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Abstract
Most of the existing numerical and theoretical investigations on the electrohydrodynamics of

a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects

are neglected. In this work we study the inertia effects on the electro-deformation of a viscous

drop under a DC electric field using a novel second-order immersed interface method. The inertia

effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an

electric capillary number CaE. Below the critical CaE , small to moderate electric field strength

gives rise to steady equilibrium drop shapes. We found that, at a fixed CaE, inertia effects induce

larger deformation for an oblate drop than a prolate drop, consistent with previous results in the

literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop

deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop

deformation is found when the normal electric stress points outward, and smaller drop deformation

is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has

not been reported in the literature. Above the critical CaE, no steady equilibrium drop deformation

can be found, and often the drop breaks up into a number of daughter droplets. In particular our

Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger

in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping

flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results

suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate

deformations.

PACS numbers: Valid PACS appear here
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I. INTRODUCTION

The wide application and relevance of the electrohydrodynamics of a viscous drop in a

uniform electric field have attracted extensive theoretical studies [1–5], numerical investiga-

tions [6–8], and physical experiments [9–14]. For a leaky dielectric drop in a leaky dielectric

fluid, the deformation depends on the ratios of conductivities and permittivities between

the drop and the surrounding fluid. The drop can deform into a prolate or oblate spheroid,

and the degree of deformation depends on the strength of the electric field. Furthermore,

the electrohydrodynamics of a surfactant-laden viscous drop exhibits rich dependence on

surfactant coverage and elasticity [15].

In a comparative numerical study of drop electrohydrodynamics that contrasted results

in creeping flow with those with inertia, Feng and Scott [16] showed that Navier-Stokes flow

resulted in larger drop deformation. Their results suggest a positive correlation between drop

size and Reynolds number, that lead to a reduction in the critical threshold for equilibrium

deformation. When the electric field strength (characterized by the electric capillary number

CaE) is increased beyond a critical threshold, steady equilibrium deformation no longer

exists and the drop exhibits a wide variety of dynamics. Experimental studies [9–14] have

illustrated the electrohydrodynamics of a viscous drop above critical electric capillary values.

Two modes of break-up have been observed. In one mode, the drop forms pointed ends

known as Taylor cones along the direction of the field, before releasing droplets in a jet-like

manner. In the other mode the drop undergoes pinch-off, in which the original drop splits

in half at its center with bulbous ends. Numerical studies have been able to capture some

of these dynamics [17, 18].

In a comprehensive numerical study of drop electrohydrodynamics above critical electric

capillary number, Lac and Homsy [7] showed that in addition to breaking-up as described

above, the drop can also deform indefinitely, taking increasingly more slender, elongated

shapes. The authors employ the widely used boundary integral method, based on the

working assumption of creeping flow. Other groups resolved the flow field using the full

incompressible Navier-Stokes equations, also capturing break-up [8, 19, 20]. However, they

did not explore the effects of inertia in a systematic manner. In addition, their numerical

approaches were either too computationally expensive [8], or only first-order accurate [19].

Lanauze et al. [21] developed an analytical model that described the effect of inertia

(captured by the Ohnesorge number) on drop deformation. They show the magnitude of

the Ohnesorge number determines the presence or absence of an overshoot in the transient

deformation profile, i.e. the magnitude of the deformation number exceeds its steady-state

value. Moreover, the model is only valid for small deviations from the drop’s initially spheri-

cal shape (in the regime of small electric capillary number). Previous computational studies

have investigated the inertia effects on drop electrohydrodynamics [8]. A systematic nu-

merical study of inertia effects on steady equilibrium drop shape is provided in Feng and

Scott [16], where the equilibrium drop shapes under an electric field are obtained by solv-

ing the steady Navier-Stokes equations. In this paper we conduct a systematic numerical

investigation the inertia effects on both the steady equilibrium drop shape and the elec-

trohydrodynamic of a leaky dielectric drop suspended in a leaky dielectric fluid, subject to
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a uniform DC electric field. In addition we also focus on the distribution of both electric

and viscous stresses on the drop interface. Moreover our numerical simulations extends to

drop dynamics at the onset of drop pinch-off under a strong electric field. The results are

presented to illustrate the effects of both electric capillary number, CaE and inertia (char-

acterized by the Ohnesorge number, Oh) on the deformation and electric stresses acting on

the drop.

The paper is organized as follows. In Section II, we describe the physical problem, and

introduce the equations governing the electrohydrodynamics of a viscous drop. We then

describe the numerical methods in Section III, and discuss key implementation details of

the immersed interface method (IIM). In Section IV we present our findings, and finally we

discuss our results in Section V.

II. PROBLEM FORMULATION

A schematic diagram of the problem formulation is shown in Figure 1: we consider an

initially spherical viscous drop under an electric field E0, whose direction is parallel to the

axis of symmetry. The interface Γ separates the exterior fluid (superscript ‘+’ for the exterior

domain Ω+) from the interior fluid (superscript ‘-’ for the interior domain Ω−). Within each

FIG. 1. Sketch of the problem: A leaky dielectric viscous drop (in domain Ω−) immersed in another

leaky dielectric fluid (in domain Ω+), with an external electric field E0 in the z direction. Subscript

‘+’ and ‘-’ denote the exterior and interior fluids, respectively.

fluid, the velocity field is described by the incompressible Navier-Stokes equation

ρj
(

∂uj

∂t
+ uj · ∇uj

)

= −∇pj + µj∇2uj, (1)

∇ · uj = 0, (2)

where j = ‘+′ for the exterior fluid and j = ‘−′ for the interior fluid. Here, we assume

matching fluid densities and viscosities: ρ+ = ρ− and µ+ = µ−. In the bulk the electric
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permittivity εj and conductivity σj may be different between the exterior (‘+’) and interior

(‘-’) of the drop. The ratios of permittivities and conductivities are defined as

εr =
ε−

ε+
, σr =

σ−

σ+
. (3)

The drop interface Γ is given in parametric form X(s, t) = (R(s, t), Z(s, t)) with s = 0 at

the equator in the first quadrant. Under an external electric field, bulk charges neutralize

instantaneously in the leaky dielectric framework [2], and consequently the electric potential

φ satisfies the Laplace equation

∇ · (ε∇φ) = 0, (4)

with boundary conditions at the interface

JφK = 0, Jσ∇φ · nK =
dqs
dt

, (5)

at the drop interface. n is the unit outward normal, qs = Jε∇φ · nK represents the surface

charge density, and J·K denotes the jump between outside and inside quantities. In general,

the charging time tc ≡ εj/σj is much faster than the time scale tEHD = µj/εjE2
0 of the

electrohydrodyanimc flow: tc ≪ tEHD. Therefore the charge relaxation term on the right

hand side of equation (5) can be ignored [16, 22], and the jump condition on the normal

electric field reduces to Jσ∇φ · nK = 0. In the far-field, the electric potential satisfies

∇φ+ = −E0ẑ. The electric force FE is related to the Maxwell stress M as FE = ∇ · M,

with M computed from the electric field E as

M = ε

(

EE − 1

2
E2I

)

, (6)

where I is the identity tensor. In the leaky dielectric formulation, the electric force is

important only when there is a gradient or jump in the electrical conductivity σ and/or

permittivity ε. As these electrical properties are assumed to be piecewise constant with a

possible jump across the drop interface in our formulation (see figure 1), the electric force

FE can be treated as an interfacial force given by the jump in Maxwell stress in the normal

direction, as done in the boundary integral method [23].

At the drop interface, the stress balance gives

(

−p+ + p−
)

n+ JThdK · n+ f = 0, (7)

where
(

Thd
)

ij
≡ µ (∂iuj + ∂jui) is the ij-th component of the viscous stress tensor. The

traction f consists of the surface tension [24, 25] and electric force, and is given by

f = fγ + fE = γ

(

RsZss − RssZs

|Xs|3
+

Zs

R

)

n+ JM · nK, (8)

where γ is the drop surface tension, |Xs| =
√

R2
s + Z2

s , and the subscript ‘s’ denotes partial

derivatives with respect to s.
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III. NUMERICAL METHODS

Prior to solving the governing equations, the system is non-dimensionalized using the

following scaling: x = r0x
∗, p = γ

r0
p∗, u =

√

γ

ρr0
u∗, and t =

√

ρr3
0

γ
T ∗. Here r0 is the initial

radius of the drop, and ρ is the fluid density. The dimensionless governing equations become

(after dropping the ∗)

∂u

∂T
+ u · ∇u = −∇p +Oh∆u+

∫

2π

0

(fγ + CaEfE) δ
2 (x−X(s, t)) ds, (9)

∇ · u = 0, (10)

∇ · (ε∇φ) = 0, JφK = 0, JσφnK = 0, (11)

E = −∇φ, M = ε

(

EE − 1

2
E2I

)

, fE = JMK · n and fγ =

(

RsZss − RssZs

|Xs|3
+

Zs

R

)

n.

(12)

In addition to the ratios of permittivities and conductivities, εr, σr, the other dimensionless

parameters of the problem are the Ohnesorge number and the electric capillary number

Oh = µ/
√
ργr0, CaE = ε+E2

0r0/γ. (13)

The Ohnesorge number represents the ratio of viscous force to inertial and surface tension,

and the electric capillary number reflects the strength of the electric field. Moreover, the

Ohnesorge number is inversely proportional to the Reynolds number, Re: Oh =
√

Ca
Re
, where

Ca is the capillary number.

We consider equations 9-12 with axial symmetry in cylindrical coordinates (r, z), and

solve them over the r ≥ 0 half-plane (due to axisymmetry). In a previous study [26], we

used the immersed interface method to simulate the axisymmetric electrohydrodynamic of

a viscous drop. We also conducted preliminary simulations of extreme drop deformation

towards breakup, and obtained good agreement with results from previous work [7]. Key

components of the model [26] are described below.

The augmented immersed interface method from Hu et al. [27] is used to solve for

the electric potential (equation (11)) and compute the electric force on the drop interface.

The solutions in the interior and exterior of the drop are treated independently, and both

solutions are coupled at the drop interface by introducing a new interfacial condition, called

the augmented variable. As such, a fast solver can be used in the exterior and interior

domains while the solution on the drop interface is obtained using GMRES.

For the flow field, we follow the velocity decomposition approach [28, 29] to solve equa-

tions (9). In this approach, velocity and pressure are split into a Stokes component (subscript

s) and a continuous component (subscript c) as

u = us + uc, p = ps + pc. (14)

(us, ps) satisfies the incompressible Stokes equations, and is computed using the schemes

described in [26]. Once the Stokes solution is known, we substitute equation (14) into
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equation (9) to obtain the equations governing the continuous field:

∂uc

∂t
+ u · ∇uc = −∇pc + µ∆uc + Fb, (15)

∇ · uc = 0, (16)

where the body force

Fb = −∂us

∂t
− u · ∇us. (17)

The equations are then solved by projection method, with time discretized using a second-

order Adams-Bashforth scheme.

IV. RESULTS

A. Convergence Results
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FIG. 2. Convergence results for the proposed IIM. are simulations using the FEM implementa-

tion for the base state from Supeene et al.[8]. The ratio is shown as negative values, with the (−)

sign denoting oblate deformation.

We first perform a convergence analysis to determine the appropriate spatial and tem-

poral discretizations. In our simulations, the time-step, △t is proportional to the spatial

discretization, h and is given by △t = h/75, where h = L/N . The computational do-

main size L is set to 7.5. To validate convergence, we compare our simulations with the

base state reported by Supeene et al. [8], where E = 1 MV/m (electric capillary number,

CaE = 0.009). For the simulations, the densities of the drop and ambient fluid are consid-

ered to be the same, ρ = ρ+ = ρ− = 1000 kg/m3. We consider matching viscosities between

the two fluids µ = µ+ = µ− = 0.001 Pa · s, and the surface tension γ = 0.03 N/m. The

ratio of electrical properties are σr = 1, εr = 80/3. With these values of electrical property
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ratios, the drop deforms into an oblate shape. For a drop radius, r0 = 1 µm, we obtain

the Ohnesorge number Oh = 0.1836 from equation 13. Figure 2 shows the ratio of drop

deformation, D, to the deformation predicted by the Taylor’s approximation as a function

of dimensionless time. The deformation number

D =
a− b

a + b
, (18)

where a (b) is the drop size in the direction parallel (orthogonal) to the electric field. Based

on these convergence results, we fixed N = 512 in all the Navier-Stokes simulations presented

in this paper, unless otherwise noted.

B. Equilibrium deformation
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FIG. 3. Drop deformation D as a function of electric capillary number CaE for prolate (D > 0) and

oblate (D < 0) drops. For the prolate drop conductivity and permittivity ratios are σr = 10, εr =

0.1. For the oblate drop σr = 0.1, εr = 2. The comparisons show results from the IIM and BIM [7]

(♦) simulations, as well as the prediction from the spheroidal model [5, 15] (dash-dotted). The

Ohnesorge numbers are Oh = 0.459 (solid) and Oh = 0.1836 (dashed).

In the leaky dielectric formulation, equilibrium drop deformations are achieved when the

electric force (Maxwell stress) is balanced by the surface tension force on the drop interface.

At steady state a circulatory flow forms inside the drop: With a uniform electric field from

south to north poles, the circulation is from the equator to the pole in a prolate drop, and

from the pole to the equator in an oblate drop. Equilibrium deformation of a drop subject to

a uniform DC electric field and inertia has been previously reported [16]. Larger equilibrium

deformation is found in the presence of inertia, compared to drop deformation in creeping

flow. Moreover, the critical electric capillary number (corresponding to the electric field

strength beyond which equilibrium deformation ceases to exist) is reduced by the nonlinear

inertia effects. To investigate the inertia effects on the equilibrium drop shape, parameters
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from our previous work [26] are used for both the prolate and oblate drops. Figure 3 shows

the drop deformation number D as a function of electric capillary number CaE . The ratios of

electric properties are σr = 10, εr = 0.1 for the prolate drop (D > 0), and σr = 0.1, εr = 2

for the oblate drop (D < 0) [7].
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FIG. 4. Comparison between creeping flow (left panel) and Navier-Stokes flow (right panel) for

steady-state shape of upper half of drop. The red arrows represent the electric force acting on the

drop interface. (a)-(b) Prolate drop: σr = 10, εr = 0.1. The Ohnesorge and electric capillary

numbers are (a) Oh = 0.1836, CaE = 0.32, and (b) Oh = 0.459, CaE = 0.32. (c) Oblate drop:

σr = 0.1, εr = 2. The Ohnesorge and electric capillary numbers are Oh = 0.459, CaE = 0.253.

For CaE ≤ 0.15, there is little difference between our Navier-Stokes simulation results,

boundary integral method (BIM) simulation results [7], and predictions from our spheroidal
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FIG. 5. Normal (a) and tangential (b) electric stresses for figure 4(a). (prolate drop). CaE = 0.32,

Oh = 0.1836 (solid) and Oh → ∞ (dashed, limit of creeping flow). In the legend, St denotes Stokes

and NSt denotes Navier-Stokes.

model [15]. This suggests that inertia effects are not important at small CaE , and the

deformation is well approximated by the creeping flow theory. For CaE > 0.15 we observe

significant inertia effects on equilibrium oblate deformations (D < 0), which are larger than

the corresponding drop deformations in creeping flow. Such inertia effects, however, are not

observed for prolate deformations (D > 0), for which the creeping flow theory remains valid

over a larger range of capillary numbers, up to CaE ≈ 0.32.

Figure 4(a) shows comparison between prolate deformations in creeping flow (left panel)

and Navier-Stokes flow (right panel) for Oh = 0.1836. As shown in figure 5, the difference

in shape between the two cases is due to stronger positive electric stress at the pole in the

presence of inertia. In figure 4(b) (prolate with CaE = 0.32 and Oh = 0.459), inertia gives

rise to a slightly larger equilibrium deformation, while the opposite is observed in figure 4(c)

(oblate with CaE = 0.253 and Oh = 0.459).
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FIG. 6. Normal (a) and tangential (b) electric stresses for figure 4(c) (oblate drop). CaE = 0.253,

Oh = 0.459 (solid) and Oh → ∞ (dashed, limit of creeping flow). In the legend, St denotes Stokes

and NSt denotes Navier-Stokes.

Figure 5 shows the normal and tangential electric stresses for figure 4(a) (prolate drop

with D > 0), as a function of arc length s (where s = 0 at the equator.) While there is little

difference in tangential stress between Stokes and Navier-Stokes flows (an observation that is

also valid for D < 0), there is a significant difference in the normal electric stress around the

pole. In the presence of inertia (Oh = 0.1836), the greater electric pressure produces larger

drop deformation. Figure 6 shows the normal and tangential electric stresses for figure 4(c)

(oblate drop with D < 0), as a function of arc length s. The normal electric stress changes

sign along the drop interface, being positive at the equator and strongly negative at the pole.

Positive electric pressure at the equator explains the elongation of the drop in the direction

perpendicular to the electric field.

Several other combinations of (σr, εr) from Lac and Homsy [7] are used in our simulations

to represent different regions in the (R, Q)-diagram (figure 2 in Lac and Homsy [7]). Fig-
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FIG. 7. Comparison between creeping flow (left panel) and Navier-Stokes flow (right panel) for

steady-state shape of upper half of drop. (a) Prolate ‘A’: σr = 0.1, εr = 0.04; the electric capillary

and Ohnesorge numbers are CaE = 15, Oh = 0.459. (b) Prolate ‘B’: σr = 0.01, εr = 0.1; the

electric capillary and Ohnesorge numbers are CaE = 15, Oh = 0.6426. (c) Oblate: σr = 2, εr = 20;

the electric capillary and Ohnesorge numbers are CaE = 0.27, Oh = 0.6426. The red arrows

represent the electric force acting on the drop interface.

ure 7(a) shows a prolate ‘A’ drop (counter-clockwise circulation) with (σr, εr) = (0.1, 0.04).

Figure 7(b) shows a prolate ‘B’ drop (clockwise circulation) with (σr, εr) = (0.01, 0.1). Fig-

ure 7(c) shows an oblate drop (clockwise circulation) with (σr, εr) = (2, 20). For the prolate

drops, the Ohnesorge numbers are 0.459, 0.6426, respectively, and CaE = 15. For the oblate

drop, we set Oh = 0.6426 and CaE = 0.27.

Combining figure 4 and figure 7, we observe that the inertia effects on the drop deforma-

tion is highly correlated with the direction of the electric stress on the drop interface: Larger

drop deformation in the presence of inertia is found when the normal electric stress points

outward, while inertia reduces drop deformation when the normal electric stress points in-
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FIG. 8. Electric stresses for drop deformations shown in fig. 7. (a)-(b): σr = 0.1, εr = 0.04,

CaE = 15, Oh = 0.459. (c)-(d): σr = 0.01, εr = 0.1, CaE = 15, Oh = 0.6426. (e)-(f):

σr = 2, εr = 20, CaE = 0.27, Oh = 0.6426.

ward. Figure 8 shows the distribution of the normal and tangential electric stresses along

the fluid interface for the three cases in figure 7. As the drop deformation is similar between

Stokes and Navier-Stokes flows for all three cases, the electric stresses are similar in all three

cases as expected.
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C. Drop deformation above critical capillary number

Under a strong electric field, the steady equilibrium drop shape often ceases to exist

for electric capillary number CaE > CaE,cr, and the drop becomes unstable and breaks

up through one of two modes: pinch-off or tip streaming. In the pinch-off mode, a single

drop deforms into two bulbous ends connected by a thin thread, which eventually pinches

as the drop breaks into multiple daughter drops. In the tip-streaming mode, the formation

of a conical end (also known as Taylor cone) precedes the emission of fluid jets through the

pointed ends. Of the two modes, tip streaming in electrohydrodynamics has been studied

extensively, in a wide range of cases such as with perfect dielectric [8, 17, 30], electrolytic

solutions [31], in the presence of surfactants [32], in non-Newtonian fluids [9], and between

liquid-gas interfaces [20]. In the present case of a leaky dielectric drop immersed in another

leaky dielectric fluid, the pinch-off mechanism is typically observed [9, 32]. However, excep-

tions have been reported, such as in the case of prolate drops with clockwise circulation [7].

In this section, we investigate the inertia effect on drop electrohydrodynamics when

CaE > CaE,cr. We focus on oblate deformations, and use the same ratios of conductiv-

ities and permittivities as in § IVB.
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FIG. 9. Onset of drop pinch-off for the oblate shape. Conductivity and permittivity ratios are

σr = 0.1, εr = 2. Oh = 0.6426 and CaE = 0.415, 0.52, 0.72 at times T = 5.78, 4.24, 2.98, from

top to bottom. The arrow represents the direction of the electric field.

The critical capillary number for an oblate drop with σr = 0.1 and εr = 2 has been

reported in the range CaE,cr ≈ 0.297–0.304 [7, 26]. For CaE slightly above the critical

value, the drop deforms into a dumbbell shape, pinching off at its center and splitting into

two smaller droplets [7, 26]. Here we focus on drop dynamics at CaE significantly greater

than the critical value. Figure 9 shows the oblate drop deformations at various values of

CaE > CaE,cr. Our simulation results suggest that the drop becomes more elongated as

CaE increases. At CaE = 0.415, the pinch-off now occurs near the end points, suggesting

that the drop now breaks into three smaller droplets. As CaE is increased to 0.52, we note
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FIG. 10. Comparison of onset of drop pinch-off between the Stokes (dashed) and Navier-Stokes

(solid) simulations with Oh = 0.6426 and CaE = 0.52. The inset shows the detailed drop shape at

the center. This pinch-off dynamic is more apparent at higher electric capillary number, as shown

in Figure 11.

E

FIG. 11. Comparison of extreme drop deformation, between the Stokes (dashed) and Navier-Stokes

(solid) simulations. Oh = 0.6426, CaE = 0.52, (top) and CaE = 0.72 (bottom). For CaE = 0.52,

T = 6.15 (Stokes) and T = 4.24 (Navier-Stokes). For CaE = 0.72, T = 3.96 (Stokes) and T = 2.98

(Navier-Stokes). The arrow represents the direction of the electric field.

an indentation at the center of the drop (magnification in figure 10). The magnitude of

the indentation becomes more pronounced as CaE increases. For CaE = 0.72, we observe

the inertia effects on the drop dynamics (figure 11): While the center of the drop remains

smooth in creeping flow, inertia effects cause sever indentation at the center. As a result

of the inertia-induced indention at the center of the drop, we suspect that more daughter
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FIG. 12. Flow field at the onset of drop pinch-off for the oblate shape. Conductivity and per-

mittivity ratios are σr = 0.1, εr = 2. Oh = 0.6426 and CaE = 0.415, 0.52, 0.72 at times

T = 5.37, 3.9, 2.93, from top to bottom. The arrow represents the direction of the electric field.

drops may be found for the drop with inertia than without.

The drop shapes in figure 11 are shown at the onset of drop pinch-off. Focusing on the

onset of drop pinch-off, we find that inertia effects give rise to an earlier onset of drop pinch-

off. For CaE = 0.52, the drop begins to pinch-off at T = 6.15 in creeping flow, compared to

T = 4.24 with inertia. The difference in time is reduced at a higher CaE = 0.72: T = 3.96

in creeping flow, and T = 2.98 with inertia. The observation that inertia effects expedite the

onset of pinch-off is consistent with the inertia effects on drop deformation for CaE below

critical: Drops in Navier-Stokes flow reach their steady equilibrium shape more rapidly than

in creeping flow.

Figure 12 shows the flow field around the drop shapes in figure 9. We observe that the

flow is strongest near the neck, moving in the direction toward pinching the neck. Away

from the neck, the fluid flow is relatively quiescent. To develop a better understanding of

the pinch-off drop dynamics, we analyze the electric stresses as we did in § IVB. Figure 13

shows the normal and tangential Maxwell stresses for the case with CaE = 0.72 in figure 11.

In figure 13(a), the symbols correspond to various positions on the drop’s interface (inset),

with α at the equator and β at the pole.

The normal electric stress sheds light on the formation of the indentation at the drop

center, which is also a site for drop pinch-off at higher CaE . From figure 13(a), we observe the

minima in normal electric stress correspond to possible pinch-off sites on the drop interface,

including one at location β (see figure 13). They also represent regions of greatest negative

electric pressure. By comparison, for viscous drops in Stokes flow, the minima at β does not

appear and the possible pinch-off sites are near the bulbous end of the drop. We therefore

speculate that for an oblate drop (D < 0), the normal electric stress would be a useful tool

to study the break-up dynamics of a viscous drop.
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FIG. 13. Normal (a) and tangential (b) electric stresses for the oblate deformation with CaE = 0.72.

Other parameters are Oh = 0.6426 (solid) and Oh → ∞ (dashed, limit of creeping flow). The

symbols in (a) show the value of the stress at various positions on the drop interface (inset).

V. CONCLUSION

In this study, we numerically investigated the electrohydrodynamics of a viscous drop

under a uniform DC electric field. We focus on the drop deformation in relation to the

spatial distribution of forces and stresses on the interface of a leaky dielectric viscous drop

under a DC electric field. The present results also attempt to uncover the principal features

that differentiate the electrohydrodynamics of viscous drops in Navier-Stokes flows from

those in Stokes flow. In particular we elucidate the dependence of the electrohydrodynamics

of a viscous drop on both the electric capillary number CaE and Ohnesorge number Oh.

For most combinations of (σr, εr), a critical electric field strength exists such that a steady

equilibrium drop is possible only for CaE < CaE,cr. For some combinations, however, a

steady equilibrium drop is possible even under an extremely large electric field (CaE ≫ 1,
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such as figure 7(a)). In § IVB we reported results from a numerical investigation of the inertia

effects on the steady equilibrium drop shape for prolate ‘A’, prolate ‘B’ and oblate drops.

Previous studies reported that inertia leads to higher prolate ‘A’ deformations compared to

creeping flow, consistent with our numerical results. We also found that the inertia effects

on the equilibrium drop deformation number D are highly correlated with the direction of

electric stresses along the drop interface: the magnitude of D increases due to inertia when

the electric stresses point outward, while the drop deformation is decreased by inertia when

the electric stresses point inward.

When the electric capillary number is above the critical value (CaE > CaE,cr), we ob-

served several distinct features. First, no steady equilibrium drop shape exists and the

type/mode of the subsequent drop break-up are dependent on the electric capillary number,

CaE . As CaE increases, the drop becomes more elongated prior to break-up, which often

happens as the drop pinches off at the bulbous ends. Increasing CaE resulted in two (Stokes

flow) or more (Navier-Stokes flow) droplets being formed. We showed that in the presence of

inertia, small indentations are found at the center of the elongated drop. The indentations

became more pronounced with CaE , yielding to pinch-offs at the drop center (in addition

to those at the bulbous ends). Second, inertia led to faster dynamics than in the case of

Stokes flow. This observation holds regardless of the electric capillary number.

Finally, we presented results for the Maxwell stresses for oblate drop deformations above

critical CaE . We found that in the case of Navier-Stokes flows, large electric pressure gradi-

ents along the drop interface positively correlate with sites of pinch-offs. To our knowledge,

such connection has not been reported previously for oblate drops. Moreover, our results

suggest that drop break-up through pinch-off could be predicted from analyzing the electric

stresses along the drop interface.

In our leaky dielectric formulation we neglected the effects of surface charge transport,

which is found to be important for a slightly deformed oblate viscous drop in an electric field

[33]. In particular, the surface charge relaxation is found to reduce the oblate deformation

at high electric field strength [33], while in the prolate case the charge transport may lead

to jet formation near the poles [31]. In an on-going work we are investigating how charge

convection may affect the dynamics for both oblate and prolate drops, and how these drop

dynamics in leaky dielectric formulation may differ from those in electrokinetic framework.
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