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Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is8

examined using data from a direct numerical simulation of a statistically planar turbulent premixed9

flame. Two-dimensional turbulence kinetic energy spectra conditioned on the planar-averaged reac-10

tant mass fraction are computed through the flame brush and variations in the spectra are connected11

to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show12

that turbulent small-scale motions are suppressed in the burnt combustion products, while the en-13

ergy content of the mean flow increases. An analysis of spectral kinetic energy transfer further14

indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants,15

advective processes transfer energy from small to large scales in the flame brush close to the prod-16

ucts. Triadic interactions calculated through the flame brush show that this net up-scale transfer of17

energy occurs primarily at spatial scales near the laminar flame thermal width. The present results18

thus indicate that advective processes in premixed reacting flows contribute to energy backscatter19

near the scale of the flame.20
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I. INTRODUCTION21

Improved understanding of turbulence-flame interactions is required for the development of more accurate models22

of subgrid-scale (SGS) dynamics in large eddy simulations (LES) of premixed reacting flows. These interactions are23

nonlinear, occur over a wide range of scales, and challenge many of the principal assumptions of classical turbulence24

and combustion theories [1, 2]. In particular, kinetic energy transfer in premixed reacting flows may dominantly occur25

from small to large scales as a result of chemical heat release by the flame, contrary to the net transfer of energy from26

large to small scales found in many non-reacting flows.27

There are a number of ways in which a premixed flame may affect the energetics of a turbulent flow. For example,28

the increase in temperature due to heat release raises the gas viscosity, thereby lowering the local Reynolds number29

and causing kinetic energy dissipation to occur at larger spatial scales. Similarly, the gas density decreases as the30

temperature rises, resulting in fluid expansion and acceleration of the flow through the flame. This, in turn, results31

in changes to pressure-gradient work and dilatational effects in the flow, both of which provide a direct path from32

small-scale heat release by the flame to enhancement of large-scale turbulence kinetic energy [3].33

In the present study, we specifically examine the effects of premixed flames on inter-scale kinetic energy transfer by34

nonlinear advective processes. From a spectral standpoint, advection is responsible for the transfer of energy between35

groups of three different wavevectors, and the resulting multi-scale interactions are termed triadic interactions [4–36

9]. These interactions result in both down-scale (i.e., large to small scale) and up-scale (i.e., small to large scale)37

energy transfer, which can be either local, non-local, or distant in scale space [6, 7, 9]. In many non-reacting and38

incompressible turbulent flows, local down-scale energy transfer dominates other interactions throughout the inertial39

range. This imbalance results in the net forward (i.e., down-scale) kinetic energy cascade that is the basis for most40

classical theories of turbulence, including the theory proposed by Kolmogorov [10].41

Our focus here is on understanding how the balance between down-scale and up-scale kinetic energy transfer42

changes in turbulent premixed reacting flows, and whether there is a net up-scale transfer of energy associated with43

advective processes. Such a net up-scale energy transfer could be considered a particular type of energy “backscatter.”44

Furthermore, if such net advective backscatter does exist, we seek to characterize the range of scales over which it45

occurs. In particular, net up-scale energy transfer over a wide range of scales extending from the scale of the flame46

width to the turbulent integral scale would be indicative of an extended inverse energy cascade, contrary to the net47

forward energy cascade found in most three-dimensional (3D) non-reacting flows.48

Some of the earliest attempts to understand the effects of flames on turbulence spectra were made experimentally49

by Furukawa et al. [11, 12], who found that small-scale motions in the product gases outside of a thin premixed50

flame are suppressed relative to motions in the reactant gases. More recently, Knaus & Pantano [1] calculated51

velocity and scalar spectra using direct numerical simulations (DNS) of non-premixed flames, showing that density-52

weighted spectra collapse to classical predictions for non-reacting turbulence made by Kolmogorov [10]. Kolla et al. [2]53

computationally examined density-weighted kinetic energy and scalar spectra using DNS of a premixed shear-driven54

turbulent flame and showed that these spectra only collapse to classical Kolmogorov predictions at intermediate scales55

far from the scale of the flame width. Relatively few prior attempts have been made to specifically study advective56

transfer and backscatter in reacting flows. O’Brien et al. [3, 13] performed computational, physical-space analyses of57

energy transfer between subfilter and resolved scales in the compressible, Favre-filtered Navier-Stokes equations. By58

applying differential filters of many widths to DNS data of both diffusion [13] and premixed [3] flames, it was found59

that subfilter-scale backscatter occurs primarily in regions undergoing dilatation due to heat release.60

Despite the insights provided by these prior studies, there is still incomplete understanding of how heat release61

affects advective kinetic energy transfer within a spectral framework. In the present study, spectral kinetic energy62

(SKE) transfer by advective processes is examined using two-dimensional (2D) Fourier spectra conditioned on the63

planar-averaged reactant mass fraction to indicate location in the flame brush. Here the flame brush is defined as64

the spatial region that fully encompasses the turbulent premixed flame. The analysis is based on data from a new65

high-resolution DNS of a statistically planar premixed flame in an unconfined domain. The canonical nature of this66

configuration, which has also been examined previously in other studies (see, for instance, Tanahashi et al. [14] and67

Bell et al. [15]), allows turbulence-flame interactions to be examined in the absence of additional complicating physical68

effects, such as mean shear. Moreover, in this configuration, the two spatial dimensions normal to the direction of69

mean flame propagation are homogeneous, isotropic, and have periodic boundary conditions. This thus permits a70

conditional Fourier analysis in 2D planes through the flame brush, which is inhomogeneous in the third dimension.71

Even though both the turbulence and the flame are inherently 3D, no loss of information or degrees of freedom in72

the dynamics is incurred by applying a 2D Fourier transform to 3D transport equations. As a result, the present73

2D Fourier analysis provides physical insights into spectral variations through the flame brush, and also permits the74

calculation of triadic interactions between turbulent scales of motion.75

It should be noted that this study is not the first to use a 2D analysis for the study of triadic interactions in a76

3D turbulent flow that is homogeneous in two dimensions and inhomogeneous in the third dimension. Most notably,77
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Domaradzki et al. [8] performed an analysis of spectral energy transfer and triadic interactions in a turbulent channel78

flow, using a similar 2D approach to that employed here. The use of 2D conditional statistics for the study of79

turbulent flow structure and scales of motion in a reacting flow is similarly not new. In particular, Kolla et al. [2]80

performed a conditional analysis of velocity and reactive scalar spectra in the flame brush of a premixed shear-driven81

turbulent reacting flow. In their study, one-dimensional (1D) spectra were averaged in 2D planes in which the flow82

was homogeneous, and conditional statistics were computed based on the average value of the combustion progress83

variable within each plane.84

In the following, details of the numerical simulation are described first, followed by the formulation of the SKE85

transport equation and a description of how inter-scale advective kinetic energy transfer can be characterized in86

premixed reacting flows, particularly through the calculation of triadic interactions. Results from the DNS are then87

presented and conclusions are provided at the end.88

II. DETAILS OF THE NUMERICAL SIMULATION89

The present analysis is based on data from a new turbulent premixed reacting flow DNS performed using the code90

Athena-RFX [16–18]. The simulation solves the reactive flow equations given by91

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0 , (1)

∂(ρui)

∂t
+

∂

∂xj

[
ρuiuj + pδij − 2µ

(
Sij −

1

3
Skkδij

)
− 5

3
µSkkδij

]
= Fi , (2)

∂(ρe0)

∂t
+

∂

∂xj

[
ρe0uj + puj − k

∂ϑ

∂xj
− 2µui

(
Sij −

1

3
Skkδij

)
− 5

3
µujSkk

]
= −ρqẇ + uiFi , (3)

∂(ρY )

∂t
+

∂

∂xj

(
ρY uj − λ

∂Y

∂xj

)
= ρẇ , (4)

where ui is the velocity vector, ρ is the density, p is the pressure, e0 is the specific total energy, ϑ is the temperature, Y92

is the reactant mass fraction (where Y = 1 in the reactants and Y = 0 in the products), Sij = 1
2 (∂ui/∂xj + ∂uj/∂xi)93

is the strain rate, and thermodynamic variables are related to each other by the ideal gas equation of state. The94

shear viscosity is denoted µ, the bulk viscosity has been set equal to 5
3µ (giving a second coefficient of viscosity equal95

to µ), the mass diffusivity is denoted λ, and k is the thermal conductivity. Each of the transport coefficients has a96

power-law dependence on temperature ϑ given by97

µ = ρrνr(ϑ/ϑr)
n , (5)

k = ρrαrcp(ϑ/ϑr)
n , (6)

λ = ρrDr(ϑ/ϑr)
n . (7)

Here n is a constant, νr, αr, and Dr are the kinematic viscosity, thermal diffusivity, and mass diffusivity at the unburnt98

reactant conditions ϑr and ρr, and cp = γR/M(γ − 1) is the specific heat capacity at constant pressure. The Lewis99

number in the present DNS, Le = αr/Dr, is unity. The reaction rate, ẇ, is modeled using first-order, single-step100

Arrhenius kinetics as101

ẇ = −ρY B exp
(
− Q

RT

)
, (8)

where B is the pre-exponential factor and Q is the activation energy. The corresponding chemical energy release102

is denoted q. The single-step reaction model used here provides realistic predictions of flame structure and heat103

release [17, 19] while maintaining low computational cost, thereby allowing the high spatial resolution achieved in the104

present DNS. Finally, homogeneous isotropic turbulence (HIT) in the inert reactants is sustained through a large-scale105

isotropic forcing term Fi, as described in Poludnenko & Oran [17]. A separate simulation of inert HIT in a cubic,106

periodic domain was performed to serve as a baseline for comparison with premixed reacting flow results. Values of107

all simulation parameters for both the flame and inert HIT are provided in Table I.108

The physical configuration examined here is that of a turbulent premixed flame in an unconfined domain. The109

computational domain is discretized using a uniform grid of size 512 × 512 × 16384. The simulation is initiated110

without a flame and turbulence forced at the scale of the domain width, L = Lx1
= Lx2

, develops over five eddy-111

turnover times. The eddy-turnover time is defined here in terms of the turbulent integral length, `, and velocity, U`,112

scales as τed ≡ `/U`. After this spin-up phase, a planar laminar flame is initialized in the domain and a turbulent113
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L 0.259 cm Domain width, turbulence forcing scale

ϑr 293 K Initial temperature

pr 1.01× 106 erg/cm3 Initial pressure

ρr 8.73×10−4 g/cm3 Initial density

γ 1.17 Adiabatic index

M 21 g/mol Molecular weight

ϑp 2135 K Post-flame temperature

ρp 1.2×10−4 g/cm3 Post-flame density

B 6.85×1012 cm3/(g s) Pre-exponential factor

Q 46.37 Rϑr Activation energy

q 43.28 Rϑr/M Chemical energy release

νr 0.189 cm2/s Initial kinematic viscosity

αr 1.77 cm2/s Initial thermal diffusivity

Dr 1.77 cm2/s Initial mass diffusivity

n 0.7 Temperature exponent

δL 0.032 cm Laminar flame thermal width

SL 302 cm/s Laminar flame speed

` 0.060 cm Integral length scale in reactants

U` 604 cm/s Integral velocity scale in reactants

τed 9.93× 10−5 s Turbulent eddy turnover time

Da 0.74 Damköhler number

Ka 20.7 Karlovitz number

MaT,r 0.03 Initial turbulence Mach number

TABLE I. Input model parameters and resulting laminar and turbulent flame properties for the premixed flame DNS.

flame is allowed to develop for an additional five eddy turnover times. Subsequently, data are collected for the spectral114

analysis over roughly two and a half eddy turnover times during which the turbulent flame speed and global kinetic115

energy remain approximately constant, giving statistically stationary data. Periodic boundary conditions are used in116

the x1 and x2 directions, resulting in flow homogeneity in x1-x2 planes and a statistically planar flame. Boundaries in117

the x3 direction are periodic prior to ignition and open after ignition. The mean flame normal direction is along the118

x3 axis, which is also the direction of the mean flow generated by fluid expansion due to heat release in the flame. The119

domain is much longer in the x3 direction, Lx3
= 32L, in order to allow sufficient space for the flame to be initialized120

and to propagate for many eddy turnover times without leaving the domain through either of the x3 boundaries.121

The reactive mixture considered here has laminar flame properties similar to those of an atmospheric, stoichiometric122

H2-air flame [17, 19]. In particular, the laminar flame speed is Sl = 302 cm/s and the laminar flame thermal width123

is δl ≡ (ϑp − ϑr)/(dϑ/dx)L,max = 0.032 cm, where ϑp = 2135 K is the burnt products temperature, ϑr = 293 K is124

the unburnt reactants temperature, and (dϑ/dx)L,max is the maximum temperature gradient in the laminar flame.125

Turbulence conditions correspond to the thin reaction zones regime [20] with Damköhler number Da = 0.74 and126

Karlovitz number Ka = 20.7; the corresponding location of the present DNS on the combustion regime diagram is127

shown in Fig. 1. Here Da and Ka are defined using the laminar flame thermal width δl, the laminar flame speed Sl,128

and the integral length and velocity scales in the reactants, ` and U`, as129

Da ≡ τed

τc
=

(
`

δl

)(
U`
Sl

)−1

, (9)

Ka ≡ τc
τk

=

(
Slδl
νr

)1/2(
`

δl

)−1/2(
U`
Sl

)3/2

, (10)

where τc ≡ δl/Sl is the chemical time scale, and τed ≡ `/U` and τk ≡ (νr/ε)
1/2 are the eddy turnover and Kolmogorov130

timescales, respectively, in the unburnt reactants. Using classical scaling arguments, it is assumed in obtaining Eq.131

(10) that the kinetic energy dissipation rate ε is given as ε = U3
` /` in the unburnt reactants.132

The DNS is well resolved, with 64 computational cells spanning one δl and two grid cells spanning the Kolmogorov133

length, η̃k = (ν̃3/ε̃)1/4, in the unburnt reactants. There are 25 grid cells per η̃k in the burnt products far from the134

flame brush. Here ν̃ ≡ 〈µ | Y 〉/〈ρ | Y 〉 is the average kinematic viscosity and ε̃ ≡ 〈ρε | Y 〉/〈ρ | Y 〉 is the average135
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FIG. 1. (Color online) Combustion regime diagram [20] showing the location of the present DNS within the thin reaction zones
regime. The Damköhler, Da, and Karlovitz, Ka, numbers are defined in Eqs. (9) and (10), respectively.

kinetic energy dissipation rate (see Section III for definitions of averaging operators). It should be noted that the136

spatial resolution of the present DNS is four times greater than recommendations for both fully-resolved turbulence137

[2, 21] and fully-resolved premixed flames [17], thereby providing confidence in the physical accuracy of the DNS138

results presented herein.139

Figure 2 shows the resulting turbulent flame structure at one instant from the DNS. Comparison of Figs. 2(a) and140

(b) shows that, although the flame is wrinkled and affected by the turbulent flow throughout, the flame is wrinkled at141

smaller scales near the reactants than near the products. This is consistent with prior studies of turbulent premixed142

flames [17, 22] using the same computational code. Moreover, while the DNS resolves δl with 64 computational cells,143

the turbulent flame structure shown in Fig. 2 spans nearly 600 computational cells in the x3 direction, and thus there144

is considerable spatial resolution within the turbulent flame brush.145

Figure 3 shows cross-sectional fields of dilatation Skk, specific kinetic energy 1
2uiui, and vorticity magnitude

√
ωiωi146

at one instant from the DNS, where the vorticity is defined using the alternating tensor εijk as ωi = εijk∂uk/∂xj .147

Figure 3(a) shows that dilatation is strongest near the premixed flame, while Fig. 3(b) shows that there is an increase148

in kinetic energy from the reactants to the products due to the increase in u3 as a result of fluid expansion. Figure149

3(c) shows that there is a large suppression of vorticity magnitude across the flame, most likely due to the combined150

effects of dilatation and increasing viscosity.151

The physical model, numerical algorithms, and simulation setup used here have also been described in prior studies152

of turbulent flames in Poludnenko & Oran [17, 18], Hamlington et al. [22, 23], and Poludnenko [24]. In particular,153

Poludnenko & Oran [17, 18] and Poludnenko [24] compare the single-step chemistry model to theoretical predictions154

of the turbulent flame speed and provide a convergence study for the laminar flame thermal width resolution. Ad-155

ditionally, the new simulation discussed here corresponds to case F1 first studied in Hamlington et al. [22], with the156

important distinction that the present DNS is performed using temperature-dependent viscosity and turbulence is157

fully resolved in all regions of the flow.158

III. SPECTRAL KINETIC ENERGY DYNAMICS159

The effects of premixed flames on inter-scale energy transfer are analyzed in the present study using the SKE160

transport equation for compressible reacting flows. The dynamics represented by this equation are predominantly161

governed by physical processes associated with interactions of three wavevectors, known as triadic interactions (see [4–162

9] and references therein), which are a combination of physical-space and spectral-space two-point cross-correlations.163

Variations of these interactions through the turbulent flame brush are directly indicative of modifications to energy164

transfer processes by heat release from the flame.165

The transport equation for SKE in compressible reacting flows is obtained from the Fourier transform of the166
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FIG. 2. (Color online) Structure of the turbulent premixed flame at one instant from the DNS. Panel (a) shows the Y = 0.99
isosurface near the reactants and (b) shows the Y = 0.01 isosurface near the products. Colors indicate the value of Y within
the flame. Note that only the computational domain in the vicinity of the flame is shown.

compressible Navier-Stokes equation given by167

∂ui
∂t

= − uj
∂ui
∂xj︸ ︷︷ ︸
Ti

− 1

ρ

∂p

∂xi︸ ︷︷ ︸
Pi

+
2

ρ

∂

∂xj

[
µ

(
Sij −

1

3
Skkδij

)]
︸ ︷︷ ︸

Vi

+
1

ρ

∂

∂xi

(
5

3
µSkk

)
︸ ︷︷ ︸

Di

, (11)

where Ti represents nonlinear advective processes, Pi represents pressure gradient forcing, Vi represents shear viscous168

diffusion, and Di represents dilatational viscous effects.169

In nearly all practical reacting flows, the lack of three homogeneous directions prevents the use of the 3D Fourier170

transform in obtaining the SKE transport equation. However, since the present analysis is focused on statistically171

planar premixed flames, for which the flame and turbulent flow are homogeneous and periodic in two dimensions,172

2D Fourier transforms can be applied to analyze the full 3D dynamics in each x1-x2 plane. A similar approach was173

employed by Domaradzki et al. [8] for the study of turbulent channel flow and by Kolla et al. [2] for the study of174

shear-driven premixed reacting flows. The resulting equation for the velocity spectrum ûi(κ, x3, t) is obtained from175

Eq. (11) as176

∂ûi
∂t

= T̂i + P̂i + V̂i + D̂i , (12)

where (̂·) denotes a 2D Fourier transform, κ = [κ1, κ2] is the 2D wavevector, and all of the terms in the above equation177

depend on κ, x3, and t.178

The SKE at different locations in the flame brush is defined as Ê(κ, x3, t, Y ) ≡ 〈 12 û
∗
i ûi | Y 〉, where, most generally,179

〈·〉 denotes an ensemble average and 〈· | Y 〉 denotes conditional averaging on Y (x3, t), the x1-x2 planar average of180

the reactant mass fraction Y . The present definition of SKE corresponds to mass-specific SKE, and thus represents181

the spectral power of the kinematic velocity field. This approach is appropriate here due to the present focus on182

interactions between different scales of turbulent motion, as well as to the lack of a mean density gradient in the x1183
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FIG. 3. (Color online) Instantaneous x2-x3 fields from the premixed flame DNS. The panels show (a) dilatation Skk, (b)
specific kinetic energy 1

2
uiui, and (c) vorticity magnitude

√
ωiωi. Solid red (gray) lines in (a)-(c) are the contour Y = 0.05,

solid black lines are Y = 0.95, and red (gray) and black dashed lines are the boundaries of the flame brush, corresponding to
0.005 ≤ Y ≤ 0.995, where Y is a planar average in x1-x2 planes. Only the computational domain in the vicinity of the flame
brush is shown.

and x2 directions (since the flame is statistically planar). There is also currently no established analytical framework184

for density-weighted triadic interactions which can be mathematically related to the SGS flux arising from density-185

weighted filtering operators used in typical combustion LES [2].186

A budget equation for SKE can be obtained from187

∂Ê

∂t
≡ ∂

∂t

〈
1

2
û∗i ûi

∣∣∣∣ Y〉 =

〈
∂( 1

2 û
∗
i ûi)

∂t

∣∣∣∣ Y〉 , (13)

where the time derivative approximately commutes with the conditional average provided that the rate of change188

of Y is much slower than the rate of change of 1
2 û
∗
i ûi, as is the case in the present study (additional detail on the189

commutativity of the time derivative and the conditional average is provided in the Appendix). In the present analysis,190

both the flame and turbulence are statistically stationary with respect to an inertial reference frame moving at the191

average turbulent flame speed. There is a direct correspondence between x3 and Y in this frame, and thus Y alone,192

rather than x3, can be used to indicate location in the flame brush. As a result, the ensemble conditional average can193

be replaced by a spatial-temporal conditional average, which then allows Eq. (13) to be rewritten as194

∂Ê

∂t
=

〈
1

2

(
û∗i
∂ûi
∂t

+ ûi
∂û∗i
∂t

) ∣∣∣∣ Y〉 = 0 . (14)

where ∂Ê/∂t = 0 follows from the statistical stationarity of the flow and 〈·〉 now denotes an average over all x3 and195

t. Substituting Eq. (12) into Eq. (14) then gives the transport equation for Ê in a statistically stationary flow as196

∂Ê

∂t
= T̂ + P̂ + V̂ + D̂ = 0 . (15)

Here the terms on the right are given generically as Ĝ(κ, Y ) = 〈 12 (û∗i Ĝi + ûiĜ∗i ) | Y 〉, where Ĝ represents T̂ , P̂ , V̂ ,197

or D̂, and Ĝi represents T̂i, P̂i, V̂i, or D̂i. Terms in Eq. (15) have no dependence on x3 or t due to the use of a198

spatial-temporal average.199
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In the present analysis, 12 different values of Y are used in the conditional statistics, corresponding to Y =200

{0.00, 0.05, 0.15, ..., 0.95, 1.00}. Furthermore, since the dominant anisotropic direction in the flow is along the x3 axis,201

spectral quantities calculated in homogeneous x1-x2 planes are isotropic with respect to the wavevector κ. Therefore,202

the discrete isotropic SKE, denoted Êκ(κ, Y ), can be calculated by summing Ê(κ, Y ) within wavenumber spherical203

shells of width ∆κ located at a radius κ, where κ ≡ |κ| is the wavevector magnitude. With this, Êκ becomes a204

function of the shell-centered κ values, κ = {0.25, 1, 2, ...}∆κ, representing the continuous wavenumber shells [0, ∆κ

2 ),205

[∆κ

2 , 3∆κ

2 ), and so on. Similar expressions can be obtained for T̂κ, P̂κ, V̂κ, and D̂κ, each of which depends on κ and206

Y .207

When one of the shell-integrated terms on the right-hand side of Eq. (15) is positive (i.e., Ĝκ > 0) for a particular208

wavenumber κ at a particular flame brush location Y , then the associated physical process contributes to an increase209

in SKE at that κ and Y . Conversely, when Ĝκ < 0, the associated physical process contributes to a decrease in SKE210

at that κ and Y . Note, however, that these terms only indicate whether a particular wavenumber shell receives or211

donates energy as a result of a particular process. They do not specify in which direction (i.e., up-scale, down-scale,212

or between flame brush locations) the net transfer takes place.213

The transport terms in Eq. (15) consist of both in-plane (i.e., within the x1-x2 plane at a single Y ) and out-of-214

plane (i.e., between different Y planes) contributions. These contributions to the overall transport can, however, be215

computed separately. In-plane advective transfer, denoted T̂
‖
κ (κ, Y ), includes only x1 and x2 spatial derivatives in216

Eq. (11) and omits x3 derivatives. The subfilter-scale flux, which is of primary importance in turbulence modeling217

for LES, can then be estimated from T̂
‖
κ (κ, Y ) as218

Π(κ, Y ) =

κ∑
κ′=0

T̂ ‖κ (κ′, Y ), (16)

where Π(κ, Y ) is the 2D in-plane equivalent of the 3D isotropic spectral flux [9]. The out-of-plane transport must be219

removed from the computation of Π in order to estimate the flux of energy to subfilter-scales at a given κ, since only220

the in-plane transport term describes energy transfer purely between wavenumber shells at a single Y . When Π > 0,221

the wavenumber shell at (κ, Y ) is a net recipient of energy from all smaller scales (i.e., higher wavenumbers), whereas222

when Π < 0, the shell at (κ, Y ) is a net donor of energy to all smaller scales.223

In order to determine the exact origin and destination of inter-scale energy transfer, triadic interactions must be224

computed. Triadic interactions are the building blocks of multi-scale SKE transport and involve interactions between225

three wavevectors κ, ζ, and ξ which form a closed triad ξ = κ − ζ. Triadic terms can be found in each of the226

integrals used to obtain T̂ , P̂ , V̂ , and D̂ in Eq. (15). The energy cascade process is, however, most directly associated227

with triads comprising the spectral advective transfer term T̂ , which is the primary focus of the present study.228

These particular triads represent self-interactions between three wavevectors of velocity, where a Fourier coefficient of229

velocity represents the amplitude and phase of a plane wave in the velocity field and the wavevector of the coefficient230

represents the scale (or wavelength) and direction of the plane wave. As a result, advective triadic interactions are231

directly connected to the transfer of energy between specific scales of motion due to nonlinear inertial processes.232

Individual triadic contributions to T̂ ‖ are given by233

T̂ ′‖(κ, ζ, Y ) =

〈
− i

2

[
û∗i (κ)ûj(ζ)ξj ûi(ξ) + ûi(κ)û∗j (ζ)ξj û

∗
i (ξ)

] ∣∣∣∣ Y〉, (17)

for i ∈ {1, 2, 3} and j ∈ {1, 2}. Integration of T̂ ′‖(κ, ζ, Y ) over all possible ζ gives the net spectral transfer T̂ ‖(κ, Y ),234

which is the in-plane component of the advective transfer T̂ (κ, Y ) appearing in Eq. (15).235

Wavevectors can be combined via shell integration in order to derive discrete isotropic transport terms, resulting236

in the spectral shell relations given by237

T̂ ‖κ (κ, Y ) =
∑
ζ

T̂
′‖
κζ(κ, ζ, Y )∆ζ =

∑
ζ

∑
ξ

T̂
′‖
κζξ(κ, ζ, ξ, Y )∆ζ∆ξ, (18)

where ζ ≡ |ζ|, ξ ≡ |ξ| becomes an independent variable within the range |κ − ζ| ≤ ξ ≤ |κ + ζ|, and ∆ζ and ∆ξ238

represent wavenumber shell widths. In Eq. (18), the intermediate quantity T̂
′‖
κζ is given by summing over all ξ as239

T̂
′‖
κζ(κ, ζ, Y ) =

∑
ξ

T̂
′‖
κζξ(κ, ζ, ξ, Y )∆ξ . (19)
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FIG. 4. (Color online) Isotropic turbulent spectral kinetic energy (SKE), Êκ, normalized by the forcing-scale SKE in non-

reacting homogeneous isotropic turbulence (HIT) of premixed reactants, Ênorm ≡ Êκ,hit(κ= L−1). Spectra are colored by Y
location, with the HIT SKE shown as a heavy black line. Vertical dashed lines correspond to the wavenumbers of the domain
width L and the laminar thermal flame width δl. The dotted line shows a κ−5/3 spectral slope.

This quantity can be interpreted as a measure of the energy exchange between the wavenumbers κ and ζ [6], at a240

particular Y location. In particular, T̂
′‖
κζ is negative when κ gives energy to a particular ζ, and T̂

′‖
κζ is positive when241

κ receives energy from a particular ζ.242

It should be noted that the summation over ξ in Eq. (19) can be split into various contributions, revealing further243

insights into the underlying physics. For example, Brasseur & Wei [7] categorize T̂ ′κζξ(κ, ζ, ξ, Y ) into local, nonlocal,244

and distant triads, where local triads correspond to κ ≈ ζ ≈ ξ, distant triads correspond to κ� ζ ∼ ξ or κ ∼ ξ � ζ,245

and all other triads are considered nonlocal. Positive and negative values of T̂ ′κζξ(κ, ζ, ξ, Y ) may also be grouped246

together in order to separately identify up-scale (i.e., backscatter) and down-scale (i.e., forward-scatter) contributions247

to the net direction of energy transfer [5]. In the present study, however, the focus is solely on the net direction248

and magnitude of energy transfer by advective processes, and so we do not perform any local/nonlocal/distant or249

positive/negative groupings of the triads. Consequently, discussion of advective energy transfer here and in the250

following refers to the net transfer of energy between scales.251

It is emphasized that even though triadic inter-scale interactions are present for each of the energy transfer terms in252

Eq. (15), the present analysis is focused specifically on triads and energy transfer due to nonlinear advective processes.253

Nonlinear advection is responsible for moving energy conservatively from one velocity scale to another and is thus of254

considerable importance in the energy cascade process. The analysis of energy transport due to the other terms in255

Eq. (15) is the subject of future work.256

IV. RESULTS257

Figure 4 shows SKE for twelve values of Y ranging from pure reactants (i.e., Y = 1), through ten locations inside258

the flame brush, to pure products (i.e., Y = 0). Each spectrum is normalized by the forcing-scale SKE in non-reacting259

HIT of premixed reactants, Êκ,hit(κ=L−1), with the same turbulence properties as the unburnt reactants (see Table260

I). This allows a direct comparison to be made of the intensity and scaling of non-reacting and reacting turbulence261

with identical pre-reaction properties. It should be noted that data corresponding to Y = 0 and 1 are sampled from262

just downstream and upstream of the turbulent flame brush, and therefore are not isolated from heat release effects263

such as pressure pulsations [24] and dilatation [see Fig. (3)].264

The spectra in Fig. 4 undergo substantial changes through the flame brush from reactants to products, displaying265

a suppression of small-scale motions and an enhancement of the mean flow near the products. The suppression of266

small-scale motions is due to dilatational effects resulting from fluid expansion and the decrease in local Reynolds267

number resulting from the increase in viscosity. As noted in Section I, both of these effects are fundamentally due to268

heat release by the flame. Note that by the time the flow has crossed the flame, very little evidence remains of the269

κ−5/3 inertial range scaling that is present in both the reactants and HIT.270

Although changes to the spectra shown in Fig. 4 suggest that inter-scale energy transfer inside the flame brush271
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FIG. 5. (Color Online) Total isotropic advective transport, T̂κ, (a) and (d), isotropic in-plane advective transport, T̂
‖
κ , (b) and

(e), and isotropic spectral flux, Π, (c) and (f), normalized by the forcing-scale isotropic advective transport in non-reacting

HIT of premixed reactants, T̂norm = T̂κ,hit(κ=L−1). Panels (a)-(c) correspond to locations near the reactants and panels (d)-(f)
correspond to locations near the products. All panels show the absolute values of all quantities. In (a), (b), (d), and (e),
orange (light gray) line segments represent a positive contribution to SKE at a particular wavenumber and blue (dark gray)
line segments represent a negative contribution. In (c) and (f), orange (light gray) line segments represent a positive energy
flux at a particular wavenumber and blue (dark gray) line segments represent a negative energy flux. HIT results are shown
as heavy solid lines in all panels. Vertical dashed lines show the wavenumbers corresponding to the turbulence integral scale,
`, and the laminar flame thermal width, δl.

may deviate from that found in non-reacting incompressible turbulence, these spectra do not provide any direct272

information on the specific nature of net energy transfer. Such information, however, is provided in Fig. 5, which273

shows spectra of the total isotropic advective transport, T̂κ, the in-plane isotropic advection, T̂
‖
κ , and the isotropic274

spectral flux Π, normalized by the forcing-scale total isotropic advective transport in non-reacting HIT of premixed275

reactants, T̂κ,hit(κ=L−1).276

The spectra of T̂κ in Figs. 5(a) and (d) show that, qualitatively, the total isotropic advective transport changes277

little through the flame brush, with large scales close to the domain width supplying kinetic energy to the full range278

of smaller scales. Quantitative differences in T̂κ are attributable, at least in part, to the decrease in Reynolds number279

from reactants to products. However, when only the in-plane component of T̂κ is considered [i.e., Figs. 5(b) and (e)],280

there is substantially more variation in the inter-scale transport dynamics. In particular, T̂
‖
κ shows little qualitative281

variation with position in the flame brush near the reactants, but near the products there is a reversal of the net282

transport at scales near the laminar flame thermal width δl.283

This reversal, which represents net energy backscatter near δl, is also evident in Fig. 5(f), which shows that Π is284

positive at scales close to δl near the products, indicative of net spectral backscatter of energy from scales smaller285

than δl. By contrast, Fig. 5(c) shows that near the reactants, there is no net backscatter of energy at any scale and286

the results are very similar to those obtained for non-reacting HIT. It is emphasized that the backscatter referred287

to here is net backscatter that consists of both down-scale and up-scale energy transfer due to advective processes.288

Figure 5(f) indicates that such net spectral backscatter occurs near the products close to the scale of the flame width289

δl.290

The specific scales of motion contributing to up-scale transfer of energy at a particular wavenumber can be deter-291

mined from T̂
′‖
κζ , which is the in-plane transfer of energy between wavenumbers κ and ζ. Figure 6 shows the detailed292
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FIG. 6. (Color online) In-plane, inter-scale advective transport, T̂
′‖
κζ , normalized by the forcing-scale advective transport for

non-reacting HIT in premixed reactants, T̂norm = T̂κ,hit(κ=L−1). Orange (light gray) at a particular (κ, ζ) coordinate indicates
that wavenumber κ receives energy from wavenumber ζ, while blue (dark gray) indicates that κ donates energy to ζ. Dashed
lines correspond to ` and δl, and the dash-dot line shows κ= ζ. Panels show results for (a) HIT, and flame brush locations
corresponding to (b) Y =1.00, (c) Y =0.35, (d) Y =0.15.

interactions between all ζ and κ pairs down to scales four times smaller than δl for non-reacting HIT and for flame293

brush locations centered at Y = {0.15, 0.35, 1.00}, all normalized by the forcing-scale total isotropic advective trans-294

port in the non-reacting HIT of premixed reactants, T̂κ,hit(κ=L−1). Comparison of Figs. 6(a) and (b) shows that295

at flame brush locations near the reactants, inter-scale advective energy transfer is similar to that found in HIT. In296

both cases, generally positive values of T̂
′‖
κζ occur for ζ < κ and negative values occur for ζ > κ, corresponding to a297

down-scale transfer of energy from large to small scales (i.e., low to high wavenumbers). Near the products, however,298

Figs. 6(c) and (d) show that close to the main diagonal where ζ = κ, the direction of energy transfer is reversed, with299

positive values of T̂
′‖
κζ for ζ > κ and negative values for ζ < κ. This reversal is, once again, indicative of net energy300

backscatter from small to large scales (i.e., high to low wavenumbers), and is most pronounced near the scale δl.301

Net advective energy backscatter near scale δl can be seen more clearly by taking one-dimensional profiles of T̂
′‖
κζ302

from Figs. 6(b) and (d) at κδl = 0.625, 1, and 1.375, where κδl = 1 corresponds to the scale of the laminar flame303

thermal width. The resulting curves, shown in Fig. 7, give the contributions of different wavenumbers ζ to the energy304

associated with wavenumber κ. In particular, Fig. 7(a) shows that near the reactants, there is a down-scale transfer305

of energy from large to small scales (i.e., low to high wavenumbers) for each κ, with wavenumber κ receiving energy306

from wavenumbers ζ < κ and donating energy to wavenumbers ζ > κ. The collection of curves shown in Fig. 7(a)307

thus represents a net forward cascade of energy from large to small scales.308

At locations in the flame brush near the products, by contrast, the direction of energy transfer is reversed, with309

wavenumber κ donating energy to wavenumbers ζ < κ and receiving energy from wavenumbers ζ > κ. The strength of310

the resulting net energy backscatter is, however, substantially weaker than the down-scale transfer near the reactants311

shown in Fig. 7(a). The substantial reduction in magnitude of the triadic transfer terms is also evident in the overall312

lower magnitudes of T̂
′‖
κζ shown in Fig. 6(d) near the products. Consequently, net transfer rates near the products313

are much smaller in magnitude compared to rates near the reactants, regardless of the direction in which the transfer314

occurs. For low ζ, the curve for κδl = 0.625 in Fig. 7(b) exhibits down-scale energy transfer, and at even smaller315

values of κ, shown in Fig. 6(d), essentially all up-scale transfer of energy is lost, even for locations near the products.316

As a result, Fig. 7(b) provides clear evidence of net advective energy backscatter for scales near the flame width δl in317

premixed reacting flows, but also shows that the resulting inverse cascade of energy does not extend to the scale of318

the domain width.319

This last point is shown more clearly in Figs. 5(f) and 6(d), both of which indicate that up-scale energy transfer320

by advective processes terminates at scales near the turbulence integral scale `, and for larger scales there is a net321

down-scale transfer of energy (although this down-scale energy transfer is much weaker than in the reactants or in322

HIT). These results thus suggest that while up-scale energy transfer and net backscatter do occur in premixed reacting323

flows, advective processes may not be effective at creating an inverse cascade that extends past the turbulence integral324

scale; further analysis of this result requires additional, computationally expensive, simulations where ` is made much325

larger than δl.326
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FIG. 7. (Color online) In-plane advective transport of SKE, T̂
′‖
κζ , between wavenumbers κδl = [0.625, 1, 1.375] and ζ for flame

brush locations near (a) the reactants and (b) the products. Positive (negative) values indicate that the scale ζ is a donor
(recipient) of SKE to (from) the scale κ.

V. SUMMARY AND CONCLUSIONS327

In the present analysis, the effects of premixed flames on spectral properties of turbulence have been quantified328

using 2D Fourier transforms and statistics conditioned on location in the flame brush. The analysis is based on data329

from a well-resolved DNS of a 3D statistically planar premixed flame in which the laminar flame width is resolved330

with 64 computational grid cells and the turbulent Kolmogorov scale is resolved everywhere in the domain with at331

least two grid cells.332

Changes to the turbulent energy transfer are apparent in the kinetic energy spectra (Fig. 4). In particular, these333

spectra vary significantly between locations in the flame brush near the reactants and locations near the products,334

with a substantial suppression of small-scale motions and an increase in the mean flow kinetic energy occurring in the335

products. Calculation of triadic interactions between different scales of fluid motion (Figs. 6 and 7) demonstrates that336

within the flame brush near the products, there is a reversal of the direction of advective energy transfer at the scale337

of the laminar flame thermal width. This results in net advective backscatter of energy from small to large scales,338

corresponding to positive values of the isotropic spectral flux Π (Fig. 5). These results qualitatively match the results339

of a physical-space analysis of density-weighted SGS fluxes computed by O’Brien et al. [3] using the same DNS data.340

Analysis of the net spectral flux and triadic interactions near the products [Figs. 5(f) and 6(d)] indicates that net341

backscatter by advective processes extends up to the turbulence integral scale. Energy injection occurs at scales342

larger than the integral scale, and such large-scale energy can only be transported to smaller scales (i.e., down-scale).343

Therefore, at some intermediate scale, backscatter of energy from the flame scale is balanced by forward-scatter of344

energy from large scales. Further investigation into the possibility of an extended inverse energy cascade over a greater345

range of scales thus requires additional simulations in a larger domain with greater separation between the energy346

injection and flame scales. Even so, the present results have immediate relevance for LES modeling, since the presence347

of a strong forward cascade cannot be assumed at filter scales near the laminar flame thermal width in large spatial348

regions both within and downstream of the flame brush. Whether or not an LES practitioner should expect current349

models to deviate significantly from these findings depends on the details of the turbulent combustion process being350

modeled, as well as the grid scale of the LES performed.351

It should be noted that the present spectral analysis is performed in 2D even though both the turbulence and the352

flame are inherently 3D. While this restricts the analysis of spectral energy transfer and backscatter to statistically353

homogeneous and isotropic planes perpendicular to the direction of flame propagation, the present results show that354

within these planes there is a clear transition from uniformly down-scale to locally up-scale transfer of energy when355

moving through the flame brush from reactants to products. In order to perform a fully 3D analysis of spectral356

backscatter through the flame brush that can be quantitatively compared to O’Brien et al. [3], a spatially-local scale357
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decomposition must be performed, for example using wavelets. Such an analysis is the subject of future work.358

In addition to extending the analysis to 3D, the present study of scale interactions may also be extended in several359

other directions. In particular, scalar (e.g., reactant mass fraction) spectra are an important aspect of theories for360

turbulent flame speed (see, for example, [25–31]), and the present analysis approach may yield insights into how such361

spectra change through premixed flames. In the present study we have also only examined Le = 1 flames, but prior362

studies (e.g., [32, 33]) have indicated that the strength of dilatational effects may be reduced as Le decreases. It363

would thus be interesting in the future to determine how kinetic energy transfer processes are affected by varying364

Le. Similarly, as ever greater computational resources become available, the results presented herein using single-step365

premixed chemistry can be re-examined using a multi-step chemical mechanism.366

Finally, in the present analysis only energy transfer associated with nonlinear advective processes has been examined.367

Although these processes are most directly connected with turbulent inter-scale energy transfer, which is the focus368

of this work, pressure-gradient, variable-density, and variable-viscosity effects also give rise to inter-scale dynamics369

in premixed reacting flows. Such effects are represented in Eq. (15) by the terms P̂ , V̂ , and D̂. These terms may370

transfer energy between SKE and internal energy, particularly at large scales, and are also an important subject for371

future work.372
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APPENDIX: APPROXIMATE COMMUTATION OF DIFFERENTIATION AND CONDITIONAL380

AVERAGING381

The relation in Eq. (13) is obtained by requiring that the time derivative at least approximately commutes with the382

conditional ensemble average. In the following, we outline the conditions for which this approximate commutation is383

valid. In particular, it can be shown that the time derivative approximately commutes with the conditional average384

provided that the rate of change of Y is much smaller than the rate of change of 1
2 û
∗
i ûi, and that the commutation385

error decreases with increasing scale separation between the time derivatives of these two quantities.386

Introducing the arbritrary random variables X and Y , both of which depend on time t, we seek to show that387

d

dt

〈
X
∣∣ Y 〉 =

〈
dX

dt

∣∣∣∣ Y〉 , (20)

where the operator 〈·〉 is taken here to represent an ensemble average. Beginning with the left-hand side of Eq. (20),388

the time derivative of a conditional average at time t can be written using the fundamental theorem of calculus as389

d

dt

〈
X
∣∣ Y 〉 ≡ lim

h→0

〈
X(t+ h)

∣∣ Y (t+ h)
〉
−
〈
X(t− h)

∣∣ Y (t− h)
〉

2h
. (21)

By contrast, application of the fundamental theorem of calculus to the right-hand side of Eq. (20) gives390 〈
dX

dt

∣∣∣∣ Y〉 ≡ lim
h→0

〈
X(t+ h)−X(t− h)

2h

∣∣∣∣ Y (t)

〉
. (22)

Due to the linearity of the conditional average, this expression can be further rewritten as391 〈
dX

dt

∣∣∣∣ Y〉 ≡ lim
h→0

〈
X(t+ h)

∣∣ Y (t)
〉
−
〈
X(t− h)

∣∣ Y (t)
〉

2h
. (23)

Comparison of Eqs. (21) and (23) shows that the primary differences between these two relations are the times at392

which the conditioning on Y is computed. Using Taylor expansions, however, the conditioning variables Y (t+h) and393

Y (t− h) can be approximated as394

Y (t± h) ≈ Y (t)± dY

dt
h . (24)
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Substituting this expansion into Eq. (21) then gives395

d

dt

〈
X
∣∣ Y 〉 ≈ lim

h→0

1

2h

[〈
X(t+ h)

∣∣∣∣ Y (t) +
dY

dt
h

〉
−
〈
X(t− h)

∣∣∣∣ Y (t)− dY

dt
h

〉]
. (25)

It is readily apparent from comparison of Eqs. (23) and (25) that in the limit of vanishing dY/dt, the time derivative396

of X(t) commutes exactly with the conditional ensemble average. It is also the case that Eqs. (23) and (25) are397

approximately equal provided that time variations in Y are small relative to those in X, such that398

X(t+ h)−X(t− h)

X(t)
� Y (t+ h)− Y (t− h)

Y (t)
, (26)

and therefore Y (t+ h) ≈ Y (t) ≈ Y (t− h).399

In the specific case of the premixed reacting flow studied here, the conditioning variable Y (x3, t) is a spatial average400

in a periodic plane, and therefore can be expected to vary only with the very largest time scales of the flow such as the401

eddy turnover time, the acoustic domain-crossing time, and the flame self-crossing time. Conversely, the conditioned402

variable, 1
2 û
∗
i ûi, varies with the smallest time scales of the flow, such as the Kolmogorov time micro-scale, the acoustic403

cell-crossing time, and the characteristic small-scale chemical reaction time. As a result, there should be little error404

in the commutation of the time derivative and ensemble average in Eq. (13).405
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