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The von Neumann-Mullins law for the area evolution of a cell in the plane describes how a dry
foam coarsens in time. Recent theory and experiment suggest that the dynamics are different on
the surface of a three-dimensional object such as a sphere. This work considers the dynamics of dry
foams on the surface of a sphere. Starting from first principles, we use computer simulation to show
that curvature driven motion of the cell boundaries leads to exponential growth and decay of the
areas of cells, in contrast to the planar case where the growth is linear. We describe the evolution
and distribution of cells to the final stationary state.

I. I. INTRODUCTION

A foam is a gas-liquid mixture consisting of pockets
of gas separated by thin films of liquid. Foams abound
in daily life, from soap bubbles and waves breaking on a
beach to whipped cream and the chemical foam of a fire
extinguisher. This work focuses on the phenomenon of
foam coarsening, where the bubble size and shape change
over time. Interest in this phenomenon extends beyond
conventional foams. The same two- or three-dimensional
polyhedral structures separated by well-defined bound-
aries can be seen in many materials such as polycrys-
talline alloys, ceramics, lipid monolayers, and garnet
films [1]. The study of these domains can extend be-
yond simple materials to biology (e.g., cornea in an eye
[2]) or cosmology (e.g., voids in the universe [3]). For a
general review of foams see [4].

The von Neumann law describing foam coarsening has
been regarded as a historical touchstone at the interface
of mathematics and materials science [5]. In 1952, von
Neumann showed that, in the plane, the rate of change
of the area of a given cell is independent of the cell size,
but rather depends solely on the number of its edges [6].
In the original von Neumann model, the evolution of the
cell is due to gas transfer across cell walls (cell edges in
2D) between neighboring cells. The rate of gas transfer
is assumed to be proportional to the pressure difference
∆p across a cell edge. In equilibrium, according to the
Young-Laplace law,

∆p = −γκg, (1)

the pressure difference is proportional to curvature κg of
the edge and γ is the surface tension. The curvature κg is
then constant along each edge. Thus, the rate of change
of area for a given cell is

dA

dt
= −µ0γ

∫
∂A

κgds = −µ0γ
∑
i

κg(i)Li, (2)

where µ0 is the permeability and Li are the lengths of
the edges around the boundary ∂A of the cell [7]. The

integral on the righthand side can be computed as

∑
i

κg(i)Li = 2π −
n∑
i=1

(π − θi), (3)

where θi is the interior angle at the ith vertex. If the
vertices are triple junctions, then θi = 2π/3 according
to Plateau’s Law. From this we recover von Neumann’s
result

dAn
dt

= K0(n− 6), (4)

where K0 = πµ0γ/3. Commonly referred to as the
“n − 6” rule this equation shows that cells with greater
than six sides grow linearly while cells with less than six
sides decay in time. A cell with six sides might change
its shape, but the area would remain constant. Cells
with less than six sides disappear by shrinking
and the number of cells steadily decreases. Foams
where all the cells are hexagon can last, but they
are metastable, in the sense that any topologi-
cal change would create at least one cell with less
than six sides, and coarsening would start. There
are five basic approaches that have been used to model
foam coarsening in 2D: Direct Simulation [7–11], Vertex
Models [12–16], Mean-field theory [17, 18], Potts Model
[19–22], and the surface evolver [23–25]. A sum-
mary can be found in the review article [1].

The direct approach attempts to reproduce the equi-
librium configuration at each time step by including the
essential physics of gas diffusion and boundary motion
[8, 9, 26]. There have been other direct numerical meth-
ods specifically developed for foam coarsening includ-
ing the surface evolver [27–29]. Another type of di-
rect simulation is the vertex approach where the focus
is on getting the vertices to move correctly and assum-
ing the cell boundaries will evolve instantaneously fast
to their equilibrium positions (e.g., [12–16]). In contrast
to a direct approach, one can also study the dynamics
of a distribution function ρ = ρ(n,A, t) using a PDE ap-
proach (e.g., [1, 17, 18]). The final approach uses the
Potts model [30–32], which takes a microscopic perspec-
tive where “lattice sites” can move from cell to cell,
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thereby changing its area, in order to minimize a surface
energy Hamiltonian [19–22].

The first generalization of the von Neumann law to
non-planar surfaces with Gaussian curvature κ was car-
ried out in [33]. Using the Gauss-Bonnet theorem (5),∫

A

κdA+

∫
∂A

κgds+

n∑
i=1

(π − θi) = 2π, (5)

where κg is the geodesic curvature, constant along each
edge, Eq. (2) becomes,

dA

dt
= K0

[
(n− 6) +

3

π

∫
A

κdA

]
= K0

[
(n− 6) +

3A

π

]
. (6)

The last equation holds only for the sphere of unit radius
and K0 contains the relevant physical parameters [33,
34]. The dependence of the rate of change of the area
of a cell on its size, in addition to the number sides,
fundamentally changes the dynamics. Sufficiently large
cells will continue to grow, while a small cell with less
than six sides can either grow or shrink depending on its
area. In fact, there is no stable configuration other than
for a single cell to enclose the entire surface of the sphere.
Recall that on a sphere there should be a non-zero
topological charge, so that it is impossible to have
a sphere only with hexagons [4].

Recently, an experiment was carried out by Roth et al.
[34] to study the evolution of a dry foam between two
hemispherical domes. They observed that a cell with six
sides was not stable, unlike in the planar case, but instead
grew at a rate dependent on the cell size. Other experi-
ments investigating foam coarsening in 2D and quasi-2D
can be found in [35, 36].

The remainder of the paper is organized as follows. In
Section II, a mathematical model describing the curva-
ture driven dynamics of a foam on a smooth non-planar
surface is derived from energy minimization, using a vari-
ational approach. Here the curvature is allowed to vary
along each edge. The resulting equation of motion for
the cell area is the same as in [33]; however, it is not
restricted to uniform curvature along cell edges. The
model predicts exponential growth/decay of cells in time
for general smooth surfaces. In Section III, a numeri-
cal scheme is proposed to simulate the foam coarsening
on the surface of a sphere through curvature driven dy-
namics. In Section IV, exponential growth of each indi-
vidual cell is demonstrated and the longtime behavior is
described via computer simulations.

II. II. MODEL

The foam evolution process involves the continuous
motion of edges and vertices, interrupted by rare events
of topological changes, such as neighbor swapping
(T1) or the disappearance of cells (T2) [4, 37],
at discrete time instances elaborated on in Sect. III. In
this section, we focus on constructing the mathematical

model describing the continuous aspects of the evolution.
The dry foam considered is a region on a surface or an en-
tire bounded surface composed of disjoint cells separated
by piecewise smooth boundaries or cell edges, which meet
at triple junctions. The edges are assumed to have zero
thickness. We construct the dissipative dynamics of cells
using a generalized Lagrangian approach.

A cell edge at a time t can be described by its position
vector R(s, t) parametrized by arclength s, 0 < s < L(t),
where L(t) is the length of the edge. The total energy of
the foam is taken to be the sum of the interfacial energies
of all edges, given by

E(t) =
∑
i

∫ Li

0

γds, (7)

where γ is the line tension (surface tension times the
height of the foam above the surface). We assume that
inertial effects are negligible, and the drag per length on
a moving edge is proportional to its velocity. The drag
force on the vertex, which has zero length, is zero. With-
out external forces, we assume that the loss of energy is
due only to the viscous dissipation, then

dE

dt
= −

∑
i

∫ Li

0

1

2
ηṘ2ds. (8)

where η is the viscosity. After a straightforward varia-
tional calculation, the equation of motion of a point on
an edge is

Ṙ =
γ

η

∂2R
∂s2

(
I− N̂N̂

)
, (9)

where N̂ = ∇ψ/|∇ψ| is the unit normal to the surface,
and ψ(R) = 0 defines the surface. Thus each point on an
edge moves at a speed proportional to its local geodesic

curvature, in the direction of ∂
2R
∂s2 projected onto the sur-

face1. The variational calculation also obtains the Her-
ring condition

γ

Kj∑
k=1

∂Rk
∂s

(v) = 0, (10)

where Kj is number of junctions at a vertex v. These
are also boundary conditions of Eq. (9); the line tensions
from all edges at a vertex add to zero, and hence the
vertices are always in mechanical equilibrium. In the
typical triple junction case, this implies that the angle
between the two unit tangents is 2π/3.

The rate of change of the area of a cell can now be
computed; since

dA

dt
=

M∑
i=1

∮
∂A

(
Ri
|Ri|

× Ṙi) · dRi, (11)

1 A similar result has been obtained by Mullins [38] considering
local curvature driven motion of metal grains in the plane.
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substituting Eq. (9) gives

dA

dt
=
γ

η

M∑
i=1

∮
∂A

(
Ri
|Ri|

× ∂2Ri
∂s2

(I− N̂N̂)

)
· dRi. (12)

We note that the integrand in Eq. (12) is just the signed
geodesic curvature along the cell edges. Assuming that
the angle at each vertex is 2π/3, (i.e. triple junctions at
the vertices), the Gauss-Bonnet theorem gives at once

dA

dt
=
γ

η

[
π

3
(n− 6) +

∫
A

κdA

]
. (13)

This is more general than the result in [33], which re-
quires that the geodesic curvature κg be a constant along
cell edges. Eq. (13) is valid up to a topological change
when the number of sides n of a cell changes. We note
that if κ = 0, the growth/decay is linear in time, con-
sistent with the planar case. Our interest in this work is
to study the nonlinear dynamics where κ 6= 0 as on the
surface of a sphere.

In particular, for the case of a sphere with radius R0,
ψ(R) = R·R−R2

0, the Gaussian curvature of the surface
is a constant, κ = 1/R2

0, and the equation of motion for
each edge point becomes

Ṙ =
γ

η

[
∂2R
∂s2

(I − 1

R2
0

RR)

]
. (14)

The rate of change of area of each cell is then

dA

dt
=
γ

η

[
π

3
(n− 6) +

A

R2
0

]
. (15)

We non-dimensionalize by scaling all lengths by the
sphere radius R0 and all times by the characteristic time
ηR2

0/γ as in [28]. Using these quantities, in dimensionless
units,

dÃ

dt̃
=
π

3
(n− 6) + Ã. (16)

For a cell with n sides, if n ≥ 6, the area will increase
until a topological change occurs. If n < 6, the cell area
remains stationary only if Ã = π

3 (6−n); any perturbation
will make it unstable. In the longtime limit, the only
stable configuration will be one where no edges remain,
and one cell covers the entire sphere. Given an initial area
Ã0 of a cell, and its number of sides n, solving Eq. (16)

for Ã gives the explicit expression for the area evolution,

Ã(t̃) =
[
Ã0 +

π

3
(n− 6)

]
et̃ − π

3
(n− 6). (17)

We expect exponential growth/decay of cells on the
sphere, as opposed to planar case, where the growth is
linear in time. An indication of exponential growth may
be seen in the quotient Q := Ä/Ȧ. On a sphere, we
expect Q = 1, while on the plane we expect Q = 0.
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FIG. 1. Illustration of edge discretization. For t > 0, the
spacing of the edge points is non-uniform (dsj+1

j 6= dsjj−1).

III. III. NUMERICAL IMPLEMENTATION

In this section, we present in detail the steps by which
the simulations were carried out on the surface of the
sphere: the initialization, the discretization procedure
for the cell edges, the evolution of the edges and vertices,
the numerical computation of cell area, and we end with
a discussion of the topological changes that occur in the
long time. The surface of the sphere differs from a planar
surface in that the whole surface is bounded, and there is
no physical boundary, thus there is no need to impose any
boundary conditions. In recent years many numerical
methods have been developed for simulating the motion
of boundary curves on surfaces; see [39] for an overview.
Here we take a first principles approach relying on kinetic
equations of motion to evolve the edges.
Initialization. It is convenient to consider an initial

distribution of cells generated from a Voronoi diagram
on the unit sphere. The cells are generated from N ran-
domly placed nodes on the surface using an analog of
the plane sweep “Fortune” algorithm [40]. The cells in
this Voronoi diagram are made up of vertices and a set
of edges connecting each vertex to three others (see Fig-
ure 4). The cell edge connecting vertex vi to vertex vj is
made up of a great circle of length `ij = arccos(vi · vj).
This edge is then discretized into Mij = d`ij/dxe edge
points. The kth point on an edge can be computed by

xkij = u cos(kdx) + w sin(kdx), (18)

for k = 1, ...,Mij −1, where u = vi and w = [(vi×vj)×
vi]/‖vi × vj‖.

There are two types of points in the system: edge
points {x} that evolve via curvature driven motion and
vertices {v} that must satisfy the Herring condition.
Once all the cell boundaries are discretized we say a ver-
tex v satisfies the Herring condition if the great circles
from v to each of its neighbors meet at an angle θ = 2π/3.
The dynamics of the foam is initiated by vertex move-
ment to satisfy Herring condition, followed by the motion
of edge points driven by a modified curvature caused by
the new vertex location. The dynamics proceeds by re-
peated updates of the vertices and edge points.
Algorithm. A step-by-step procedure for the evolution

of the system in a given time step is outlined below.

Step 1: Each vertex is moved to the point satisfying
the Herring condition, Eq. (10), using a fixed point it-
eration (e.g., see Appendix A and Eq. (A1)) for a given
tolerance ε.
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Step 2: Each of the points along the cell edge are
evolved via curvature motion on the surface of the
sphere using a standard Forward Euler scheme to solve
the non-dimensional form of Eq. (14)

x(t+ dt) = x + dt(κ0 − (κ0 · x)x), (19)

where κ0 = ∂2R
∂s2

∣∣∣
x
. A three-point stencil κ0 can be

approximated as

κ0 =
2xj+1ds

j
j−1 − 2xj(ds

j
j−1 + dsj+1

j ) + 2xj−1ds
j+1
j

dsj+1
j dsjj−1(dsjj−1 + dsj+1

j )
,

(20)
where dsjj−1 = arccos(xj−1 ·xj) and dsj+1

j = arccos(xj ·
xj+1). Observe that if the mesh is uniform (e.g.,
dsjj−1 = dsj+1

j ), then this reduces to the standard sec-
ond order finite difference scheme (see Fig. 1).

Step 3: Once the set of new points {xj(t + dt)} is
computed we project the result back onto the sphere,
x̂j = xj/‖xj‖.
Step 4: Check for any topological changes that need to
be resolved. Return to Step 1.

To evolve the edge points efficiently and accurately, we
paid special attention to the discretization as elaborated
on below. One example is the use of a temporal adaptive
mesh. In order for the system to evolve via curvature
motion an edge must have at least one additional point
beyond the two vertices to use the three-point stencil,
Eq. (20). Thus, in systems with many cells initially, two
of the vertices may be very close. The global spatial
discretization dx should be chosen so that the geodesic
distance between the two vertices arccos(v1 ·v2) > 2.5dx.
The adverse effect of a small dx at the beginning of the
simulation is a small dt, which is O(dx2). Once cells
start to be removed this fine discretization is no longer
needed so one can coarsen the system by doubling dx,
therefore quadrupling dt. Specifically, we check, after a
set time period, the condition that the minimal number
of discretized points along any edge is 5. If this is the
case we take the set of points along each edge keeping
every other point and each vertex. In the simulations
presented we restrict dxmax < 0.02 to ensure that we
do not sacrifice accuracy for speed. Therefore, early on,
before the small cells are removed, we have a fine mesh,
and as the foam coarsens, we speed up the simulation.

The other example is maintaining a roughly spatially
uniform mesh at each time step for better global accuracy
on approximating the curvature. Throughout the course
of evolution, the edge points get closer and further apart.
To resolve the curvature reasonably well we wish to stay
near a uniform mesh by imposing a condition on the edge
points using the global mesh size dx, .5dx < dsj+1

j <
1.5dx. If two points are closer than 0.5dx, we remove
both points and replace them with a single point at the
midpoint of the great circle connecting them as in [7].
If two points are a greater distance than 1.5dx, then we
add an additional point at the midpoint along the great
circle. This ensures that locally the mesh remains nearly
uniform.

(b)

(a)

FIG. 2. (a) A boundary flip occurs when one edge becomes
very short, it is rotated by π/2. (b) For 3-sided cells the
boundary flip results in a diangle.

To keep track of the area of each cell, we approximate
the area by considering each cell as a spherical N -gon,

where N is the total number of unique discretized edge
points around its boundary. The area of a spherical poly-

gon is A =
∑N
i=1 αi− (N − 2)π where αi are the interior

angles of the polygon [41].
Topological Changes. To study the longtime dynamics

of cells, the model must address critical events which
occur throughout the course of the evolution. When a
cell boundary becomes very small one of two events can
occur: (i) Boundary flipping (T1) or (ii) Cell removal
(T2) as in [4, 15, 17, 37].

The former is implemented in the simulation when an
edge has a length less than 1.5dx. There are no longer
enough edge points to evolve the boundary via curvature
motion and this small edge is only composed of two ver-
tices. One can think of two cells being forced together
and pinching the space out between them (see Fig. 2). To
remedy the situation, the two vertices are rotated about
their midpoint by an angle of π/2 and connected to one
former neighbor and one new neighbor. In general, the
rotation angle may differ from π/2, but here it is
assumed for simplicity. Immediately after the vertices
will begin to move apart due to the Herring condition.
We note that after a boundary flip two cells gain a side
and two cells lose a side.

In the latter case, when a cell area becomes small (e.g.,
A < 5dx2) the cell must be removed. As in [15] and
consistent with cell growth and decay in our system, only
two, three, and four-sided cells are removed while cells of
five or more sides execute a boundary flip to reduce the
number of sides before removal. If a cell has four sides,
then the four vertices are removed and replaced by two
triple junctions satisfying the Herring condition. In this
case, two cells lose a side and two cells maintain the same
number of sides. Next, if a cell has three sides it shrinks
to a point. The three vertices composing the cell are
removed and one new vertex appears connected to the
remaining neighboring vertices. Each of the neighboring
cells has a net loss of one side. If a cell has two sides, when
the area becomes small, the two edges connecting the two
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(a)

(c)

(b)

FIG. 3. (a) For 4-sided cells all vertices are removed and
replaced by two new vertices forming triple junctions. (b)
For 3-sided cells all vertices are removed and replaced by one
new vertex. (c) For 2-sided cells the edges are removed and
the vertices become interior edge points.

vertices are removed and these vertices become interior
points on the edge. Fig. 3 illustrates each event. In
simulation we have observed the removal of two-,
three-, and four-sided cells. After each topological
event, the number of sides change on the cells involved,
altering their dynamics in time according to Eq. (13).

There are a few interesting cases to consider to clar-
ify the numerical implementation. One occurs when a
3-sided cell has only one short side requiring a boundary
flip, yet its area is not small enough to be removed. The
boundary flip is carried out resulting in a diangle (e.g.,
see Fig. 2), which has been observed in our simula-
tions. The edges of such a cell still evolve via curvature
motion and the evolution of the area obeys Eq. (16). An-
other scenario is when two edges on the same cell become
small enough to flip within the same time step. In fact,
the first edge which meets the criterion for flipping is
flipped. All other flips that would involve one of the two
vertices that have just moved are suspended until the
next time step, when the conditions for flipping can be
checked.

Our algorithm allows the use of GPUs for faster com-
putations. We use a hybrid CPU/GPU scheme where the
vertex and edge evolution are carried out in parallel on
the GPUs while the topological changes and area com-
putation are done on the CPU. Each GPU core handles
the dynamics of a vertex and up to three adjoining edges
(each edge is assigned to only one GPU) and executes
the computations in parallel. We find the efficiency in
using GPUs increases with the number of vertices. In
the case of a 20 cell simulation (36 vertices using 36 si-
multaneous GPU cores) the simulation time decreased on

FIG. 4. Evolution of one realization of the 4 cell case at
three instances in time. The smallest cell in front shrinks
exponentially fast.

average by a factor of four compared to the same code run
only on the CPU. For 100 cells, as in Figure 6, the
typical simulation will run for around 4 hours on
an Nvidia Tesla C2075 GPU with 512 cores. The
overall efficiency decreases in time due to the fact that
cells are removed resulting in a decrease in the number
of vertices.

IV. IV. RESULTS AND DISCUSSION

In this section the focus is verifying the effective von
Neumann law on the sphere, Eq. (16), through numerical
simulation, and study longtime dynamics. To provide
insight into our numerical algorithm, we consider the test
case of four cells on the sphere, each with three sides, and
study the evolution of these cells until the first topological
change. Fig. 4 shows the evolution of one realization of
the four cells at three instances of time from two different
perspectives. The smallest cell on the front shrinks the
fastest.

In Fig. 5a, we show the cell area from numerical simu-
lation using dx = 0.0125 together with the analytic solu-
tion from Eq. (17) for the purpose of comparison; they
are in close agreement. Convergence study shows that
the numerical algorithm presented here, combining the
curvature driven edge point evolution and fixed point it-
eration for vertex evolution, is first order accurate in dx,
due to the fact that the convergence rate of the vertex
calculation is first order as we vary dx.

To provide evidence of exponential growth, we consider
the quotient Q := Ä/Ȧ. To avoid effects of numerical
noise, we consider the nonlocal version of this quotient,
similar to the approach in [15]

Q :=
2[A(t+ T )− 2A(t) +A(t− T )]

T [A(t+ T )−A(t− T )]
, (21)

where T = Mdt is a scaled time interval. As T → 0
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FIG. 5. (a) Area evolution in the case of 4 cells. The curves

correspond to the different cells. (b) The quotient Q := Ä/Ȧ
averaged over all the 4 cells. Exponential growth is seen in
contrast to linear growth in the planar case. Each color rep-
resents a different time interval T in the computation of the
“non-local” quotient.

FIG. 6. Foam coarsening over time starting from an initial
distribution of 100 cells. Red and green cells each start with
nine sides. Spheres are made transparent to allow for viewing
all cells at once. See Supplementary Material at [42] for
the corresponding movie.

Eq. (21) recovers the pointwise definition of the quotient
of derivatives. Our simulations show that Q ≈ 1 for the
case of four initial cells, verifying exponential growth as
shown in Fig. 5b. Similar behavior is observed for larger
initial cell numbers (e.g., N = 20, 50, 100, 200). Since the
numerical results capture the exponential growth as well
as quantitatively match the area evolution, our numerical
scheme is apparently robust for simulation of the long-
time evolution of the foam on the surface of the sphere.

Next, we investigate how the distribution of cells
evolves in time. Our simulations show foam coars-
ening, where the number of cells decreases and
the average area of the remaining cells grows in
time, as can be seen in Fig. 6, until only a single
cell remains enclosing the entire surface of the

FIG. 7. Numbers of cells 〈Ni〉 with given number i of vertices
averaged over 20 simulations as function of time.

sphere.

There are several interesting aspects of the statistics of
cell evolution. One is the dependence of the cell distribu-
tion on the number of sides/vertices as function of time.
Fig. 7 shows the numbers of cells with a given number of
vertices as function of time. Initially, the most prevalent
cells are those with 6 vertices; this gradually shifts to cells
with fewer vertices. Fig. 8 shows that initially there are
many small cells; the peak of the histogram is centered
around n = 6 consistent with the planar case [7, 15, 16].
As the system evolves and cells begin to disappear, the
peak shifts towards cells with smaller numbers of sides.
In addition, one can consider the distribution of cell areas
(not shown). Initially this distribution is nearly Gaus-
sian, with mean area 4π/N . As the foam coarsens and
time evolves, this distribution broadens with the mean
shifting towards larger values of the average area.

The simulations also reveal that the cell which is most
likely to survive to the end is the cell is the one with the
largest number of sides. As an example shown in Fig. 6,
the two cells colored in green and red, initially with 9
vertices, persist for a long time, while small cells in the
vicinity with smaller numbers vertices disappear quickly.
In particular, if towards the end of the simulation all
the cells have the same numbers of sides (e.g., four 3-
sided cells remain, as in Fig. 4), the one with the largest
area will survive longest. This continues until the final
stages of the simulation, where there are three diangles
remaining until one disappears. What remains then is
a closed curve on the sphere, corresponding to two cells,
with two cell faces, two vertices and two edges. The edges
continue to evolve via curvature motion until the small
cell shrinks to a point, leaving one vertex, one cell face,
and no edges.

Finally, we consider the total number of cells on the
sphere as a function of time. Assuming triple junctions
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FIG. 8. Probability distribution function for cells with a given
number of vertices at different times averaged over 20 simu-
lations. The peak shifts towards cells with smaller numbers
of vertices with increasing time.

FIG. 9. Total number of cells averaged over 20 simulations
as function of time. The simulation data is presented in
blue with error bars representing the maximum and minimum
number in the simulations. Here γ = .1 and NT (0) = 100.
Inset: The inverse of 〈N〉 as function of time (red).

everywhere and making use of the Euler characteristic of
the sphere, one can simply obtain the expression

∞∑
n=1

Nn(t)
(

1− n

6

)
= 2, (22)

involving the distribution Nn(t) of n−sided cells at time
t. From this, one can calculate the total number of cells
NT (t) =

∑
nNn(t) at time t. The number of cells Nn(t)

with n sides can change in two distinct ways: (i) via a
boundary flip, where two cells each lose one side and two
cells each gain one side and (ii) via cell removal of 2−,
3−, and 4−sided cells. In the former case Nn(t) changes,
but the total number NT (t) does not change, whereas in
the latter, some of the Nn(t) values change and the total

number NT (t) decreases by one. We focus therefore on
cell removal, where

∂NT (t)

∂t
=

∑
n=2,3,4

∂Nr
n(t)

∂t
, (23)

where ∂Nr
n(t)/∂t is the rate of change of n-sided cells due

to cell removal. From Eq. (17) we can estimate the time
tn0 it takes for the area of an n−sided cell to go to zero;

tn0 = − ln
(

1 + 3An0

π(n−6)

)
≈ − 3An0

π(n−6) , since the cell areas

are small. A crude estimate of the cell area on a unit
sphere is An0 ' 4π

NT (t) , and hence the rate of change of

the number of n-sided cells is approximately

∂Nr
n(t)

∂t
≈ −Nn(t)

tn0
= NT (t)

Nn(t)(n− 6)

12
,

and ∂NT (t)
∂t = NT (t)

∑
n=2,3,4

Nn(t)(n−6)
12 . As a last step,

we take Nn(t) ' φnNT (t) where each φn is a constant.
Then

∂Nt(t)

∂t
= −N2

T (t)

(
φ2
3

+
φ3
4

+
φ4
6

)
= −γN2

T (t). (24)

Solving Eq. (24) gives NT (t) = NT (0)
1+γNT (0)t . If we estimate

γ = .1 and the initial number of cells NT (0) = 100, then
NT (t) = 100

1+10t . This function shows good quantitative
agreement with the simulation results shown in Fig. 9.
The time evolution of the total number of cells is ap-
proximately NT ∼ 1/t. At early times, the fraction of
cells with less than five sides is approximately 10%, but
later the foam is mostly composed of 2− and 3−sided
cells, resulting in a larger γ as can be seen in the inset in
Fig. 9.

V. V. CONCLUSIONS

In this work, we presented three contributions to the
study of foams on curved surfaces.

First, we derived a novel model for the evolution of the
foam cell boundaries on a general smooth surface. If the
surface is a sphere, then the cell area grows exponentially
in time for all times. This differs from the linear growth
in the plane. Such exponential growth has been implic-
itly predicted in [33]; however, the argument used there
relied on the assumption of each cell wall having constant
geodesic curvature. In fact, cell walls with non-uniform
curvature can be observed both in our simulations e.g.,
Fig. 6, and experiments [34].

Second, to the authors knowledge, this is the first work
verifying the theoretical prediction of exponential growth
on the sphere. While experimental work in [34] shows
that the growth rate differs from linear, our numerical
experiments show that the domain growth on the sphere
is exponential in time. To test our theoretical predictions
we implemented numerical experiments and addressed
critical topological events as edges are diminished. The
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simulations clearly show exponential growth. In addi-
tion, we show that the only stable configuration is the
one where a single cell encloses the entire surface of the
sphere. Our simulations also suggest that the cell in the
initial distribution with the most sides has the highest
probability of surviving until the end.

Third, we also provide new results unique to foam
coarsening on the sphere: i) the probability distribution
of the number of cells with a given number of vertices as
a function of time and ii) the prediction and confirmation
that the number of cells in the longtime goes as 1/t.

These observations highlight the insights that our
model and simulations provide foam coarsening on the

sphere.
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Appendix A: Appendix A: Vertex Evolution

To evolve a vertex v, we solve an alternate problem of
finding a point on the sphere which minimizes the sum of
the distances to each vertex of the triangle {x1,x2,x3}
where the points x1,x2,x3 are the nearest neighbors of
v along the discretized edges. If all angles are less than
2π/3, then the solution of this problem satisfies the Her-
ring condition [43]. A fixed point iteration scheme was
proposed to find such a point in [44] as

xk+1 =

3∑
j=1

{
‖xk − xj‖−1

(
1−

(
‖xk−xj‖

2

)2)−1/2
}
xj∥∥∥∥∥ 3∑

j=1

{
‖xk − xj‖−1

(
1−

(
‖xk−xj‖

2

)2)−1/2
}
xj

∥∥∥∥∥
.

(A1)

The initial guess x0 is taken to be the average of
the three neighbors projected back onto the sphere,
x0 = (x1+x2+x3)/‖x1+x2+x3‖. The iterations stop if
‖xk+1−xk‖ < ε where the tolerance is set to be ε = 10−16

in our simulation. With this stopping criterion we achieve
convergence within 20−30 iterations per vertex per time
step. After the vertex is computed, we calculate the three
angles formed by the new vertex and the nearest edge
points and observe numerically that |θ − 2π/3| ≤ 10−14,
thus satisfying the Herring condition. If the triangle
formed by the three neighbors has an angle greater than
2π/3, the vertex approaches one of its neighbors upon it-
eration. In this case, the Herring condition would not be
satisfied. To overcome this effect, we simply remove the
nearest neighbor xi when its angle is greater than 2π/3.
This allows the iterations to converge to a point interior
to the nearest edge points.


