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ABSTRACT 
 

Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid 
for many scientific, technological and medical applications, such as acoustic levitation, acoustic coagulation, 
contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic 
radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical 
predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of 
acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper 
estimation of acoustic radiation forces.  To date, experimental verification of these predictions has not been 
published.  Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were 
conducted using a confocal optical and acoustic system and values were compared with available theories. Our 
results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is 
increased many-fold by viscous effects in comparison with what follows from the equations derived for an 
inviscid fluid.  

 
I. INTRODUCTION 

	
Acoustic radiation forces are acoustically induced hydrodynamic forces that can cause particles 

suspended in a host fluid to migrate or cluster at certain regions [1]. This phenomenon is an integral part of 
many recent scientific, technological and medical applications, such as for imaging [2–7], colloidal 
assembly  [8] and various bioseparation assays [9–11]. As new materials with advanced properties are 
developed for these applications (e.g., compressible particles), it is critical to understand their physical 
properties to accurately estimate their behavior in acoustic fields using theoretical relations. Commonly, in the 
estimation of acoustic forces incident on particles, equations derived for an inviscid host fluid are used.  These 
equations do not take into account the viscous effects, even in low dissipative fluids like water.	As such, various 
theoretical equations describing acoustic radiation forces incident on compressible, spherical particles in 
viscous host media have been reported to predict the force on such a particle with radius, R, and density, ρp, in 
an acoustic field of angular frequency, ω, and pressure amplitude, P [12–14]. While there are several prominent 
theoretical models to estimate these radiation forces, experimental verification has not been published to date. 	
 The purpose of this report is to experimentally demonstrate that the viscosity of the host liquid cannot be 
ignored when calculating acoustic radiation forces. We have devised a simple experimental setup to measure the 
magnitude of acoustic radiation forces acting on individual semi-compressible spheres (i.e., polystyrene; bulk 
modulus of ~4 GPa  [15]) in different fluids with a range of viscosities. We then evaluate the predicted force 
acting on polystyrene particles of a certain size using four prominent theoretical models and the known physical  



	

	

properties of bulk polystyrene. We consider the effects of radiation force on the particle as a function of the 
frequency of the acoustic wave, particle size and dynamic viscosity. Finally, from our results, we compare these 
models and provide new insights on the accuracy of each model for a variety of conditions.  
 

II. BACKGROUND	
 
King  [16] was among the first to rigorously define an equation for the acoustic radiation force on a 

particle, which was for a rigid sphere in a traveling wave in an inviscid fluid. The acoustic wavelength, λs, is 
related to f (the frequency of the acoustic wave) and c0 (the speed of sound in the host media) by λs = c0/f. In the 
limiting case, where the size of the particle is very small compared to the acoustic wavelength, λs (k0R << 1, 
where k is the wave number), the acoustic radiation force, FRad, from this model is shown by: 
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where ρ0 and ρp are the densities of the host fluid and particle, respectively, angular frequency, ω = 2πf. 
 

Yosioka and Kawasima [17] expanded this theory by considering the acoustic radiation force on a 
compressible, spherical particle in an inviscid fluid. The limiting case for Eq. (2) is that (k0R)2 and (kpR)2 are 
negligibly small, k0 and kp are the wave number of the host fluid and particle, respectively. This model, shown 
in Eq. (2), introduces the speed of sound in the particle, cp, which is related to the compressibility of the 
particle, βp (𝑐! = 1 𝛽!𝜌!):  
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Danilov and Mironov [12] later developed a theoretical equation for compressible spherical particles in 

viscous media. This theory incorporated a term for the so-called viscous penetration depth, 𝛿! =  2𝜈 𝜔, 
which is the boundary around the particle of a certain size that depends on both the kinematic viscosity of the 
host media, ν, and ω. The dynamic viscosity, η, is related to ν through the relation ν = η/ρ, where ρ is the density 
of the viscous material, in the cases presented here would correspond to the host fluid. The thickness of this 
boundary layer plays an important role in the magnitude of the acoustic radiation force on particles. Similar to 
the previous models, this model, shown in Eq. (3), is valid in the limiting case where the radius of the particle is 
small compared to the wavelength of sound:  
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(3) 

Doinikov [13] formulated theoretical equations for compressible sphere in viscous fluid under two 
limiting cases (i.e., strong dissipation (R << δν << λs) and weak dissipation (δν << R << λs)), as described by 
Eq. (4). This theory shows that the influence of viscosity on the radiation force is determined by the parameter 
δv/R. As δv/R → 0, Eq. (2) is appropriate, but if δv/R is not negligibly small, viscous effects cannot be ignored. 
Eq. (4) has different dependence on ω and R than Eq. (2) and predicts that the magnitude of the radiation force 
is much larger than that given by Eq. (2): 
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Settnes and Bruus [14] recently added to the field of knowledge the limiting case where δν and R are 

small compared to the size of the wavelength, but are on the same order of magnitude as each other. This 
limiting case, as shown by Eq. (5), is important in modern applications like microchannel acoustophoresis  [18] 
of compressible particles in viscous fluids:  
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These models (summarized in Table I) are by no means an exhaustive report of models used to describe 
acoustic radiation forces from a traveling wave, but they represent the leading models used to describe the 
major theoretical developments for acoustic radiation forces from a traveling wave on a compressible, spherical 
particle.  

 
III. METHODS AND SETUP 

 
A. Opto-acoustic system 

 
The total force (FTotal) on a particle suspended in a viscous fluid subject to an acoustic wave includes the 

viscous drag force FDrag [19]. As the particle is displaced by acoustic radiation forces, FRad, FDrag acts on the 
particle in the opposite direction. The particle is accelerated by FRad until it reaches a terminal velocity. When 
the acceleration is zero, the net force is equal to zero (FTotal = FRad + FDrag = 0), which means the magnitude of 
the acoustic radiation force is equal to the magnitude, or the absolute value, of the drag force (FRad = −FDrag). 
This assumes that Brownian motion as well as gravity and buoyancy are negligible. In the experiments 
conducted herein, measurements were taken under this equilibrium condition, which permitted the use of the 
drag force as an estimate of the acoustic radiation force.  

The experimental setup used an unconstrained opto-acoustic system (Fig. 1), which has been described 
previously [20, 21]. The unconstrained opto-acoustic experimental setup permits the particles to move without 
the limitation of physical boundaries. An essential test condition for this study was that the velocity of the 
particle must be measured once the acceleration equals zero. Confining particles to an optically transparent tube 
or other physical boundaries would limit the particles ability to reach terminal velocity. By allowing the 
particles to freely pass through the confocal optical and acoustic fields, the high-speed camera was able to 
capture the unhindered motion of the particles displaced by acoustic radiation force. 

A large water tank was designed to accommodate a 100X water immersion objective (LUMPlanFl, 
NA=1.0; Olympus, Center Valley, PA, USA)  coupled to a high-speed camera (FastCam, SA1.1, Photron USA, 
Inc., San Diego, CA, USA) to track the deflection of particles in response to the traveling pressure wave. The 
tip of a calibrated needle hydrophone (HNA-0400, Onda Corp., Sunnyvale, CA, USA) was adjusted until it was 
optically focused. Ultrasound transducers were positioned in such a way that the signal received by the 
hydrophone was maximized. Four spherically focused transducers (Panametrics, Inc., Waltham, MA, USA: 1.0 
MHz [V314], 2.25 MHz [V305], 5.0 MHz [V308] and 7.5 MHz [V321]) were employed, and each had a 
diameter of 0.75 inches and a focal distance of 2.0 inches. Once the optical and acoustic foci were aligned, the 
hydrophone was removed. A particle injector was constructed by connecting a 27-gauge blunt needle (CML 
Supply LLC, Lexington, KY, USA) to a syringe using polyethylene 20 tubing (Becton, Dickinson and 



	

	

Company, Franklin Lake, NJ, USA). The tip of the particle injector was positioned so that the particles flowed 
through mutual optical and acoustic foci (Fig. 1).   

The system was configured in order to synchronize the video capture with the ultrasound pulse. Briefly, 
an arbitrary waveform generator (AFG 3101, Tektronix, Inc., Beaverton, OR, USA) was used to trigger both the 
video capture and a sinusoid pulse signal 50,000 cycles in length to the amplifier (3200L, E&I, Rochester, NY, 
USA) connected to the transducer. The video capture was computer controlled by Fastcam Viewer software 
(Photron USA, Inc., San Diego, CA, USA) at a rate of 5,000 frames per second in an optical field that was 768 
pixels x 768 pixels at a resolution of 5.33 pixels per micron.  

To ensure that the acoustic field in the experimental measurements would be an acceptable comparison 
to the traveling plane wave in the theoretical equations, the acoustic field for each transducer was mapped with 
the calibrated hydrophone. The optical field of view was 0.14 mm height x 0.14 mm wide. The width of 
acoustic field produced by the circular transducer was defined by the acoustic pressure at −3 dB in the lateral 
direction, which was measured to be 3.4, 2.1, 1.1 and 0.6 mm at the focus for the 1.0, 2.25, 5.0 and 7.5 MHz 
transducers, respectively. The length of the acoustic field in the axial direction was on the order of millimeters 
for all transducers used. The variation of the acoustic field is less than 1 dB inside the optical field of view, even 
at the highest frequency tested. Since the acoustic field is uniform within the optical field, of view and the 
diameter of the particles is much smaller than the optical field of view, the acoustic field produced by the 
circular focused transducers is an acceptable comparison to plane traveling wave at the location where the 
radiation force was measured. 

 
B. Experimental measurements 

 
Three experiments were conducted to test the force dependence on frequency, particle size and host fluid 

viscosity. In the first experiment (i.e., frequency as the independent variable), polystyrene beads (2.10 µm 
diameter; Spherotech, Inc., Lake Forest, IL, USA) were diluted with distilled water in the syringe and injected 
into the water bath through the optical focus using a calibrated syringe pump (PHD2000, Harvard Apparatus, 
Holliston, MA, USA) at a rate of 5 µl/hr. The viscosities of the host fluids were measured using a protocol 
described previously [22]. The host fluid was distilled water (dynamic viscosity, η  = 0.001 Pa s). For each 
frequency (1.0, 2.25, 5.0 and 7.5 MHz), a minimum of five videos was saved. In the second experiment (i.e., 
particle size as the independent variable), the transducer parameters were kept constant at a frequency of 7.5 
MHz and pulse length of 50,000 cycles. The diameters of the polystyrene particles injected into the water bath 
were varied (2.10, 5.52 and 8.04 µm; Spherotech, Inc., Lake Forest, IL, USA). The host fluid was distilled 
water. The third experiment (i.e., host fluid viscosity as the independent variable) used the same ultrasound 
parameters as the previous experiment and the diameter of the particles was held constant at 2.10 µm. The 
dynamic viscosity of the host fluid was increased by dissolving different amounts of ultrasound gel (Aquasonic 
Clear, Parker Laboratories, Inc., Fairfield, NJ, USA) in distilled water. The dynamic viscosities of the host 
fluids were 0.0010, 0.0015, 0.0026 and 0.0031 Pa s. For each of the three experiments, the pressure amplitude 
of the ultrasound signal at the mutual acoustic/optical foci was measured using the calibrated needle 
hydrophone. 

Video captures were analyzed off-line with ImageJ software (NIH, Bethesda, MD, USA) with the plugin 
MTrackJ  [23] to determine the velocity of the displaced particles. Fig. 2 is a representative image of the 
particle motion caused by acoustic radiation force. This image was created by taking the sum of the frames of 
the video clips saved from the high-speed camera such that the entire video sequence is displayed in one image. 
The particle motion can be seen as “particle tracks” as the particle floats upward after it has been ejected from 
the particle injector placed just below the optical field. For each experimental condition described above, 15 
particle tracks were analyzed. Prior to the ultrasound pulse, particles traveled upward in the vertical direction 
(Fig. 2(a)). When the ultrasound was on, the particles were displaced by the acoustic wave incident 
perpendicular to the upward motion (Fig. 2(b)). As a result, the particles deviated from their vertical path by the 
angle θ. The horizontal component of the terminal velocity caused by FRad was determined as vrad = vp⋅sinθ, 



	

	

where vp is the velocity of the particle. Once the ultrasound pulse is terminated, the particle continues to move 
upward (Fig. 2(c)). Since the Reynolds numbers for the particles were very small, the terminal velocities were 
substituted into the Stokes’ drag equation (FDrag = 6πηR⋅vrad) to calculate the magnitude of FDrag, which was 
used as an estimate of the acoustic radiation force experienced by the particles.  

 
C. Quantitative analysis 

 
A quantitative assessment was performed to determine which theoretical equation most closely 

estimated the acoustic radiation force measured in the experiment.  First, the absolute value of the difference 
between the experimental and the corresponding theoretical value was calculated for each experimental time 
point. The average of the difference was taken for each theoretical equation used in all three types of 
experiments. The theoretical equation with the lowest average difference was considered the best predictor and 
the largest average difference was considered the worst predictor. 

 
IV. RESULTS AND DISCUSSION 

 
The experimental forces determined by Stokes’ law were compared to the theoretical values from Eqs. 

(2) through (5). Eq. (1) was removed from the analysis because it assumes the particles are perfectly rigid. We 
compare theories of compressible particles in a viscous fluid (Eqs. (3), (4) and (5)) to compressible particles in 
an inviscid fluid (Eq. (2)). The Reynolds numbers (Table II) are sufficiently small; therefore, the FDrag can be 
used in this instance.  When calculating the force from the theoretical equations, the values for the variables 
were matched to the experimental conditions. Each model defined the limiting case where the physics described 
by the equation was appropriate. The limiting cases were based on assumptions made when deriving the 
equations from the theoretical interaction between the particle, host fluid and acoustic wave. Table II lists the 
values for λs, δν and k0R in order to determine if the experimental circumstances fell within the limiting case for 
each theoretical equation. 

 
A. Variable ultrasound frequency 

 
We compared the forces from theoretical and experimental data to frequency (Fig. 3), radius (Fig. 4) and 

viscosity (Fig. 5). The dependence of each equation on those variables is detailed in Table III. Fig. 3, a 
representative semi-log plot of force vs. frequency, illustrates how the model from Eq. (2) dramatically 
underestimates the acoustic radiation force acting on each particle. Data for other acoustic pressures measured 
were similar. The forces calculated from Eqs. (3), (4) and (5) were on the same order of magnitude as the 
experimental data, confirming that viscous effects cannot be ignored. Although FDrag is frequency independent, 
the viscous penetration depth is dependent on angular frequency, ω-1/2. The experimental data most closely 
matches the prediction by Eq. (4), suggesting that the acoustic radiation force has a dependence of ω1/2.  

 
B. Variable particle radius 

 
The second experiment compared the forces versus the change in particle radius. Fig. 4 shows how Eqs. 

(4) and (5) converge on to the inviscid host fluid scenario reflected in Eq. (2) as the values of δv/R decrease for 
larger radii (Table II). The trend in the experimental data is similar to that of the prediction by Eq. (3), but with 
the experimental values being larger by some scalar quantity. This is not surprising since the experimental data 
was calculated using FDrag, which depends on radius, R, like in Eq. (3).  

 
C. Variable host fluid viscosity 

 



	

	

In the final experiment, the forces were measured with increasing host fluid viscosity (Fig. 5). Since 
there is no accounting for viscosity in Eq. (2), it remained unchanged as the frequency and radius were held 
constant for all experimental conditions. The experimental data is on the same order of magnitude as Eqs. (3), 
(4) and (5). It should be noted that the limiting case for Eq. (4), δν	<<	R	<<	λs, may not have been satisfied by 
the experimental conditions, since δν is only one order of magnitude lower than R.  This may become more 
exaggerated with increasing host fluid viscosity.  Also, note that the limiting case for Eq. (3) does not have any 
specifications on viscosity. The limiting case for Eq. (5), δν,	R	<<	λs, is more appropriate for the experimental 
conditions. Although no theory matched experimental data perfectly, Eq. (5) had the lowest average error in the 
experiment where viscosity of the host fluid was increased. This suggests that the dependence of acoustic 
radiation force on viscosity is similar to that of the prediction by Eq. (5). 

 
V. CONCLUSION 

 
Accurate characterization of forces is essential in applications that rely on acoustic waves for remote 

manipulation of particles. The work performed here provides verification that viscous effects cannot be 
neglected even in low-viscosity fluids. Estimates of acoustic radiation forces on particles in traveling waves will 
be grossly underestimated in cases where host fluids are considered inviscid. No single theory completely 
characterized the effect of changing acoustic frequency, particle radius and host fluid viscosity of the force 
incident on a small particle from an acoustic traveling wave. Each theory that included viscous effects (Eqs. (3), 
(4) and (5)) had it strengths reliant on which of the dependent variables (ω, R or η) was varied. When using 
these theories to predict forces, care should be taken match the limiting cases to the experimental conditions. In 
the future, other limiting cases should be investigated such as the case under strong dissipation where rigid 
spheres would move in the opposite direction of wave propagation [1]. The confocal opto-acoustic experimental 
setup allowed for the visualization and quantification of the behavior of particles immersed in a viscous fluid, 
whose motion was influenced by acoustic traveling waves. This experimental setup also provides a means to 
investigate the acoustic properties new materials developed for acoustophoretic applications.   

 
ACKNOWLEDGEMENTS 

 
We thank D. Hill for assistance with the viscosity measurements, S. Kasoji and J. Rojas for assistance 

with the construction of the experimental apparatus as well as B. Lindsey, K. H. Martin and A. Novell for 
assistance with the acoustic measurements. This research was supported by the National Science Foundation 
Research through the Materials Interdisciplinary Research Team (MIRT) Summer REU Program (DMR-
1122483), the Research Triangle MRSEC (DMR-1121107) and a Graduate Research Fellowship (1106401) to 
C.W.S.  
 
 

REFERENCES 
 

[1]  A. Doinikov, Recent Res. Devel. Acoust. 1, 39 (2003). 
[2]  R. C. Gessner, J. E. Streeter, R. Kothadia, S. Feingold, and P. A. Dayton, Ultrasound Med. Biol. 38, 651 

(2012). 
[3]  M. A. Borden, J. E. Streeter, S. R. Sirsi, and P. A. Dayton, Mol. Imaging 12, 357 (2013). 
[4]  K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, Ultrasound Med. Biol. 28, 227 (2002). 
[5]  A. V Patil, J. J. Rychak, J. S. Allen, A. L. Klibanov, and J. A. Hossack, Ultrasound Med. Biol. 35, 2021 

(2009). 
[6]  T. J. Czernuszewicz, J. W. Homeister, M. C. Caughey, M. A. Farber, J. J. Fulton, P. F. Ford, W. A. 

Marston, R. Vallabhaneni, T. C. Nichols, and C. M. Gallippi, Ultrasound Med. Biol. 41, 685 (2015). 
[7]  P. Dayton, A. Klibanov, G. Brandenburger, and K. Ferrara, Ultrasound Med. Biol. 25, 1195 (1999). 



	

	

[8]  C. E. Owens, C. W. Shields, D. F. Cruz, P. Charbonneau, and G. P. López, Soft Matter 12, 717 (2016). 
[9]  L. M. Johnson, L. Gao, C. W. Shields IV, M. Smith, K. Efimenko, K. Cushing, J. Genzer, and G. P. 

López, J. Nanobiotechnology 11, 22 (2013). 
[10]  C. W. Shields, L. M. Johnson, L. Gao, and G. P. López, Langmuir 30, 3923 (2014). 
[11]  T. Laurell, F. Petersson, and A. Nilsson, Chem. Soc. Rev. 36, 492 (2007). 
[12]  S. D. Danilov and M. A. Mironov, Sov. Phys. Acoust. 30, 280 (1984). 
[13]  A. A. Doinikov, J. Fluid Mech. 267, 1 (1994). 
[14]  M. Settnes and H. Bruus, Phys. Rev. E 85, (12 pages) (2012). 
[15]  P. H. Mott, J. R. Dorgan, and C. M. Roland, J. Sound Vib. 312, 572 (2008). 
[16]  L. V. King, Proc. R. Soc. A Math. Phys. Eng. Sci. 147, 212 (1934). 
[17]  K. Yosioka and Y. Kawasima, Acustica 5, 167 (1955). 
[18]  T. Laurell and A. Lenshof, editors , Microscale Acoustofluidics (Royal Society of Chemistry, 

Cambridge, 2014). 
[19]  A. Doinikov, Phys. Rev. E 54, 6297 (1996). 
[20]  P. V Chitnis, P. Lee, P. A. Dayton, J. Mamou, and J. A. Ketterling, Bubble Sci. Eng. Technol. 3, 73 

(2011). 
[21]  C. W. Shields IV, D. Sun, K. A. Johnson, K. A. Duval, A. V. Rodriguez, L. Gao, P. A. Dayton, and G. P. 

López, Angew. Chemie - Int. Ed. 53, 8070 (2014). 
[22]  T. G. Mason, Rheol. Acta 39, 371 (2000). 
[23]  E. Meijering, O. Dzyubachyk, and I. Smal, Methods Enzymol. 504, 183 (2012). 
		

	 	



	

	

	TABLE I. A summary of assumptions and limiting cases of theoretical equations modeling the acoustic 
radiation force on compressible, spherical particles. 
 

Theory 
Particle 

Assumptions 
Host Media 

Assumptions Limiting Cases 
Eq. (1) King [16] Incompressible Inviscid k0R << 1 
Eq. (2) Yosioka and Kawasima [17] Compressible Inviscid (k0R)2, (kpR)2 << 1 
Eq. (3) Danilov and Mironov [12] Compressible Viscous R << λs 
Eq. (4) Doinikov [13] Compressible Viscous δν << R << λs 
Eq. (5) Settnes and Bruus  [14] Compressible Viscous δν, R << λs 

 
 
TABLE II. The Reynolds number (Re), acoustic wavelength (λs), viscous penetration depth (δν) and k0R to 
determine the limiting cases of the experimental conditions of frequency (f), radius (R) and kinematic viscosity 
(ν). 
 
Independent 

Variable f 
[MHz] 

R 
[µm] 

ν 
[m2/s] 

Re 
λs 

[µm] 
𝛿! 

[µm] k0R 
Quantitative 

Analysis: 
Best Predictor 

Frequency 1.0 1.05 1.01e-06 6.19e-04 1500 0.567 4.45e-03 Eq. (4)  [13] 
2.5 7.81e-04 600 0.359 1.11e-02 
5.0 9.28e-04 300 0.254 2.23-02 
7.5 1.94e-03 200 0.207 3.34e-02 

Particle Size 7.5 1.05 1.01e-06 1.94e-03 200 0.207 3.34e-02 Eq. (3)  [12] 
2.76 8.95e-03 8.78e-02 
4.02 1.07e-02 1.28e-01 

Host Fluid 
Viscosity 

7.5 1.05 1.01e-06 1.94e-03 200 
 

0.207 3.34e-02 Eq. (5)  [14] 
1.51e-06 1.24e-03 0.253 
2.61e-06 3.47e-04 0.333 
3.17e-06 3.05e-04 0.367 

 
TABLE III.  The dependence of each theory on frequency, radius and viscosity. 
 

Theory Frequency Radius Viscosity 
Eq. (2) Yosioka and Kawasima  [17] ω4	 R6 N/A 
Eq. (3) Danilov and Mironov [12] ω3/2	 R ν	
Eq. (4) Doinikov [13] ω1/2	 R2 ν1/2	
Eq. (5) Settnes and Bruus [14] ω	 R3 

𝜈
𝜈! ! + 𝜈 + 𝜈! ! + 𝜈!

	

	
	
	
 
    
  



	

	

 
 
FIG 1. A schematic of opto-acoustic experimental setup to illustrate the mutual focal point of the camera lens, 
transducer and particle injector inside the water tank (not to scale). 
 

 
 
FIG 2. A representative composite time projection image of particle migration as it (a) emerges into the optical 
field in the absence of an acoustic pulse, (b) is deflected from its initial path by an acoustic pulse and (c) 
continues moving upward once the acoustic pulse is terminated. 
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FIG 3.  Acoustic radiation force vs. frequency for 2.1 µm diameter polystyrene particles in water; !, Eq. 2 
(Yosioka and Kawasima  [17]); !, Eq. 3  (Danilov and Mironov  [12]); ★, Eq. 4 (Doinikov  [13]); ", Eq. 5 
(Settnes and Bruus  [14]); #, experimental data.  
 

	
	
FIG 4. Acoustic radiation force vs. particle radius for polystyrene particles in water using a pulse from a 7.5 
MHz ultrasound transducer; !, Eq. 2 (Yosioka and Kawasima  [17]); !, Eq. 3  (Danilov and Mironov  [12]); 
★, Eq. 4 (Doinikov  [13]); ", Eq. 5 (Settnes and Bruus  [14]); #, experimental data. 
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FIG 5. Acoustic radiation force vs. host media viscosity for 2.1 µm diameter polystyrene particles using a pulse 
from a 7.5 MHz ultrasound transducer; !, Eq. 2 (Yosioka and Kawasima  [17]); !, Eq. 3  (Danilov and 
Mironov  [12]); ★, Eq. 4 (Doinikov  [13]); ", Eq. 5 (Settnes and Bruus  [14]); #, experimental data. 
 


