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Abstract

We revisit the classical problem of flow of electrolyte solutions through charged capillary nanopores
or nanotubes as described by the capillary pore model (also called “space charge” theory). This theory
assumes very long and thin pores and uses a one-dimensional flux-force formalism which relates fluxes
(electrical current, salt flux, fluid velocity) and driving forces (difference in electric potential, salt concen-
tration, pressure). We analyze the general case with overlapping electric double layers in the pore and a
nonzero axial salt concentration gradient. The 3 × 3 matrix relating these quantities exhibits Onsager
symmetry and we report a significant new simplification for the diagonal element relating axial salt flux
to the gradient in chemical potential. We prove that Onsager symmetry is preserved under changes
of variables, which we illustrate by transformation to a different flux-force matrix given by Gross and
Osterle (1968). The capillary pore model is well-suited to describe the nonlinear response of charged
membranes or nanofluidic devices for electrokinetic energy conversion and water desalination, as long
as the transverse ion profiles remain in local quasi-equilibrium. As an example, we evaluate electrical
power production from a salt concentration difference by reverse electrodialysis, using an efficiency vs.
power diagram. We show that since the capillary pore model allows for axial gradients in salt concentra-
tion, partial loops in current, salt flux or fluid flow can develop in the pore. Predictions for macroscopic
transport properties using a reduced model where the potential and concentration are assumed to be
invariant with radial coordinate (“uniform potential” or “fine capillary pore” model), are close to results
of the full model.

1 Introduction
Charged capillary nanopores and nanotubes are essential in many natural and technological systems, as
part of porous membranes separating two aqueous electrolytes [1–13]. Membranes containing charged
nanopores can be used for water desalination, selective ion removal, and electrokinetic energy conver-
sion. In steady-state, transport is defined by three fluxes (salt flux, electrical current, fluid velocity) and
three driving forces (salt concentration difference, electric potential difference, pressure difference). In
any physical situation, three out of these six fluxes or forces are required (prescribed) to fully define the
problem, with the other three physical quantities to be measured or calculated. It is also possible that
one of the three defining relations includes a combination of factors, such as a relation between current
and electric potential difference (i.e., applying a constant external electrical load). The theory for charged
capillaries dates back to the work of Osterle and coworkers [2,3] and describes the flow of ions and water
through a cylindrical pore carrying a homogeneous charge on its inner surface. The pore is connected to
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two reservoirs having different salt concentration, pressure and/or electric potential. Length L of the pore
is assumed to be many time larger than pore radius R. The physical situation is illustrated in Fig. 1.

Although this problem was first analyzed as a simple model for electrokinetic phenomena in mem-
branes, recent interest has also been driven by other applications, such as electro-osmotic micropumps [14–
16] and nanofluidic devices [17, 18]. In the latter case, the ideal geometry of a straight nanochannel is
easily realized in experiments, albeit usually with a rectangular cross section. Applications of electroki-
netic phenomena in nanochannels include streaming current measurements [19–21], electrokinetic energy
conversion [8, 22, 23], ionic [24, 25] and flow [26, 27] field-effect transistors, electro-osmotic impedance ef-
fects [28], and electrophoretic separations [29–32].

Until recently, most of the theoretical literature on membranes and nanochannels has been based
on the assumptions of thin electric double layers (EDLs), negligible axial salt concentration gradients,
and local quasi-equilibrium of the ion distributions in the potential. It is well known that interfaces be-
tween charged membranes or nanochannels and unsupported bulk electrolytes lead to ion concentration
polarization outside the membrane, e.g., in classical electrodialysis [33–35], but complex non-equilibrium
electrokinetic phenomena resulting from strong concentration polarization have recently been discovered
inside membrane pores or microchannels, such as deionization shock waves [32, 36–41] and over-limiting
current sustained by surface conduction (electro-migration) and electro-osmotic flow [42–45] with appli-
cations to nano-templated electrodeposition [46] and water desalination by “shock electrodialysis” [47].
In most situations for nanochannels, the ions remain in local quasi-equilibrium, since electro-migration
and diffusion dominate, although non-equilibrium structures, such as “salt fingers” extending along the
pore surfaces, can arise in microchannels, if electro-osmotic convection dominates [41,44,45,48]. Here, we
neglect such effects and focus on deriving the consequences of local (but not global) quasi-equilibrium.

In this work we revisit Osterle’s capillary pore model [2, 3] describing the nonlinear electrokinetic
response of charged nanopores (also used by Sasidhar and Ruckenstein [4]). We show that all three-fold
integrals in theory (which must be evaluated across the pore radius) can be simplified to single integrals,
thereby significantly simplifying numerical calculations. We also demonstrate how an infinite number of
local flux-force relationships are in principle possible that all abide Onsager symmetry. Unlike most prior
work, we consider the general case where EDLs overlap, and axial gradients in salt concentration are not
negligible. Note that even when the external bulk solutions have equal salt concentration, concentration
polarization due to current or flow leads to a concentration difference between the pore ends [10]. The full
capillary pore model therefore allows us to describe reverse electrodialysis, a membrane process to extract
electrical energy from salinity differences, e.g., between river water and seawater [3, 49–53]. We provide
numerical results for energy conversion and two-dimensional (axisymmetric) current profiles for pores
with EDL overlap in the presence of an overall salt concentration difference. Though we present only
calculation results for the steady-state, the model can be extended quite straightforwardly to dynamic
situations [54]. In the model, ions are assumed to be fully dissociated monovalent point charges, while for
the modeling of electrolytes containing ampholytic ions, see refs. [55–57].
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Figure 1: Sketch of a charged cylindrical pore subjected to water flow, electrical current and salt flux
between a high salinity (left) and low-salinity (right) reservoir.
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2 General theory

2.1 Governing equations
The derivation that follows closely resembles that of Gross and Osterle [2], Fair and Osterle [3] and Sasid-
har and Ruckenstein [4]. Central to the theory are three equations: the extended Navier-Stokes (NS)
equation, the extended Nernst-Planck (NP) equation and the Poisson equation. The NP-equation describes
the molar flux Ji (mol/m2/s) of ions of species i by

Ji(x, r)= ci(x, r)u(x, r)−D i

(
∇ci(x, r)+ zi ci

ΦB
∇Φ(x, r)

)
(1)

where ci(x, r) is local ion concentration (mM=mol/m3), Φ(x, r) local electric potential (V), ΦB thermal volt-
age (= RgT/F), and D i the diffusion coefficient of species i (m2/s) with i ∈{+,-}. Ion valency zi is either +1 or
−1 because we will consider only a 1:1 salt (with ions, e.g., Na+ and Cl−). Further, u is velocity of the fluid
(m/s) and T temperature (K). Faraday’s constant is F = 96485 C/mol and the gas constant is Rg = 8.3144
J/mol/K. Eq. (1) assumes that ions are volumeless point charges. In this work we consider a stationary
state and thus the ion mass balance

∂ci(x, r)
∂t

+∇·Ji(x, r)= 0 (2)

simplifies to ∇·Ji(x, r)= 0. Throughout we assume cylindrical symmetry, see Fig. 1, with axial coordinate
x ∈ [0,L] and radial coordinate r ∈ [0,R].

For laminar flow, fluid flow is described by the incompressible NS-equation, which at the low Reynolds
number of interest here is given by

µ∇2u(x, r)−∇ph(x, r)−ρ(x, r)∇Φ(x, r)= 0 and ∇·u(x, r)= 0 (3)

where µ is viscosity (Pa·s), ph(x, r) hydrostatic pressure (Pa), and ρ(x, r) local charge density (C/m3).
Finally, Poisson’s equation relates potential Φ(x, r) to charge density as

∇2Φ(x, r)=−ρ(x, r)
ε

=−F
ε

(c+(x, r)− c−(x, r)) (4)

where ε is the permittivity of the medium (F/m). In the second equality of Eq. (4) we implement the
assumption of a 1:1 salt (both ions monovalent), and only consider positions 0 < r < R away from the
surface charge of the pore at r = R.

2.2 Boundary conditions & further assumptions
Because the pore is much longer than wide, we can assume local equilibrium in the r-direction and decom-
pose the total potential as [58]

Φ(x, r)=φv(x)+ψ(x, r) (5)

where the “radial potential” ψ(x, r) is obtained from an equilibrium PB-model, and φv(x) accounts for axial
gradients in potential (along the length of the pore). Concerning the fluxes Ji and u, the walls of the pore
are impermeable to both fluid and ions, so we have

Ji,r(x,R)= 0 , ur(x,R)= 0 (6)

where subscript r denotes the radial component of vector quantities Ji(x, r) and u(x, r). We also assume
no-slip boundary conditions for fluid velocity u, i.e.,

ux(x,R)= 0 (7)

where we stress that this does not hold for ion fluxes Ji.
Naturally, the system we have described is out of equilibrium and to account for this, “virtual” quan-

tities are defined, which express the principle of local equilibrium [31, 59]. A physical quantity Fv(x)
(subscript “v”) is defined as “virtual” when it represents conditions in a virtual reservoir that is in equi-
librium with any differential volume (“slice”) in the pore. Thus, it represents conditions under which a
cylindrical pore cross-section, or slice, is in equilibrium with a charge neutral reference volume. From this
definition it follows that virtual quantities will be x-dependent only. Virtual properties at the two ends of
the pore correspond to conditions just outside the pore in bulk solution [60]. In the capillary pore model
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we encounter virtual concentration cv(x), virtual pressure pt,v(x) and virtual potential φv(x). With this
formalism defined, we can impose the most important assumption, namely that the pore is much longer
than wide, or L À R, with L pore length and R pore radius. We are then allowed to assume the ionic profile
inside the pore to be in local equilibrium in radial direction [61] leading to

Ji,r(x, r)= 0 , ur(x, r)= 0 (8)

allowing us to derive a radial PB-equation by inserting Eqs. (5) and (8) in the r-component of Eq. (1) which
results in

∂ci(x, r)
∂r

=− zi ci(x, r)
ΦB

∂ψ(x, r)
∂r

(9)

which can be integrated to the Boltzmann distribution

ci(x, r)= cv(x) exp
(
−zi

ψ(x, r)
ΦB

)
. (10)

and implemented in Eq. (4) to obtain the desired PB-equation

∇2Φ(x, r)= 2
Fcv(x)
ε

sinh
(
ψ(x, r)
ΦB

)
(11)

which can be solved with boundary conditions of fixed charge and considering cylindrical symmetry,

∂ψ(x, r)
∂r

∣∣∣∣
r=R

= + σ

ε
,

∂ψ(x, r)
∂r

∣∣∣∣
r=0

= 0 (12)

where σ is surface charge density of the pore wall (in C/m2). In the present work, σ is assumed constant,
invariant along the pore. However, in reality it will often depend on the local pH in the pore via a surface
ionization mechanism and thus gradients in σ can develop [62].

2.3 Non-dimensional formulation
In order to simplify our governing equations (1), (3) and (11) it is convenient to non-dimensionalize all
physical quantities by division with an appropriate reference quantity. This change of variables is listed
below and with a slight abuse of notation we replace all variables by their dimensionless counterparts, as
follows,

r
R

→ r
x
L

→ x

φv(x)
ΦB

→φv(x) ,
ψ(x, r)
ΦB

→ψ(x, r) ΦB = RgT
F

cv(x)
cref

→ cv(x)

Ji(x, r)
Jref

→ ji(x, r) Jref =
Dcref

L
(13)

u(x, r)
uref

→u(x, r) uref =
D
L

ph(x, r)
pref

→ ph(x, r) pref = crefRgT

σ

σref
→σ σref =

εΦB

R

where cref is an arbitrary reference concentration, for which we use cref = 1 mM (1 mol/m3) and where D
is the (assumed equal) diffusion coefficient of both types of ions. With this change of variables we now
have r ∈ [0,1] and x ∈ [0,1]. Like hydrostatic pressure, ph, other (virtual) pressures to be introduced below
are also scaled to reference pressure pref. From this point onward, all equations and parameters are
non-dimensional, unless otherwise stated.

Next we proceed with the approximation that in the limit L À R we can ignore the ∂2

∂x2 terms in both
the NS-equation (3) and PB-equation (11), which is a well-known procedure [61]. Eq. (11) can now be
written as

1
r
∂

∂r

(
r
∂ψ(x, r)
∂r

)
= cv(x)

λ2
ref

sinhψ(x, r) (14)
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where

λref =
1
R

√
εΦB

2Fcref
(15)

is a dimensionless reference Debye length in units of the cylinder radius, R. Boundary conditions of the
PB-equation become [5]

∂ψ(x, r)
∂r

∣∣∣∣
r=1

=+σ ,
∂ψ(x, r)
∂r

∣∣∣∣
r=0

= 0 (16)

while the Boltzmann distribution of Eq. (10) is now written as

ci(x, r)= cv(x) exp(−ziψ(x, r)). (17)

Performing the change of variables in Eq (13), we can also simplify the NP-equation in the x-direction
(which is the only direction of interest for the ion fluxes), resulting in

j i,x(x, r)= ci(x, r)ux(x, r)− ∂ci(x, r)
∂x

− zi ci(x, r)
∂(ψ(x, r)+φv(x))

∂x
(18)

and simplify the NS-equation by ignoring the ∂2

∂x2 terms and substituting Eqs. (4), (13), and (17) in Eq. (3).
In x-direction we find that

α
1
r
∂

∂r

(
r
∂ux(x, r)

∂r

)
− ∂ph(x, r)

∂x
+2cv(x)sinhψ(x, r)

∂(ψ(x, r)+φv(x))
∂x

= 0 (19)

with the dimensionless viscosity parameter α given by

α= µD
crefRgTR2 . (20)

3 Radially averaged flux-force relationships
In a next step, mathematical expressions are derived for the radially averaged x-component of the fluxes,
which in case of a flux component fx(x, r) takes the form

fx(x)= 2
∫ 1

0
r · fx(x, r)dr. (21)

Our aim will be to derive Onsager relations between the radially averaged x-component of fluxes ux(x),
jions,x(x) and jch,x(x), and driving forces −∂x pt,v(x), −∂xµv(x) and −∂xφv(x). Here, ion flux jions and ionic
current jch are defined as

jions(x, r)= j+(x, r)+j−(x, r)

jch(x, r)= j+(x, r)−j−(x, r).
(22)

Furthermore, virtual chemical potential, µv(x), virtual osmotic pressure, πv(x), and virtual total pressure,
pt,v(x), are defined as

µv(x)= ln cv(x)

πv(x)= 2 cv(x)

pt,v(x)= ph,v(x)−πv(x).
(23)

To simplify notation, from this point onward, the x-dependency of the various quantities will no longer be
explicitly stated. Inserting the NP-equation (18) and the Boltzmann distribution (17) into Eq. (22), while
also using the definitions of Eq. (23), we immediately obtain an explicit expression for ion flux and ionic
current in x-direction, namely

jions,x(r)= 2cv coshψ(r)ux(r)−2cv coshψ(r)
∂µv

∂x
+2cv sinhψ(r)

∂φv

∂x

jch,x(r)=−2cv sinhψ(r)ux(r)+2cv sinhψ(r)
∂µv

∂x
−2cv coshψ(r)

∂φv

∂x
.

(24)

We now proceed to find an expression for ux(r). To this end we note that in r-direction the dimensionless
NS-equation becomes (using Eq. (17) and ur(r)= 0 in Eq. (8))

∂ph(r)
∂r

=−ρ(r)
∂ψ(r)
∂r

= 2cv sinhψ(r)
∂ψ(r)
∂r

= 2cv
∂coshψ(r)

∂r
(25)
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which can again be integrated to result in

ph(r)− ph,v = 2cv
(
coshψ(r)−1

)
. (26)

Now we observe that by Eqs. (25) and (26), the equation

∂ph(r)
∂x

= ∂pt,v

∂x
+2cv coshψ(r)

∂µv

∂x
+2cv sinhψ(r)

∂ψ(r)
∂x

(27)

should hold. Substituting this result back into the NS-equation (19) for the x-direction, we arrive at

α
1
r
∂

∂r

(
r
∂ux(r)
∂r

)
= ∂pt,v

∂x
+2cv coshψ(r)

∂cv

∂x
−2cv sinhψ(r)

∂φv

∂x
. (28)

Using the fact that ∂rux(0)= 0, multiplying both sides by r and integrating, we now find

αr
∂ux(r)
∂r

= 1
2

r2 ∂pt,v

∂x
+2cv

∫ r

0
r′ coshψ(r′)dr′

∂µv

∂x
−2λ2

ref r
∂ψ(r)
∂r

∂φv

∂x
(29)

where we reduced the last term by virtue of the identity

2cv

∫ r

0
r′ sinhψ(r′)dr′ = 2λ2

ref

∫ r

0

∂

∂r′

(
r′
∂ψ(r′)
∂r′

)
dr′ = 2λ2

ref r
∂ψ(r)
∂r

(30)

in which the PB-equation (14) is implemented. Finally, dividing both sides of Eq. (29) by r and using
ux(1)= 0 we obtain

αux(r)=−1
4

(
1− r2) ∂pt,v

∂x
−2cv

∫ 1

r

1
r1

∫ r1

0
r2 coshψ(r2)dr2dr1

∂µv

∂x
−2λ2

ref
(
ψ(r)−ψw

) ∂φv

∂x
(31)

where ψw is the value of potential ψ at the pore wall. It is now a straightforward endeavor to insert ux(r)
back into Eq. (24) and take the average defined by Eq. (21). The final result (after grouping all terms) can
be written as a matrix equation, relating fluxes, ux, jions,x and jch,x, and driving forces, −∂x pt,v, −∂xµv
and −∂xφv, according to

(
ux , jions,x , jch,x

)t =
L11 L12 L13

L21 L22 L23
L31 L32 L33

 ·
(
−∂pt,v

∂x
, −∂µv

∂x
, −∂φv

∂x

)t
(32)

where the coefficients of this L-matrix are either constant or only dependent on the x-coordinate, and given
by

L11 =+ 1
8α

L12 =+4cv

α

∫ 1

0
r
∫ 1

r

1
r1

∫ r1

0
r2 coshψ(r2)dr2dr1

L13 =+ 4
α

∫ 1

0
rλ2

ref
(
ψ(r)−ψw

)
dr

L21 =+ cv

α

∫ 1

0

(
r− r3)

coshψ(r)dr

L22 =+8cv

α

∫ 1

0
r coshψ(r)

(
cv

∫ 1

r

1
r1

∫ r1

0
r2 coshψ(r2)dr2dr1dr+ α

2

)
dr

L23 =+8cv

α

∫ 1

0
r
(
coshψ(r)λ2

ref
(
ψ(r)−ψw

)− α

2
sinhψ(r)

)
dr

L31 =− cv

α

∫ 1

0

(
r− r3)

sinhψ(r)dr

L32 =−8cv

α

∫ 1

0
rsinhψ(r)

(
cv

∫ 1

r

1
r1

∫ r1

0
r2 coshψ(r2)dr2dr1dr+ α

2

)
dr

L33 =−8cv

α

∫ 1

0
r
(
sinhψ(r)λ2

ref
(
ψ(r)−ψw

)− α

2
coshψ(r)

)
dr.

(33)

We note that (apart from notation) this set of expressions is completely equivalent to the set of equations
for L i j by Gross and Osterle [2]. In a next step, we are concerned with reducing the complexity of the
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L i j coefficients in Eq. (33). This can be done first and foremost by reducing the triple integrals to single
integrals in L12,L22 and L32, see Appendix A. In the notation of Sasidhar and Ruckenstein [4] this implies
a reduction of the k1,k3 and k7 integrals, given by

k1 =
∫ 1

0
r
∫ 1

r

∫ r1

0

r2

r1
coshψ(r2)dr2dr1dr = 1

4

∫ 1

0
r

(
1− r2)

coshψ(r)dr (34)

k3 =
∫ 1

0
rsinhψ(r)

∫ 1

r

∫ r1

0

r2

r1
coshψ(r2)dr2dr1dr

= −
∫ 1

0
r coshψ(r)

λ2
ref

cv

(
ψ(r)−ψw

)
dr

(35)

k7 =
∫ 1

0
r coshψ(r)

∫ 1

r

∫ r1

0

r2

r1
coshψ(r2)dr2dr1dr

=−2
∫ 1

0
r coshψ(r) ln r

(
1
2

r2 coshψ(r)− λ2
ref

4cv

(
r
∂ψ(r)
∂r

)2
)

dr.
(36)

In the above equations the reduced form of k7 to a single integral is a new result, and thus by substitut-
ing Eqs. (34)-(36) into Eq. (33), we can now show for the first time that all Lij expressions can be expressed
as single integrals. Computationally this had the advantage that all Lij coefficients can be formulated as
a first order differential equation in r, which is much easier to program and saves computational time.

4 Fundamental properties of electrokinetic linear response

4.1 Onsager reciprocal relations
With these simplifications, we can now deduce in a straightforward manner that the L-matrix must be
symmetric. Namely, by substituting Eqs. (34) and (35) into Eq. (33) it follows that L21 = L12 and L32 = L23.
Finally, using the boundary conditions of ψ(x, r) and the PB-equation (14) one can also show that L31 = L13
and thus prove symmetry of the flux-force matrix. The final reduced form of the symmetric L-matrix can
thus be written as

L11 = 1
8α

L22 = 8c2
v

α
k7 +4cv

∫ 1

0
r coshψ(r)dr

L33 =− 8cv

α

∫ 1

0
r
(
sinhψ(r)λ2

ref(ψ(r)−ψw)− α

2
coshψ(r)

)
dr

L21 = L12 = cv

α

∫ 1

0
(r− r3)coshψ(r)dr

L31 = L13 = 4
α

∫ 1

0
rλ2

ref(ψ(r)−ψw)dr

L23 = L32 = 8cv

α

∫ 1

0
r
(
coshψ(r)λ2

ref(ψ(r)−ψw)− α

2
sinhψ(r)

)
dr

(37)

where the analytic form of L22 is new due to the single k7 integral presented in Eq. (36).
The symmetry of the force-flux linear response matrix, as just shown for Eq. (32), is generally known

as “Onsager reciprocity” or “Onsager symmetry,” a phenomenon characteristic of linear response of sys-
tems that are near equilibrium. Onsager derived the reciprocal relations for a general thermodynamic
force-flux linear response matrix, based on the assumption that the microscopic equations of motion are
reversible [63,64]. Onsager reciprocity is a fundamental postulate of (linear, irreversible) non-equilibrium
thermodynamics [65], which is also assumed in models of electrokinetic phenomena [66], usually without
any microscopic justification. Macroscopic proofs of electrokinetic Onsager reciprocal relations are avail-
able for porous media, based on local equilibrium assumptions in formal homogenization theory [67, 68],
but we are not aware of explicit proofs based on the microscopic equations of motion for the general sit-
uation with salt concentration gradients, as shown here for a cylindrical pore, enabled by our analytical
evaluation of the integrals in k7. In contrast, the classical assumption of constant virtual salt concentra-
tion leads to a much simpler 2×2 linear response matrix (e.g., ref. [10], whose symmetry can be proven for
any cross-sectional shape and surface charge distribution [69].
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4.2 Second Law of Thermodynamics
Any symmetric real matrix has real eigenvalues and orthogonal eigenvectors, but the eigenvalues of the
force-flux linear response matrix L must also be positive. In other words, the matrix must be positive
definite. This property has its roots in the Second Law of Thermodynamics, which states that entropy
production is non-negative during an irreversible process. Using the analytical results above, we are able
to prove this property directly from the equations of motion.

We here define the dissipated power density P in a slice of the cylinder (x ∈ [
a,b]) as the product of

fluxes and conjugate driving forces (i.e., only diagonal elements are used)

P =−ux ·
∆pt,v(x)

b−a
− jions,x ·

∆µv(x)
b−a

− jch,x ·
∆φv(x)
b−a

(38)

which is analogous to the definition in [70]. If we were to re-assign dimensions to this equation we would
see that it is a power density with units of W/m3. By the Second Law of Thermodynamics, this equation
has to be positive as the process it describes is irreversible. Now, passing to the limit a → b we see that

P = ux ·
(
−∂pt,v

∂x

)
+ jions,x ·

(
−∂µv

∂x

)
+ jch,x ·

(
−∂φv

∂x

)
. (39)

Finally, wee observe that when we insert Eq. (32), we can write Eq. (39) as(
−∂pt,v

∂x
,−∂µv

∂x
,−∂φv

∂x

)
·L ·

(
−∂pt,v

∂x
,−∂µv

∂x
,−∂φv

∂x

)t
> 0 (40)

which is a statement of positive definiteness of the matrix L, because it should hold for arbitrary driving
forces.

4.3 Change of basis
In the last part of this section, we analyze the flux-force matrix formalism more generally and come to the
conclusion that there are many possible (actually, an infinite number of) coupled sets of flux-force equa-
tions equivalent to the set in Eq. (33) in the sense that Onsager symmetry is preserved and the dissipation
rate is described by the product of fluxes and conjugate forces (while there is also an infinite set of rela-
tionships that does not have Onsager symmetry). Gross and Osterle [2] already showed quite extensively
the equivalence of Eq. (33) and a coupled set with ux, jdiff,x, jch,x as fluxes and −∂x ph,v,−∂xπv,−∂xφv as
driving forces. Here, differential flow is defined as

jdiff(x, r)= jions(x, r)
2cv(x)

−u(x, r). (41)

However, it is quite an arduous effort to verify the claims in ref. [2], as the authors performed the change
of coupled relations simultaneously with the reduction of the integrals in Eq. (33). Interestingly, we
found that their specific claims can be formulated in terms of a much more general case, very similar
to the one described by de Groot and Mazur [65] as we will outline next. Let J denote a set of fluxes
in the x-direction and X a set of coupled thermodynamic forces, such as J =

(
ux, jions,x, jch,x

)
and X =(−∂x pt,v,−∂xµv,−∂xφv

)
. Let J ′ and X′ be another coupled set of fluxes and driving forces, so that we have

the relations
J = L ·X and J ′ = L′ ·X′ (42)

and the dissipation rate can be written in this notation as

P =J ·X =X t ·L ·X . (43)

Let us also define the (invertible) linear maps A :R3 →R3 and B :R3 →R3 by the relations

J ′ = A ·J and X′ = B ·X (44)

making them the transformations that carry J onto J ′ and X onto X′. In general one can easily deduce
that the equation

L′ = A ·L ·B−1 (45)
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describes the relation between the coupled flux-force equations. Assuming that these transformations are
non-trivial (thus invertible) one can quite easily prove conservation of Onsager symmetry and invariance
of the dissipation rate under the associated change of basis (for arbitrary X ∈R3) if

At = B−1. (46)

Indeed, if this relation is assumed to hold we observe

(L′)t = (A ·L ·B−1)t = (B−1)t ·Lt · At = A ·L ·B−1 (47)

and
P ′ =J ′ ·X′ = A ·J ·B ·X =J · At ·B ·X =J ·X = P (48)

which we set out to show.
We note that if we work with J ′ =

(
ux, jdiff,x, jch,x

)
and X′ = (−∂x ph,v,−∂xπv,−∂xφv

)
and our original

sets, then A and B are given by

A =
 1 0 0
−1 1

2cv
0

0 0 1

 , B =
1 2cv 0

0 2cv 0
0 0 1

 . (49)

It is now straightforward to verify that At = B−1, thereby proving the claim of Gross and Osterle [2]. The
matrix L′ can be calculated directly using these expressions and Eq. (42) and was found to be in agreement
with Eq. (22) in Ref. [2].

5 Uniform Potential model
For pores that are thin relative to the Debye length, concentration profiles across the pore are only weakly
changing and we can simplify the above framework significantly [71]. This simplification goes under
various names, such as “fine capillary pore model”, “uniform potential (UP) model” [33, 72–77], and also
as Teorell-Meyers-Sievers (TMS) theory, though TMS-theory does not include fluid flow [1, 35]. In the
UP-model, the coefficient-matrix L of Eq. (37) simplifies to

L11 = 1
8α

L22 = 2 cv coshψ+ c2
v

2α
cosh2ψ

L33 = 2 cv coshψ+ c2
v

2α
sinh2ψ

L21 = L12 = + cv

4α
cosh ψ

L31 = L13 = − cv

4α
sinh ψ

L23 = L32 =−2 cv sinhψ− c2
v

2α
sinh ψcoshψ

(50)

which is now independent of the exact pore geometry, except for a factor α, originally based on the geometry
of a capillary pore, but adjustable to describe other pore geometries.

To simplify Eq. (50) we use Eq. (17) to derive

ωX = c−− c+ = 2 cv sinhψ

cT = c−+ c+ = 2 cv coshψ=
√

X2 + (2cv)2
(51)

where X is the magnitude of the density of fixed charges in the nanopore, defined as number of charges
per unit pore volume, taken as a positive number (unrelated to X of the previous section), while ω is the
sign of the membrane charge (e.g., ω=+1 for a nanopore or membrane with fixed positive charges, i.e., an
anion-exchange membrane). Furthermore, cT is the total ions concentration in the pore, which is always
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larger than X , see Eq. (51b). Inserting Eq. (51) in Eq. (50) results for the coefficients of the L-matrix in

L11 = 1
8α

L22 = L11 c2
T + cT

L33 = L11 X2 + cT

L21 = L12 = L11 cT

L31 = L13 =−L11ωX
L23 = L32 =−L11ωX cT −ωX

(52)

of which the determinant can now be easily derived to be

D = L11
(
c2

T − X2)= L11 (2cv)2

which is strictly positive.
Above we have now given the coefficients of the L-matrix for the UP-model where forces are gradients

in virtual quanties pt,v, µv, and φv as in Eq. (32). However, the model can be further simplified when we
return to “real” pressures, concentrations and potentials. The resulting set of equations is

u = −L11

(
∂ph

∂x
−ωX

∂φ

∂x

)
jions = cTu− ∂cT

∂x
+ωX

∂φ

∂x

jch =−ωX u+ω∂X
∂x

− cT
∂φ

∂x

(53)

where we neglect overbar signs to denote pore-averaged fluxes. For a constant membrane charge, X , the
term ω∂x X is zero. At the two pore mouths (on either side of the pore) we have to solve for step changes
across the EDLs at the membrane/solution interfaces, leading to jumps in ph, cT and φ, using the Donnan
(Boltzmann) relations

ph
m = ph

ext + cT,m −2cext

cT,m =
√

X2 + (2cext)2

φm =φext +sinh−1ωX /2cext

(54)

where subscript “m” refers to a position just within the membrane, beyond the EDLs at the membrane/solution
interface and where “ext” describes a position just outside the membrane, in the electroneutral electrolyte.

6 Results and Discussion

6.1 Numerical solution
Although the capillary pore model assumes local quasi-equilibrium, which implies local linear response,
axial variations lead to global nonlinear response of the charged nanopore, which can be far from equi-
librium. Therefore the capillary pore model must be solved numerically along the length of the pore (x-
direction), to find the profiles of the virtual quantities pt,v(x), µv(x) and φv(x). Because the pore-averaged
fluxes, ux, jions,x and jch,x, are invariant along the pore, this calculation requires solving a system of three
first order, quasi-linear ordinary differential equations (ODEs), since the Onsager matrix of Eq. (32) de-
pends on the virtual fields. The six cross-coefficients Lij only depend on wall charge, pore radius, and local
(virtual) concentration cv and thus for a certain charge and radius, can be calculated a-priori as function
of cv, and the result stored as six polynomial functions of Lij versus cv and used in the solution of the
three ODEs in which coordinate x is the running parameter. In this a-priori calculation the PB-equation
is solved in radial direction and the profile of ψ(r) considered, see Fig. 2. After the functions Lij(cv) have
been determined, the PB-calculation based on σ and ψ(r) is no longer necessary.

Next, using the expressions given in Appendix B, we evaluate the r-dependence of the x-directional
fluxes. Note that for these fluxes there is no Onsager symmetry for the flux-force framework, and thus all
nine cross-coefficients must be separately analyzed. After that, using the continuity equation (2), we solve
for the radial components of the fluxes, as their axial component is known on every point of the grid, which
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reduces the continuity equation to a first order r-dependent differential equation, to generate streamline-
and vectorfield-plots for u, jions, and jch. We illustrate the capillary pore model with the example of energy
harvesting from salinity differences by flows through charged nanopores.

6.2 Pore-averaged fluxes
Calculations presented in this section are based on a pore placed between two electrolyte solutions with
cext = 500 and 10 mM salt concentration. We use a pore radius of R = 2 nm, pore length of L = 100 µm, an
average ion diffusion coefficient of D = 2 ·10−9 m2/s, viscosity of µ= 1 mPa.s, and temperature T = 298 K.
The permittivity of water is ε = 6.91 ·10−10 F/m, thermal voltage is ΦB = 25.7 mV, and surface charge is
σ = −10 mC/m2. Thus we have λref = 4.79 and α = 202. We assume the two reservoirs to have the same
hydrostatic pressure, thus ph,v(x = 0) = ph,v(x = 1). We apply a current of jch,x = 140 which translates
dimensionally to 27 mA/cm2.

For external salt concentrations of cext=500 mM (at the left-hand pore entrance, where x = 0) and
cext=10 mM (at the right-hand side, x = 1), we can directly calculate the potential profile ψ(x, r), as plotted
in Fig. 2. Because the Debye length increases through the pore due to its reciprocal dependence on cv(x),
we see that at at x = 0 (panel A) ψ(x, r) drops off faster (relatively) from the wall towards the pore axis
than at x = 1 (panel B). Also, the magnitude of ψ(x, r) is much larger at x = 1 for cext=10 mM [Note that
scales in panels A) and B) are different].
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Figure 2: Dimensionless electric potential ψ(0, r) and ψ(1, r) in a charged nanopore (radius R = 2 nm;
surface charge σ = −10 mC/m2) at the two ends of the pore, as a function of the dimensionless radial
coordinate. At x = 0, the potential drops off more quickly (relatively) from the wall towards the pore axis
as the result of a higher cext.

For the virtual quantity cv(x) (and thus µv(x) = ln cv(x) and pt,v(x)) we find a gradual change from one
end of the pore to the other [not shown]. However, for virtual hydrostatic pressure ph,v(x) and virtual elec-
tric potential φv(x), the behavior is more interesting, see Fig. 3. First of all, hydrostatic pressure, though
zero at both pore mouths, makes a steep excursion within the pore, as also observed in ref. [78], reaching
a maximum value of ph,v ∼ 82 kPa, corresponding to the osmotic pressure of a 17 mM salt solution. The
electric potential, φv(x), is virtually unchanging for most of the pore (0< x < 0.8) before steeply increasing
at the very end of the pore. Interestingly, φv(x) is slightly negative at the beginning of the pore before
turning positive. Note that in Fig. 3 virtual quantities are discussed, not “real” pressures or potentials.
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Figure 3: Plots of A) virtual hydrostatic pressure ph,v(x), and B) virtual electric potential, φv(x), versus
axial position in pore, x. In B) the dashed line is an enlarged view of the potential profile for x <0.6.

Concerning fluxes, the average flux of ions is jions,x = 18.7 mmol/m2/s and the average velocity of fluid
is ux =−0.49 µm/s for the chosen parameter set. This implies that ions move right, while the water flows
left, in agreement with the common notion of solvent flowing to the side of lower total pressure (the side
of higher salinity in case of equal hydrostatic pressure).

6.3 Analysis of fluxes as function of r-coordinate
For the r-dependence of the x-component of the fluxes, we find for water velocity ux(r) an almost parabolic
shape (with no-slip at the wall), essentially unvarying from x = 0 to x = 1. Ion flux jions,x(r) does not vary
much with axial nor radial coordinate, from a value of ∼ 17.4 mmol/m2/s in the center, to ∼ 19.6 mmol/m2/s
at the wall [not shown]. Thus note that the highest ion fluxes are found at the wall.

For the profile in ionic current, jch,x(r), we also find the highest value at the wall, but interestingly,
in the center of the pore, the ionic current inverts. In particular, at x = 0, jch,x(r) is always positive,
increasing from jch,x(0) = 12 mA/cm2 to jch,x(1) = 58 mA/cm2. However, at x = 1, jch,x(0) = −16 mA/cm2

while jch,x(1) = 73 mA/cm2. This change-over in jch,x(0) from positive at x = 0 to negative at x = 1, implies
that there is a “surface” within the pore where the x-component of the ionic current is zero, as indeed
shown in Fig. 4. As Fig. 4 illustrates, even though the average ionic current is positive (directed to the
right), in a range of r-positions around the center axis ionic current enters the pore on the right-hand side
and flowing to the left, before looping back and exiting the pore again on the right, but now closer to the
wall.

In presenting streamline and vectorfield plots in Fig. 4, one might notice a paradox, as we previously
assumed equilibrium in r-direction, which should result in jch,r = 0 for all x, r. This seems to clash with
our calculation of jch by virtue of the continuity equation (2), which very clearly results in a vector field of
jch(x, r) that has non-zero r-components. This paradox is solved by noticing that we normalized our x- and
r-coordinates to a

[
0,1]× [

0,1] square. To obtain the true magnitude of our vector components one has to
multiply all r-components by R and all x-components by L. The latter is much larger and this justifies the
claim that the r-component of jch(x, r) is almost 0.

To our knowledge this is the first time that for a long and narrow charged pore, computations of the
capillary pore model are made in the presence of an axial concentration gradient. Ref. [79] considered an
axial concentration gradient but their method involved solving the NS-, NP- and PB-equations directly,
for a system far from the “needle limit” of L/R → ∞. Instead, the geometry considered was for a pore
even wider than long (i.e., L/R < 1). In ref. [79] an inversion within the pore of one of the fluxes was
observed, namely in ux(x, r). In ref. [56] electrically drived fluid vortices were predicted in microchannels
in ampholytic salt solutions. Ref. [11] modelled in two dimensions the full problem of transport in a
cylindrical pore between two solutions of different salt concentration, while ref. [80] solved the problem
for a conical nanopore in the absence of fluid flow. Our analysis, therefore, provides a new perspective on
the generality of this phenomenon. We hope that calculating the full vector fields of u(x, r),jions(x, r) and
jch(x, r) via the formulation of averaged fluxes will prove useful to find other flux inversions as well.
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Figure 4: Streamline (left) and vectorfield (right) plots of ionic current jch(x, r). The streamline plot clearly
demonstrates the inversion of jch(x, r), while the vectorfield plot shows the higher magnitude of ionic
current near the pore wall.

6.4 Energy generation from a salinity difference
Next, we show how our calculations can provide relevant information on the performance of an electroki-
netic energy harvesting device based on a salt concentration difference. Here, we consider the single
membrane pore as part of a membrane which is placed in a stack of multiple membranes, with alternating
sign of the fixed charge on the membrane. This process is called reverse electrodialysis [3, 35, 49–51, 53].
Because of the salt concentration difference across each membrane, power is delivered to a load R placed
in an external circuit, see Fig. 1. In the remainder of this section, for average, axial, fluxes we drop the
overbar-sign, and we also drop subscript “x”.

We can define a local efficiency of the generation of electrical energy, at any point in the membrane
pore, as

η′ =− jch∂xφv

jions∂xµv +u∂x pt,v
. (55)

For a zero overall hydrostatic pressure, separately integrating the upper and lower side of Eq. (55) over
the entire pore length, results for the overall energy efficiency η in [3,80]

η=− jch∆φv

jions∆µv −u∆πv
(56)

noting that differences ∆ are defined as conditions at “x = 1” minus at “x = 0”. In Fig. 5 we plot η versus
generated electrical power by a single nanopore (instead of plotting both versus current or voltage as in
ref. [35]). These calculations are based on external salt concentrations of cext = 100 and 10 mM, with all
other parameter settings the same as before. The maximum in energy conversion efficiency of η∼ 28% is
obtained for a current of ∼ 19 mA/cm2 (∆φv ∼ 31 mV; salt transport efficiency ϑ= jch/ jions ∼ 63%). Around
this optimum fluid velocity, u, switches from normal osmosis (directed to the high-salinity side at lower
currents), to anomalous osmosis at higher currents where fluid flows to the low-salinity side [6]. In the
present calculation, fluid velocity is found to change from u = −0.7 µm/s for open-circuit conditions (zero
current, ∆φv ∼ 47 mV) to u =+1.6 µm/s for electrical short-circuit (∆φv = 0, current ∼ 54 mA/cm2). Values
for the power per pore in aW as depicted in Fig. 5 can be multiplied by 80 to a power in mW/m2 pore area,
resulting in a maximum power of ∼ 0.64 W/m2.
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Figure 5: Plot of energy efficiency η against generated electrical power P by a single charged nanopore
placed between two electrolytes of different salinity (cext = 10 and 100 mM). Current increases in direction
of arrow.

6.5 Calculations using Uniform Potential (UP) model
Finally, we applied the UP-model and made the same calculations as before. Comparing with results
in Fig. 2, we calculate for the r-independent ψ-value in the UP-model, that ψcext=500 mM = −0.10 and
ψcext=10 mM = −2.35, values in between minimum and maximum ψ(r)-values in Fig. 2. Plots of virtual
hydrostatic pressure and potential in Fig. 3 come out almost exactly the same with the UP-model, with
the maximum in ph,v somewhat higher at ph,v ∼ 100 kPa, reached at a slightly higher x ∼ 0.85. For
potential φv, again an initial decay is predicted, with φv turning positive at x ∼ 0.56 to end at x = 1 at
φv = 1.877, which is ∼ 2 % above the result of the full capillary model. For efficiency vs. power, as in Fig.
5, results match almost exactly, with the maximum in efficiency ηmax for both models at jch ∼ 20 mA/cm2,
with ηmax ∼ 27.6 % for the full model and 27.9 % for the UP-model. Fluid flow u in both models switches
sign just below jch=20 mA/cm2, and increases with jch. However, water velocity increases somewhat faster
for the UP-model: at jch = 39 mA/cm2, u = 0.77 µm/s for the full model and u = 0.93 µm/s for the UP-model.

In conclusion, the UP-model (TMS-model, fine capillary pore model) gives predictions for the overall
(pore-averaged) transport in thin capillary pores which are in almost quantitative agreement with the
full model, even for conditions where the Debye length is about the pore size on one end of the pore and
much smaller than the pore size on the other end. For larger pores, the UP-model is expected to deviate
more significantly. Furthermore, the UP-model does not provide information on microscopic phenomena
such as the development of loops in current or fluid flow. Also, calculations [not reported here] show that
the UP-model can significantly overpredict co-ion exclusion (i.e., the full capillary pore model predicts a
significantly higher pore-averaged concentration of co-ions).

7 Conclusions
We have analyzed the capillary pore model, which is a semi-analytical model of ion transport and flow
through charged nanopores, based on the assumption of local quasi-equilibrium, allowing for overlapping
EDLs and axial concentration gradients. The analysis is based on the force-flux framework of Osterle
and coworkers [2, 3], for which we have discovered a simple single-integral expression for the coefficient
k7. We demonstrate that all symmetric force-flux frameworks are equivalent and obey Onsager reciprocal
relations for local linear response, as a result of the local quasi-equilibrium assumption. We also solve the
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full nonlinear model numerically without integrating over the cross section to resolve the axisymmetric
two-dimensional profiles of ion transport and flow. Calculations for a pore subjected to two reservoirs with
different salt concentrations, as a model of reverse electrodialysis, demonstrate how in the presence of an
overall concentration difference a “current loop” can develop at one of the pore ends. We present a plot of
energy efficiency versus electrical power generated by a single charged nanopore in this process. We ana-
lyze the uniform potential model (fine capillary pore model), a model in which potential and concentration
are assumed to be invariant with radial coordinate, and show that for the parameter range investigated,
it gives predictions of macroscopic transport properties that are in line with results of the full capillary
pore model. Our work unifies previous theoretical work and provides a rigorous basis for further modeling
of transport in charged membranes and nanopores.
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Appendix A. Derivation of k-integrals
In Appendix A we show how the triple integrals for k1,k3 and k7 can be reduced to single integrals. For
k1 and k3 this allows us to show Onsager Symmetry of the flux-force framework. Another advantage is
that single integrals are numerically much easier to evaluate. It was already known to Sasidhar and
Ruckenstein [4] that several of the integrals can be reduced to single integrals. Gross and Osterle [2] also
reduced their expressions to simple forms. We follow the definitions of Sasidhar and Ruckenstein [4] to
define k1,k3 and k7 as

k1 =
∫ 1

0
r
∫ 1

r

1
r1

∫ r1

0
r2 coshψ(r2)dr2dr1dr (57)

k3 =
∫ 1

0
rsinhψ

∫ 1

r

1
r1

∫ r1

0
r2 coshψ(r2)dr2dr1dr (58)

k7 =
∫ 1

0
r coshψ

∫ 1

r

1
r1

∫ r1

0
r2 coshψ(r2)dr2dr1dr (59)

which appear in the matrix elements L12,L32 and L22, and in the full calculation are x-dependent.
We show that these triple integrals can be reduced, by dividing the area of integration in a suitable

way, and switching the order of integration.
First of all, we note that in general it holds that∫ 1

r

(∫ r1

0
dr2

)
dr1 =

∫ r

0

(∫ 1

r
dr1

)
dr2 +

∫ 1

r

(∫ 1

r2

dr1

)
dr2 (60)

valid because {r ≤ r1 ≤ 1 and 0 ≤ r2 ≤ r1} is equivalent to the statement {
[
0, r], r ≤ r1 ≤ 1 and on

[
r,1],

r2 ≤ r1 ≤ 1}. In Eq. (60) on the left-hand side the integration is performed first over dr2 and then over dr1,
and on the right-hand side this order is reversed. Thus, we combine Eq. (60) with changing the order of
integration twice (we first switch r1 and r2, and then r2 and r), with the Poisson-Boltzmann equation (in
the case of k3 and k7), with partial integration, and with a symmetry argument in the case of k7. We start
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by reducing the k1 integral according to

k1 =
∫ 1

0
r
(∫ 1

r

∫ r1

0

r2

r1
coshψ(r2)dr2dr1

)
dr

=
∫ 1

0
r
(∫ r

0

∫ 1

r

r2

r1
coshψ(r2)dr1dr2 +

∫ 1

r

∫ 1

r2

r2

r1
coshψ(r2)dr1dr2

)
dr

=
∫ 1

0
r
(∫ r

0
ln r1|1r r2 coshψ(r2)dr2 +

∫ 1

r
r2 ln r1|1r2

coshψ(r2)dr2

)
dr

= −
∫ 1

0
r
(
ln r

∫ r

0
r2 coshψ(r2)dr2 +

∫ 1

r
r2 ln r2 coshψ(r2)dr2

)
dr

(61)

where in the second line we used our first change in the order of integration. We will now perform another
change of the order of integration by interchanging r2 with r. To this end notice that {0≤ r ≤ 1, 0≤ r2 ≤ r}
is equivalent with {0 ≤ r2 ≤ 1 and r2 ≤ r ≤ 1}. Also observe that {r ≤ r2 ≤ 1, 0 ≤ r ≤ 1} is equivalent
with {0 ≤ r2 ≤ 1 and 0 ≤ r ≤ r2}. We then find, after interchanging, moving r2 coshψ(r2) to the front, and
performing a partial integration in the first integral that

k1 =−
∫ 1

0
r2 coshψ(r2)

(∫ 1

r2

r ln rdr+ ln r2

∫ r2

0
rdr

)
dr2

=−
∫ 1

0
r2 coshψ(r2)

(
1
2

r2 ln r|1r2
−

∫ 1

r2

1
2

rdr+ 1
2

r2
2 ln r2

)
dr2

= 1
4

∫ 1

0
r2

(
1− r2

2
)
coshψ(r2)dr2

(62)

which is the reduced form for k1.
For the integral of k3 our derivation follows the same scheme as for k1, by changing order of integra-

tion twice. However, in this derivation also the Poisson-Boltzmann equation is involved to deal with the
hyperbolic sine-function. In this case we have

k3 =
∫ 1

0
rsinhψ(r)

(∫ 1

r

∫ r1

0

r2

r1
coshψ(r2)dr2dr1

)
dr

=
∫ 1

0
rsinhψ(r)

(∫ r

0

∫ 1

r

r2

r1
coshψ(r2)dr1dr2 +

∫ 1

r

∫ 1

r2

r2

r1
coshψ(r2)dr1dr2

)
dr

=
∫ 1

0
rsinhψ(r)

(∫ r

0
r2 ln r1|1r coshψ(r2)dr2 +

∫ 1

r
r2 ln r1|1r2

coshψ(r2)dr2

)
dr

= −
∫ 1

0
rsinhψ(r)

(
ln r

∫ r

0
r2 coshψ(r2)dr2 +

∫ 1

r
r2 ln r2 coshψ(r2)dr2

)
dr

= −
∫ 1

0
r2 coshψ(r2)

(∫ 1

r2

r ln rsinhψ(r)dr+ ln r2

∫ r2

0
rsinhψ(r)dr

)
dr2.

(63)

Now, invoking the Poisson-Boltzmann equation, recalling that 1
r
∂
∂r

(
r ∂ψ
∂r

)
= cv

λ2
ref

sinhψ by Eq. (14) from

the main text , we then see that by partial integration we have

k3 =−
∫ 1

0
r2 coshψ(r2)

λ2
ref

cv

(∫ 1

r2

ln r
∂

∂r

(
r
∂ψ

∂r

)
dr+ ln r2

∫ r2

0

∂

∂r

(
r
∂ψ

∂r

)
dr

)
dr2

=−
∫ 1

0
r2 coshψ(r2)

λ2
ref

cv

(
r ln r

∂ψ

∂r
|1r2

−
∫ 1

r2

∂ψ

∂r
dr+ r2 ln r2

∂ψ

∂r2

)
dr2

=−
∫ 1

0
r2 coshψ(r2)

λ2
ref

cv

(
−r2 ln r2

∂ψ

∂r2
−ψ|1r2

+ r2 ln r2
∂ψ

∂r2

)
dr2

=−
∫ 1

0
r2 coshψ(r2)

λ2
ref

cv

(
ψ(r2)−ψw

)
dr2

(64)

which is the required reduced form for k3.
Now for the final result, the reduced form of k7 is by far the hardest to derive. To our knowledge, the

fully reduced integral for this term was not yet available. We again start by first interchanging the order
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of integration,

k7 =
∫ 1

0
r coshψ(r)

(∫ 1

r

∫ r1

0

r2

r1
coshψ(r2)dr2dr1

)
dr

=
∫ 1

0
r coshψ(r)

(∫ r

0

∫ 1

r

r2

r1
coshψ(r2)dr1dr2 +

∫ 1

r

∫ 1

r2

r2

r1
coshψ(r2)dr1dr2

)
dr

=
∫ 1

0
r coshψ(r)

(∫ r

0
r2 ln r1|1r coshψ(r2)dr2 +

∫ 1

r
r2 ln r1|1r2

coshψ(r2)dr2

)
dr

= −
∫ 1

0
r coshψ(r)

(
ln r

∫ r

0
r2 coshψ(r2)dr2 +

∫ 1

r
r2 ln r2 coshψ(r2)dr2

)
dr.

(65)

Up until this point the steps have been equivalent to the steps for k1 and k3. However, in the next
steps, we will now only interchange the order of integration in the second term. Notice that we then
obtain a symmetry in the distribution of the variables and thus the integral expressions, resulting in

k7 =−
∫ 1

0
r coshψ(r) ln r

∫ r

0
r2 coshψ(r2)dr2dr−

∫ 1

0
r2 coshψ(r2) ln r2

∫ r2

0
r coshψ(r)drdr2

=−2
∫ 1

0
r2 coshψ(r2) ln r2

∫ r2

0
r coshψ(r)drdr2.

(66)

Now we finish our derivation by performing partial integration and invoking the Poisson-Boltzmann
equation again, resulting in

k7 =−2
∫ 1

0
r2 coshψ(r2) ln r2

∫ r2

0
r coshψ(r)drdr2

=−2
∫ 1

0
r2 coshψ(r2) ln r2

(
1
2

r2
2 coshψ(r2)−

∫ r2

0

1
2

r2 sinhψ(r)
∂ψ

∂r
dr

)
dr2

=−2
∫ 1

0
r2 coshψ(r2) ln r2

(
1
2

r2
2 coshψ(r2)− λ2

ref

cv

∫ r2

0

1
2

r
∂

∂r

(
r
∂ψ

∂r

)
∂ψ

∂r
dr

)
dr2

=−2
∫ 1

0
r2 coshψ(r2) ln r2

(
1
2

r2
2 coshψ(r2)− λ2

ref

2cv

∫ r2

0
r
(
∂ψ

∂r

)2
+ r2 ∂

2ψ

∂r2
∂ψ

∂r
dr

)
dr2

=−2
∫ 1

0
r2 coshψ(r2) ln r2

(
1
2

r2
2 coshψ(r2)− λ2

ref

2cv

∫ r2

0
r
(
∂ψ

∂r

)2
+ 1

2
r2 ∂

∂r

(
∂ψ

∂r

)2
dr

)
dr2.

(67)

Now we partially integrate the last term in this equation,

k7 =−2
∫ 1

0
r2 coshψ(r2) ln r2

(
1
2

r2
2 coshψ(r2)− λ2

ref

2cv

(∫ r2

0
r
(
∂ψ

∂r

)2
dr+ 1

2
r2

(
∂ψ

∂r

)2∣∣∣∣r2

0
−

∫ r2

0
r
(
∂ψ

∂r

)2
dr

))
dr2

=−2
∫ 1

0
r2 coshψ(r2) ln r2

(
1
2

r2
2 coshψ(r2)− λ2

ref

4cv

(
r2
∂ψ

∂r2

)2
)

dr2

(68)

which is the reduced form of the k7 integral. It is very interesting to notice that reduction of this integral
does not work out in the planar case (i.e., the pore consisting of two narrow plates instead of a cylinder).
In that case the radial cancellations in the last five steps of k7 do not work out, due to the different form
of the Jacobian (being unity) and the Laplacian (containing no reciprocal terms).

Appendix B. Full equations of motion
Based on the original capillary pore model, Eq. (32) from the main text, it is possible to obtain full (x, r)-
dependent expressions for the three fluxes by inserting Eq. (31) into Eq. (24), and omitting the averaging
step, resulting in

(
ux(r), jions,x(r), jch,x(r)

)t =
L′

11 L′
12 L′

13
L′

21 L′
22 L′

23
L′

31 L′
32 L′

33

 ·
(
−∂pt,v

∂x
,−∂µv

∂x
,−∂φv

∂x

)t
(69)
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where
L′

11 =+ 1
4α

(
1− r2)

L′
12 =−2cv

α

(
ln r

∫ r

0
r1 coshψ(r1)dr1 +

∫ r

0
r1 ln r1 coshψ(r1)dr1

)
L′

13 =+ 2
α

λ2
ref

(
ψ(r)−ψw

)
L′

21 =+ cv

2α
(
1− r2)

coshψ(r)

L′
22 =−4cv

α
coshψ(r)

(
cv

(
ln r

∫ r

0
r1 coshψ(r1)dr1 +

∫ r

0
r1 ln r1 coshψ(r1)dr1

)
− α

2

)
L′

23 =+4cv

α

(
coshψ(r)λ2

ref
(
ψ(r)−ψw

)− α

2
sinhψ(r)

)
L′

31 =− cv

2α
(
1− r2)

sinhψ(r)

L′
32 =+4cv

α
sinhψ(r)

(
cv

(
ln r

∫ r

0
r1 coshψ(r1)dr1 +

∫ r

0
r1 ln r1 coshψ(r1)dr1

)
− α

2

)
L′

33 =−4cv

α

(
sinhψ(r)λ2

ref
(
ψ(r)−ψw

)− α

2
coshψ(r)

)
.

(70)

Solving for these fluxes, considering the appropriate boundary conditions, yields a complete picture of
the velocity fields of the ions and the solvent in the cylindrical pore.
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