

Figure 1 shows that there is an optimal finite difference step size h for the FD and CFD

methods that minimizes the statistical errors, and for which statistical errors are a good

estimate of the true errors. The statistical errors of both approaches decrease monotonically

with h. The relative statistical error of the FD method is inversely proportional to step size

σFD ∝ 1/h, which agrees with Eq.(9). For the the CFD method, the statistical error σCFD

stays below σFD and is inversely proportional to the square root of h, σCFD ∝ 1/
√
h for small
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FIG. 1. Relative statistical errors σ and true errors ε of the strain derivative of diffusivity D′xx as

a function of the finite difference step size h for the FD and CFD methods. In all the plots, we use

different shaped symbols to denote the errors from different methods: square for FD, triangle for

CFD (and diamond for PT in the other figures). We use open symbols for the relative statistical

errors σ, and solid symbols for the relative true errors ε. We want the statistical errors to be a

good estimate of the true errors so that the systematic errors are negligible. In this figure, the

relative statistical errors decrease monotonically with increasing h. The statistical errors estimate

the true errors well for small h. However, the good agreement between errors breaks down for h

larger than 2× 10−4.

h, which verifies the analytical behavior described in Eq.(14). When h increases, unlike the

monotonically decreasing statistical errors, the truncation errors increase proportionally to

h2 as Eq.(8) shows. The truncation errors are non-negligible when h exceeds 2 × 10−4,

causing the true errors to deviate from the statistical errors. Based on our testing data

points, we choose h = 2 × 10−4 so that statistical errors are minimal and remain a good

estimate of the true errors.

Figures 2 and 3 show that the optimal number of KMC steps for uncorrelated diffu-

sion systems is one. Figure 2 verifies that the relative statistical errors σFD and σCFD are

independent of Nstep as we expect, and σPT ∝
√
Nstep holds for all Nstep values. Figure

3 shows that for fixed computational effort, defined as the total number of vacancy hops

during one KMC run Ntot = Nstep × Ntraj, all the statistical errors increase monotonically

with the number of steps. The FD and CFD methods have statistical errors that increase

as
√
Nstep, whereas the PT method statistical error increases faster as Nstep. Using a larger
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σFD εFD

σCFD εCFD

σPT εPT

Nstep

Ntraj = 5x105

h = 2x10-4

FIG. 2. Relative errors ofD′xx as a function ofNstep for a fixed number of trajectoriesNtraj = 5×105.

The relative statistical errors of the FD and CFD methods do not depend on Nstep, while for the

PT method σPT ∝
√
Nstep. The statistical errors estimate the true errors well for all values of

Nstep.

100 101 102 103 104
10-4

10-3

10-2

10-1

100

101

1
1

1
2

N
traj
xN

step
= 1x107

h = 2x10-4

σFD εFD

σCFD εCFD

σPT εPT

Nstep

FIG. 3. Relative errors of D′xx versus Nstep for a fixed total computational effort, Ntot = Nstep ×

Ntraj = 107. For the FD and CFD methods, σFD and σCFD ∝
√
Nstep, whereas for the PT method,

σPT ∝ Nstep. The statistical errors estimate the true errors well for all values of Nstep.

number of steps means that a smaller number of trajectories can be applied, which leads

to a direct increase in statistical errors. On the other hand, the figures also show that the

statistical errors match the true errors across the entire range of Nstep from 2 to 5 × 104,

which means reducing the number of steps in each trajectory does not introduce significant

systematic errors. Therefore, the most efficient way to reduce the statistical errors of all

three methods is setting Nstep = 1, for which, the KMC results extracted from the mean

square displacements yield the analytical expression of Eq.(26).
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σCFD εCFD
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h = 2x10-4
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FIG. 4. Relative errors of D′xx versus the number of trajectories Ntraj. We choose h and Nstep

such that the statistical errors are a good estimate of the true errors. As Ntraj increases, the

statistical errors of all three methods decrease as σ ∝ 1/
√
Ntraj. The CFD method produces lower

statistical errors than the FD method using correlated trajectories, and the PT method has the

lowest statistical errors.

Figure 4 shows that the PT approach has the best performance of the three methods for

the uncorrelated diffusion system. Even though the optimal number of steps is one, we use

Nstep = 50 and h = 2× 10−4 to make an illustrative comparison between the three methods.

All the statistical errors follow σ ∝ 1/
√
Ntraj, and the PT approach has the lowest relative

statistical and true errors. By reducing the number of steps, we can still decrease the errors

of the PT method by up to a factor of
√

50 ≈ 7 for the same number of trajectories, but

σFD and σCFD do not follow the same trend. Therefore, the PT approach is the best way to

compute the diffusivity derivatives for the uncorrelated diffusion system.

B. Vacancy-mediated diffusion of Si in Ni

The second system that we use to test the three derivative approaches is vacancy-mediated

Si diffusion in Ni, which is a correlated diffusion system. We introduce a vacancy and a

substitutional Si atom into a 6 × 6 × 6 fcc Ni supercell with periodic boundary conditions

in all three directions. The vacancy hops are anisotropic because the jump frequencies

depend on the relative position of the Si atom with respect to the vacancy. Moreover,

successive vacancy hops are correlated due to the interaction between the vacancy and Si.

We compute the derivative of the Onsager matrix component LNiSi
αβ with respect to strain ε
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FIG. 5. Relative statistical and true errors of L′NiSi
xx as a function of finite difference step size h.

Similarly to the single vacancy diffusion system, for both finite difference methods the statistical

errors decrease monotonically with increasing h. The statistical errors are a good estimate of the

true errors for small h, but the agreement breaks down for h larger than 2× 10−4.

and the corresponding statistical and true errors, σ and ε. We use the energy barriers and

their derivatives with respect to strain for atomic jumps computed by Garnier et al. using

DFT calculations[20, 23]. The reference value of L′NiSi
αβ used to compute the true errors is

from the self consistent mean field (SCMF) calculation by Garnier et al.[34]

Figure 5 shows that for vacancy-mediated diffusion of Si in Ni, the improved performance

of using correlated sampling is not as effective as for single vacancy diffusion, whereas there

still exists an optimal h that minimize the statistical errors while keeping the truncation

errors negligible. Figure 5 and Figure 1 differ since the statistical error of the CFD method

for correlated diffusion (shown in Figure 5) no longer strictly follows σCFD ∝ 1/
√
h for small

h because the assumption we use to derive Eq.(14) that the initial configurations of all

vacancy hops are identical no longer holds. We find that σCFD ∼ 1/h0.73, which lies between

1/
√
h and the upper bound 1/h, suggesting that the correlation between the positively

strained and negatively strained system is reduced for vacancy-mediated Si diffusion in Ni,

but the covariance cov(LABαβ (h), LABαβ (−h)) is still positive. However, similar to Figure 1 the

statistical errors for both FD and CFD methods decrease monotonically with h and closely

match the true errors for h < 2×10−4. When h exceeds 2×10−4 the true errors deviate from

statistical errors due to the increasing truncation errors, which dominate the true errors for

large h. The optimal value of h among our testing data points is 2 × 10−4, which is when

the truncation errors start to become comparable to the statistical errors.
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FIG. 6. Relative errors of L′NiSi
xx versus Nstep for a fixed number of trajectories. The statistical errors

behave similarly to those of the single vacancy diffusion system. However, the true errors behave

differently: there is a threshold value of Nstep = 2× 102 above which the statistical errors estimate

the true errors well, while below this value the true errors become larger than the statistical errors.
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FIG. 7. Relative errors of L′NiSi
xx versus Nstep for a fixed total computational effort Nstep ×Ntraj =

2×107. The statistical errors behave similarly to those of the uncorrelated single vacancy diffusion

system: σFD and σCFD ∝
√
Nstep, while σPT ∝ Nstep. However, in this correlated case there is a

threshold value of Nstep = 2 × 102 above which the statistical errors are a good estimate of the

true errors, while below this value the true errors become larger than the statistical errors.

Figures 6 and 7 show that among our testing data points, the optimal value of Nstep

that minimizes the statistical errors while having negligible systematic errors is 200. The

statistical error curves in Figure 6 follow the analytical behavior for uncorrelated diffusion

that σFD and σCFD are independent of Nstep, and σPT increases proportionally with
√
Nstep.

Therefore, similar to Figure 3, for the same computational effort the statistical errors of all
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FIG. 8. Relative errors of L′NiSi
xx versus Ntraj. We choose h and Nstep such that the statistical errors

estimate the true errors well. Similarly to the single vacancy diffusion system, as Ntraj increases,

the statistical errors of all three methods decay as σ ∝
√
Ntraj. The CFD and PT methods give

similar magnitudes of statistical errors, which are lower than those of the FD method.

three methods can be reduced by decreasing the number of steps as Figure 7 shows. However,

for correlated vacancy-mediated Si diffusion in Ni there exists a minimum number of steps

below which the statistical errors deviate from the true errors for all three methods due to a

correlation-induced bias. Short trajectories, especially one-step trajectories, which work well

for uncorrelated diffusion systems produce large errors for the correlated diffusion system

because they do not capture the correlation between successive vacancy hops. Theoretically,

the correlation time of the system quantifies the lower bound of Nstep that we can use to

obtain good statistical results. Uncorrelated diffusion systems can be regarded as special

cases with correlation time equal to zero. The true error curves in Figure 6 and Figure 7

verify the existence of the correlation-induced bias, which increases with decreasing number

of steps and dominates the true error when Nstep is small. We need to use long enough

trajectories to make the correlation-induced bias negligible compared to the statistical errors.

For all three methods, out of our testing data points Nstep = 200 is the minimum number

of steps for which the statistical errors remain a good estimate of the true errors, i.e. for

which the correlation-induced bias is negligible.

Figure 8 shows that the CFD method is the optimal approach to compute the strain

derivative of LNiSi
xx for vacancy-mediated Si diffusion in Ni. As is shown in Figure 4, for

single vacancy diffusion, the PT approach works better than the FD and CFD methods

because we can employ short vacancy trajectories (as short as one step) without introducing
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significant systematic errors. For correlated diffusion, we need to use longer trajectories, i.e.

larger Nstep, to make sure that the correlation-induced bias is negligible. The statistical error

of the PT approach σPT ∝
√
Nstep, which effectively shifts the σPT curve upwards relative

to the σFD and σCFD curves, both of which do not depend on Nstep for a fixed number

of trajectories. We see from the figure that for vacancy-mediated Si diffusion in Ni, using

the optimal value of 200 for the number of steps the PT approach produces slightly larger

statistical errors than the CFD method for the same number of trajectories. We expect that

the CFD method will outperform the other two methods for systems with larger correlation

times.

V. CONCLUSION

We compare the performance of the three derivative approaches, FD, CFD, and PT meth-

ods for uncorrelated single vacancy diffusion in fcc Ni, and correlated vacancy-mediated Si

diffusion in Ni. The FD method uses a central difference scheme to compute the derivatives

by subtracting KMC results from systems with positive and negative strains. The CFD

method is an improvement of the FD method, in which we apply the same random num-

ber sequence to create artificial correlation between the positively and negatively strained

systems to reduce the statistical errors. We choose an appropriate finite difference step size

h to minimize both the truncation errors and the statistical errors for the FD and CFD

methods. The PT approach is an alternative way to compute derivatives, for which the

statistical errors depend on the number of steps in each trajectory, σPT ∝
√
Nstep for fixed

Ntraj. The PT approach has the best performance of the three for uncorrelated diffusion

systems, but performs worse for the correlated diffusion system in which a small number

of steps causes a correlation-induced bias. For vacancy-mediated Si diffusion in Ni, the PT

approach produces slightly larger statistical errors than those of the CFD method.

For the same computational effort, the PT approach requires less computational time

than the other two methods. The FD and CFD methods require two KMC calculations for

the positively strained and negatively strained systems separately, whereas the PT approach

requires only one KMC calculation. Therefore, obtaining derivatives using the PT approach

requires about one half the time of using the FD and CFD methods. The ratio of PT run

time and the FD or CFD run time is not exactly half, because PT requires three extra
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terms: Γαβ,j, Rαβ,j and ταβ,j defined in Eq.(21), (22) and (23), but that can be faster than

recomputing the table of rates at every hopping step.

The FD, CFD and PT methods can compute other derivatives of physical quantities that

can be extracted from KMC trajectories, and can be applied to systems with stronger point

defect interactions and more complicated crystal structures than Ni-Si alloys. We applied

the derivative approaches to computing the derivatives of Onsager matrix components with

respect to tetragonal strain for Ni with Si in the dilute limit. However, the methods are

more general and can compute derivatives with respect to other changing variables like

temperature, external magnetic fields, or small radiation doses. The FD method requires a

large number of KMC trajectories to achieve acceptable statistical errors, and we find that

the CFD and PT methods are more efficient since they require fewer trajectories to reach

the same level of accuracy. For systems with stronger point defect interactions and more

complicated crystal structures, successive diffusion steps are usually strongly correlated. In

these cases we expect the CFD method to outperform the PT approach, because the longer

KMC trajectories we apply to eliminate the correlation-induced bias causes larger statistical

errors for the PT approach but does not affect the statistical errors of the CFD method.
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