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Crack events developed during uniaxial compression of cortical bones cut from femurs of devel-
oping pigs of several ages (4, 12, and 20 weeks) generate avalanches. These avalanches have been
investigated by acoustic emission analysis techniques. The avalanche energies are power law dis-
tributed over more than four decades. Such behavior indicates the absence of characteristic scales
and suggests avalanche criticality. The statistical distributions of energies and waiting times depend
on the pig age and indicate that bones become stronger, but less ductile, with increasing age. Crack
propagation is equally age-dependent. Older pigs show, on average, smaller cracks with a time dis-
tribution similar to those of aftershocks in earthquakes, while younger pigs show only statistically
independent failure events.

PACS numbers: 62.20mm, 61.43Gt, 87.80Ek, 05.65.+b

I. INTRODUCTION

Failure of porous materials under compression has re-
cently attracted great interest due to the intermittent
and jerky response of strain to the externally applied
force [1–3]. More specifically, the failure process oc-
curs by avalanches with long sequences of failure events,
which are well separated in time. Their distributions of
size, energy, duration, and time intervals between events
span several decades. Furthermore, these processes occur
without specific length and time scales over long inter-
vals of the event sequences, which suggests criticality of
avalanches. This striking behavior seems to be a conse-
quence of dynamical constraints imposed by the intrinsi-
cally inhomogeneous nature of this class of systems, and
jamming effects [5, 16]. Qualitatively similar crackling
noise behavior has been reported for magnetization pro-
cesses [6], martensitic transitions [7, 8] and plastic defor-
mation in solids [9, 10]. It has been shown that these
processes share many of the characteristics of geological
earthquakes. In particular, power law distributions of en-
ergies, aftershocks and waiting times have been reported
in some cases [3, 11] with statistical laws commonly used
in seismic studies such as the Gutenberg-Richter’s law,
Omori’s law or the universal scaling law [12]. The same
features were observed for all crackling noise events; we
will show in this paper that the progression of damage in
bones leading to their fracture falls into the same class
of phenomena. In general, scale invariance has not been
directly associated with specific characteristics of the mi-
crostructure. However, some studies suggest that it could
be related to the distribution of elastic forces and bending

moments in the case of random porous structures [13] or
to the arrangement of dislocations in plasticity of small
crystal volumes [14].

Avalanches in compressed porous materials are conve-
niently detected by measuring the acoustic emission (AE)
originating from sudden changes of the internal strain
field (displacement discontinuities associated with local
cracks), which lead to the shrinkage of the material. AE
occurs at frequencies in the range from < 100 kHz to
some MHz. It is a very sensitive technique capable to
detect local displacements at length-scales from nano- to
micro-meters. This technique has been widely used to
monitor fracture in materials subjected to stress. The
theory of AE in the case of crack initiation and prop-
agation has been developed in [15] and for ferroelastic
materials in [16].

Here, we apply the AE technique to the study of pro-
gression of failure in cortical porcine bones under a uniax-
ial compression. As background information we mention
that bones consist of two bone types: cortical and trabec-
ular. The cortical bone, also called a compact or dense
bone, forms an outer shell of bone while the trabecular
bone, also called cancellous or spongy bone, fills the in-
ner space. Bone has a composite structure made of a soft
and ductile organic phase (collagen with small amounts
of other proteins) combined with a stiff and strong but
brittle mineral phase (hydroxyapatite), all bathed in flu-
ids which also fill the pores. The cortical bone porosity
ranges from few percent to about 20 percent depending
on age and anatomical location. We expect that bones
display a crackling noise under compression similar to
other porous materials but with specific features asso-
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ciated with the composite structure of bone (soft and
ductile collagen and strong but brittle minerals) which
may influence the critical behavior. Also, as bones grow,
we expect that these crackling features depend on the
age of the pig. With this idea in mind we have stud-
ied cortical bones of developing pigs, ranging from very
young (4 weeks) to more mature (20 weeks) ones. Pigs
can live up to 20 years so a 4 week (wk) pig age corre-
sponds to about 1 year of human age and a 20 wk pig
age to 6 years in terms of human age [17]. We selected
this age group based on our earlier studies on developing
porcine cortical bone which showed noticeable changes in
the composition, structure and mechanical properties of
bone in this early period [18, 19]. More specifically, the
mineral content increases from an average of 36 weight
percent (wt%) to 56 wt% and water content (related to
porosity) decreases from an average of 36 wt% to 16 wt%
while the collagen content remains nearly unchanged at
26-28 wt% in femoral porcine cortical bone from the age
of 1 to 3.5 months [18]. These compositional changes
lead to an increase in elastic stiffness (Young’s modulus)
from 10 GPa to 18 GPa for these two age groups [19].
Previous studies have used AE to test both trabecu-

lar (spongy) and cortical (dense) bones to monitor bone
failure. It has been found that stiffness and strength of
bones directly correlate with the applied strain rate [20].
Cortical bone has also been examined by AE to monitor
microdamage during fatigue, although large data scatter
prohibited further data analysis [21]. Numerous biomed-
ical applications of AE analysis demonstrate its potential
as a non-invasive method to determine bone state under
in vivo conditions [22]. This includes characterization of
bone healing [23] and monitoring of implants [24]. An-
other application is the localization of microcracks that
allows to predict where fracture may subsequently occur
[25]. For more information we refer the reader to the
review article [26] that summarizes these developments.
AE has not been applied previously to study age related
changes in failure processes of porcine cortical bone.
The collective response of the porcine cortical bones

under compression is obtained from a statistical analysis
of the AE events such as amplitudes, energies, durations
and waiting-times. This is the same approach as has
been recently taken to study the failure of natural min-
erals such as goethite [27] and different sandstones [5] and
some synthetic porous glasses such as Vycor and Gelsil
[5] and alumina [28].

II. EXPERIMENTAL ARRANGEMENTS

A. Sample preparation

Bone samples were prepared from pig femurs harvested
at 4, 12, and 20 weeks of age. They will be denoted 4wk,
12wk and 20wk, respectively. Using a band saw, seg-
ments of cortical bone were cut from the mid-diaphysis
region. After isolating the cortical bone by removing the

exterior tissue and cleaning the interior with a waterpik,
rectangular prism shaped samples were cut using a low
speed diamond wafer saw. The targeted dimensions for
the samples were several millimeters, roughly 2-3 mm in
widths and 5 mm in height. Samples were then stored in
50/50 vol% ethanol/phosphate buffered solution (PBS)
at -20◦C. They were thawed for several hours at room
temperature prior to testing.
Micro-computed tomography (Micro-CT) imaging was

performed on bone samples to characterize their porosity
and damage. The 4wk, 12wk, and 20wk pig bone samples
were scanned using Xradia Micro-CT (MicroXCT-400,
Pleasanton, CA). Each sample was placed on the holder
of Micro-CT after being dried from the PBS using tissue
paper. The voltage and power of x-ray were 50 keV and
10 W, respectively. A 4X magnification with voxel size
of 5×5×5 µm3 was used to obtain images while rotating
samples from -180 to 180 degrees. Images were taken
every 0.5 degrees and there was no special filter used ex-
cept one converting x-ray to digital images. The camera
exposure time was 2 seconds (s). The software of ”XM
Controller” was used to set up scanning and obtain two-
dimensional (2D) images. XM Reconstruction program
was used after scanning. To offset the beam-hardening
artifacts, the reading of absorption coefficient was set to
be approximately constant. XM 3D Viewer program con-
verted the reconstruction file to three-dimensional (3D)
images. Results are shown in Fig.1. Undeformed im-
ages correspond to lateral and longitudinal Micro-CT sec-
tions. They show that porosity decreases with pig age, at
least at the µm-scale. Damaged samples were obtained
by loading to 1% strain. It is interesting to note that
the cracks are visible in these Micro-Ct images of dam-
aged samples without using contrast agents. In the 4wk
sample a shear band is clearly observed. In 12wk and
20wk specimens failure already occurred splitting spec-
imens into two separate pieces. 3D images of damaged
samples (in orange) are shown in the bottom row of Fig.1.

B. Compression equipment

The experimental arrangement for a uniaxial compres-
sion has been described in detail in [2, 27]. Each studied
sample was placed between two parallel circular stain-
less steel plates, perpendicular to the direction of the
applied force. The bottom plate, which hang from the
load cell at the top of the arrangement, was stationary.
The upper plate could be pulled downwards by means
of three guides sliding through precision ball-bearing el-
ements, mounted on holes drilled in the bottom plate.
The pulling device consisted of a water container acting
as dead load. Small pump rates for the inflowing water
enabled the imposition of a controlled slowly increasing
load. AE was detected by piezoelectric transducers em-
bedded in the compression plates, centered at a distance
of 1 mm from the sample surface. The sensors (model
Micro80 from Physical Acoustics, Princeton, NJ) were
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FIG. 1: Micro-CT images of 4wk, 12wk and 20wk samples (us-
ing 5 µm resolution). Two top rows show select close up slices
of undeformed specimens in lateral and longitudinal planes.
Third row shows 2D images of damaged specimens after load-
ing them up to 1% strain. Images were taken in unloaded
state. Length bars are 1 mm. Last row represents 3D images.
Note that 12wk and 20wk specimens broke in two parts.

encapsulated in stainless steel in order to reduce an elec-
trical noise. They have a broadband frequency response
extending from ≤ 175 kHz to ≤ 1 Mhz (maximum sen-
sitivity of 0.3 V/mbar). A thin vaseline layer was used
between the compression plate and the sensor and be-
tween the sample and the compression plate, in order to
ensure a good ultrasound acoustic coupling. The signal
from the sensor was pre-amplified to 60 dB and input in
a PCI-2 system (Europhysical Acoustics, Mistras group,
France) operating at 10 MHz and with a digital pass band
filter of 100 kHz-2 MHz.

Avalanche analysis was performed from the recorded
AE signals as follows: the beginning of an avalanche
event (hit) was defined as the time t1 at which the volt-
age from the transducer exceeded a predefined thresh-
old. In our experiments this value was fixed at 27 dB.
The end of the event t2 occurred when the voltage re-
mained below the threshold for more than a predefined
hit detection time (HDT = 100 µs). The energy E of
every event was computed as the integral of the square
voltage between t1 and t2, normalized by a reference re-
sistance. The macroscopic compression process was mon-
itored with the acoustic activity, dn/dt, obtained as the
number n of hits (measured during intervals of 100 s) per

time unit. Note that this definition of the acoustic activ-
ity is consistent with the fact that for statistical analysis
purposes the process is assumed as a point process.

III. RESULTS AND DISCUSSION

Fig. 2 shows the relative deformation, h/h0 (h is the
actual sample height and h0 is the height before defor-
mation), as a function of compressive stress for samples
of pigs of different ages. Experiments were performed at
similar low load rates ∼ 8 kPa/s. In all cases there is a
tendency of samples to stiffen as stress is increased. This
effect is very significant for bones of younger pigs (4wk)
at the late stages of compression. The 4wk bones have
highest porosity and after an early fast deformation, the
pores close under the applied compressive load leading
to a less porous and more stiff material. Such behavior
is similar to the one of cellular material (e.g. trabecu-
lar bone) as studied by Gibson and Ashby [29]. In such
porous materials, pores close under high loading, leading
to a denser and stiffer material. The failure stress has
been found to be strongly sample dependent, even for
bone specimens of pigs of the same age, which is consis-
tent with heterogenous nature of the bone and small size
of samples as compared to pore size.
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FIG. 2: Relative deformation, h/h0, vs. compressive stress
for samples of selected pig ages.

Fig. 3 shows the time evolution of the AE activity
(bottom panels) and of the energy of AE events (top
panels) for the studied samples. Both exhibit a variable
time evolution during the compression process (note that
in both cases the vertical scale is logarithmic) with rela-
tively long periods of no activity. Large part of the activ-
ity is provided by a background consisting of low energy
events (E < 0.1 aJ). For all samples there is a region
of strong increase in the AE activity, which corresponds
to the catastrophic crash region. It is worth noting that
big energetic signals occur always well correlated with
periods of large AE activity and, thus, these high energy
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events are mainly localized in the failure region. Inter-
estingly, AE activity is still detected after failure. This
residual AE activity originates from the compression of
the debris that remain after the big crash of the stud-
ied specimen. In this post-failure region only low energy
events are detected.
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FIG. 3: Signal energy (top panels) and AE activity (bottom
panels) as a function of time for samples of pigs of 4 (4wk
and 4wk-2), 12 (12wk) and 20 (20wk) weeks. The activity
is obtained with time intervals of 100 s. The total number
of recorded signals N in each experiment is indicated in the
panels.

The distribution of energies of AE events over the full
compression process has been studied for each specimen.
The results show that the probability distribution of AE
energies follows a power law; that is, the probability
P (E)dE to find an AE event within the energy interval
E and E + dE is described (for energies above a given
lower cut-off which is experimentally unavoidable) by,

P (E)dE ∼= CE−εdE, (1)

where C is a normalization factor and ε is a critical ex-
ponent. The probability distributions are shown in Fig.
4 on log-log scales. A good linear behavior is observed
over more than five decades for bones of younger pigs
(4 weeks) and more than six for more mature pigs (12
and 20 weeks). The slope of the linear region seems to
change with pig age. This would suggest that the expo-
nent ε shows a tendency to decrease with age. This is an
interesting result since it would indicate that the relative
probability of large events with respect to small events
increases with age in developing bones. To corroborate
this behavior we have numerically estimated the critical
exponent ε in more detail.
There are several ways to extract an exponent of a

distribution function approaching a power law behav-
ior. The easiest way is to determine the slope of the
linear region in a log-log plot by linear regression. How-
ever, least-square fitting methods mostly lack accuracy
because they depend on the chosen binning intervals. A
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FIG. 4: Distribution of AE event energies in log-log scales
for samples of pigs of 4 (4wk and 4wk-2), 12 (12wk) and
20 (20wk) weeks. The continuous lines indicate the power-
laws with exponents obtained from the study of maximum
likelihood maps.

very reliable method, independent of data binning, is to
analyze the data with the maximum likelihood method
[30]. The method provides a robust value for the expo-
nent, its error bar and gives an estimation for the lower
reliable limit of the distribution. Recently, the use of
maximum likelihood maps have been proposed where in
addition to a lower bound an upper bound is included
as well [31]. This upper bound is important when large
events could be influenced due to device saturation effects
or other reasons. We have used this method to estimate
the ε exponent.
Fig. 5 shows exponent maps. The exponent value

is color coded and projected onto the Ehigh-Elow space.
It represents the exponent estimated inside an interval,
Elow < E < Ehigh. The maps are bounded by a min-
imum (Emin) and a maximum (Emax) energy value for
each experiment. White contour lines serve as a guide to
the eye and correspond to the exponent values labeled in
the color-scale. Black thick line represents a confidence
threshold of the real value of the estimated exponent.
The likelihood of data-points above (or left) the black
line have a standard deviation larger than σ = 0.1.
The bottom-right corner of the map corresponds to

the evaluation of a power-law exponent with the whole
data-set, but considering an upper cut-off to the distri-
bution equal to Emax, instead of an open bound [30].
Fewer data-points are being selected further from the
bottom-right corner. Close to the bisecting diagonal
Elow ∼ Emax, the statistical error is large, rendering the
estimate less reliable.
If the data are scale-free (power law distributed) within

a certain range, a plateau of constant exponent (homoge-
neous color, free of contour lines) will appear inside the
map, and the corresponding exponent value can be given
with an error ± 0.1 if it is found below the black line.
The power law hypothesis can be corroborated by evalu-
ating the p-value of each estimation using a Kolmogorov-
Smirnov test. In this evaluation the value of the ex-
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FIG. 5: Maximum likelihood maps for AE data corresponding
to samples of pigs of 4 (4wk and 4wk-2), 12 (12wk) and 20
(20wk) weeks. The energy exponent that characterizes the
energy distribution within the boundaries Elow and Ehigh is
color coded. The exponent value has been chosen from data
inside the green circle. See text for more details.

ponent fitted with the maximum likelihood method is
forced, which yields an overestimation of the p-value [32].
Considering this bias, we propose to choose p-values of
acceptance and rejection thresholds at 0.5 and 0.05, re-
spectively.
The exponent maps indicate a good agreement to a

power-law hypothesis (see Fig. 5) for pig ages of 12 weeks
and 20 weeks and energies between 1 aJ and 5 × 105 aJ,
shown as dashed green lines in Fig. 5. The circle at the
intersection of these lines indicates the region where an
exponent corresponding to the whole range of values dis-
playing power law behavior was chosen. We have checked
that the corresponding p-value satisfies the acceptance
criteria previously discussed. Thus, in Fig. 5 we found
exponents ε = 1.30 ± 0.10 for 20 week bones and ε =
1.50 ± 0.10 for 12 week bones. Results for 4 weeks old
pigs are more difficult to analyze by the power-law.
For 4 week bones, Fig. 5 shows that the exponent tends

to increase for high energies, suggesting a behavior better
fitted by an exponential or stretched-exponential proba-
bility distribution. However, a flat plateau can also be
found below 103 aJ, consistent with the range of power-
law behavior shown in Fig 4. The obtained p-value is
consistent with the power-law hypothesis in the interval
1-103 aJ for the two studied samples of 4 week bones.
The estimated exponent is then ε = 1.70 ± 0.10. In Fig.
4 we have plotted straight lines with slopes corresponding
to the estimated exponents. It is clear that the results
fit very well the corresponding energy distributions.
Our exponents are within the same range of values

found for energy exponents in other porous materials
such as several minerals and Vycor -a synthetic porous

SiO2 glass [5]. The change of the energy exponent with
pig age is a surprising result. One could have expected
that the universality class is the same regardless of the
pig age. The reported change of the power law suggests
that the measured exponents are effective exponents in-
fluenced by some other effect induced by development.
In general, it is interesting to study whether the en-

ergy exponent evolves during the crackling process. In
our case this analysis is difficult due to lack of statistics
associated with the relatively low number of recorded AE
events. For the sample 12wk we have checked that the
same exponent is obtained with signals detected during
the early stages of the process (t < 11120 s) and with
signals detected during the crash period (11120 s < t <
11370 s). These results suggest that similarly to com-
pressed Vycor [3], there is no evolution of the exponent
over successive subperiods. This is an interesting aspect
taking into account the non stationary behavior of the
AE activity, which is not general in crackling noise pro-
cesses [33].
We now analyze the relationship between the energy E

and the maximum amplitude A of AE events. The two
quantities are not statistically independent but satisfy
the relation E ∼ A2 (Fig. 6). This result is independent
of the pig age and indicates that high energy events are
associated with large amplitude signals.
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FIG. 6: Signal energy vs. signal amplitude maps correspond-
ing to sample 12wk. The continuous line indicates the behav-
ior E ∼ A2. The energy-color scale is indicated.

Taking into account that the AE activity is non-
stationary and displays relatively long silent periods, it
is interesting to analyze in detail the statistics of waiting
times between AE events. In Fig. 7 we have plotted a
log-log representation of the waiting times distribution
for all samples. The waiting time δ is given as the time
between successive events defined after selecting given
energy thresholds Em. That is, δj = tj − tj−1, with j la-
beling only the events with energy larger than Em. The
results indicate that all samples show very similar behav-
ior regardless of the selected threshold. Interestingly, the
waiting times span over almost six orders of magnitude
in all cases. The distributions follows a reasonably good
power law decay. A small decrease of the probability is
observed for all samples for waiting times in the range
between 0.1 and 1 s.



6

It has been suggested that the waiting time distribu-
tion is governed by the mean event rate activity, 〈r〉,
which is the inverse of the mean waiting time, 〈δ〉−1 [34].
This allows a better comparison of the shape of the dis-
tributions by rescaling the axes with the mean activity
rate as δ/〈δ〉 (= x) and P (∆t)〈δ〉, where 〈δ〉 (function
of Em) is the mean waiting time between events with
energy larger than Em. For a homogeneous Poisson pro-
cess with constant activity rate, the corresponding scal-
ing function Φ(x) would show an exponential behavior
(Φ(x) = e−x). In the case of a nonhomogeneous Poisson
process the exponential decay for large arguments x is
expected to transform to a power law decay [3]. There-
fore, Φ(x) should be flat for low x in a log-log plot and
decay linearly for large arguments due to the distribution
of background activity rates. Φ(x) is expected to display
a double power law behavior if correlations exist and the
process is non-Poisson. Here the scaling function exhibits
a power law behavior with a small exponent instead of
being flat for low x.
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Fig. 8 shows the collapse of the data into a single curve
to a very good approximation. Our data do not scale in a
double power law function as expected and intermediate
values of the scaled variable x = δ/〈δ〉 are very sparse.
This behavior seems to be a consequence of a bimodal
rate-distribution. The bimodal distribution for the 12
week sample (measurement with a large number of de-
tected AE signals) is shown in the inset of Fig. 8 (for
other samples the analysis indicates also a similar distri-
bution but it is less reliable due to a lack of statistics).
The bimodal behavior could be associated with a mode
switching between two activity modes [35]. Note that the
highest rates occur in the collapse region.
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To gain a deeper understanding about these correla-
tions we have analyzed the time series using the Bi-
test method which is especially adequate to separate
effects arising from the non-stationary behavior from
endogenous or intrinsic time correlations. The proce-
dure was introduced to detect deviations from uncor-
related Poisson processes [11, 36]. The time distance
to the closest event (forwards and backwards in time)
∆k = min[tk − tk−1; tk+1 − tk] and the time distance dk
to the second event in the same temporal direction, i.e.,
dk = tk−1 − tk−2 if ∆k = tk − tk−1 or dk = tk+2 − tk+1

if ∆k = tk+1 − tk, are first determined. From data pairs,
(∆k, dk), the statistical variable Hk = ∆k/(∆k + dk/2),
which takes values between 0 and 1, is then build. If the
analyzed time series is locally Poissonian, the values ∆k

and dk will be statistically independent. In this case it is
easy to see that Hk would be uniformly distributed [with
probability p(H) = 1 for 0 < H < 1], with mean value
〈H〉 = 1/2.

Deviations from the uniform distribution indicate the
existence of correlations or clustering effects. The exis-
tence of an excess of low and high values of H in the
distribution p(H) should be understood in the sense that
large periods of silence between groups of clustered events
exist. On the other hand, an excess over values close to
2/3 indicates the occurrence of some ordering where ∆
is systematically smaller than 2d. Note that this can be
understood by taking into account that for events spaced
almost regularly in time, ∆ ∼ d (for all k) and thus H
would be distributed sharply around 2/3.

Non-Poisson behavior is quantified by the Kolmogorov-
Smirnov test comparing the experimental cumulative dis-
tribution function Fn(H) to the expected uniform cumu-
lative distribution function of a uniform random variable
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(F (H) = H). This is shown in Fig. 9 for all samples. The
curves show the distance between Fn(H) and F (H) = H
as a function of H and are scaled by the colored regions
that indicate the probability of the corresponding dis-
tance in a Poisson process (rejection p-value). Curves
reaching regions with very high rejection p-value (> 0.8)
indicate that the studied process is unlikely to be Pois-
sonian while curves with low rejection p-value comply
with the Poisson hypothesis. The obtained curves are
quite flat in the case of young pigs (4 week) suggesting
a behavior close to a Poisson process. Nevertheless, for
bones of more mature pigs the curves display a more sig-
nificant sinusoidal-like shape, which denote an excess of
statistics in the regions of low and high values of H thus
indicating non-Poisson behavior. This means that in this
case big events induce crack-avalanches of lower magni-
tude in the same way that big earthquakes are followed
by aftershocks, which decay following Omori’s law [37].

√n
 (

 F
n(

H
)-

H
 )

H

50%
80%

95%

99.5%

99.95%

50%
80%

95%

99.5%

4wk (N=149)
4wk-2 (N= 228)
12wk (N=1589)
20wk (N=642)

-2

 0

 2

 4

 0  0.2  0.4  0.6  0.8  1

FIG. 9: Kolmogorov-Smirnoff test of uniformity of the vari-
able H obtained from the Bi-test analysis of the AE signals
corresponding to samples of pigs of 4 (4wk and 4wk-2), 12
(12wk) and 20 (20wk) weeks. The colored horizontal bands
show rejection probabilities of the local Poisson hypothesis.

Mechanical properties of biological and related bioin-
spired materials are difficult to determine from standard
protocols in materials science due to sample heterogene-
ity that leads to a highly variable mechanical behavior
[38]. We suggest that the analysis of AE during mechan-
ical testing provides an additional tool to suitably charac-
terize this class of complex materials. Bone is an example
of such a strongly heterogeneous material. Bone, among
its other functions, provides the structural support for
soft tissues. Thus, its mechanical properties are impor-
tant for body’s function. Bone fracture is an outstanding
clinical problem. Understanding of fracture mechanisms
and bones resistance to fracture can lead to better as-
sessment of bone diseases, characterized by bones sus-
ceptibility to fracture, and can help to design more ef-
fective treatments. Moreover, such information may be

relevant to characterize bone scaffolds and help to assess
regenerated bone. This paper addresses young porcine
bones. Since porcine bone biology is similar to human
bone, these findings may provide new insights into fail-
ure and fracture of children’s bone. Present results show
that in spite that failure stress is strongly sample depen-
dent the exponent that characterizes the distribution of
AE event energies systematically depends on pig age.
Our results suggest that bones become stiffer and

stronger with age. This interpretation is consistent with
experimental results on the development of porcine cor-
tical bone [18, 19, 39, 40] where bone hardness, stiffness
and strength also increase with age. These mechanical
property changes are correlated with an increase in the
mineral content and a decrease in bone porosity with
age. This interpretation also agrees with recent results
[41], which show that impact force propagation into a
granular material depends strongly on the hardness of
the grains constituting the material. For hard grains,
the transmission occurs along chainlike paths, which sug-
gest strong correlations and the possibility of high-energy
avalanches. In contrast, for soft grains, the force propa-
gation gives rise to a dense structure constituted of small,
interconnected steps.
This study has some limitations. In our analysis we

did not investigate in detail how the bone microstructure
contributes to the recorded AE events. Bone has a highly
complex hierarchical structure with spatially varying
mineral content and porosity occurring at different struc-
tural scales. Bone failure which consists of plasticity,
damage and fracture is a multiscale phenomenon. Initial
crack progresses along different structural scales: atomic
scale (breaking of interatomic bonds), nanoscale (min-
eralized collagen fibril), sub-microscale (single lamella),
microscale (lamellar bone: osteonal and interstitial),
mesoscale (cortical bone), and macroscale (whole bone).
Examples of failure mechanisms include plastic slipping
at crystal-collagen interfaces, cracks crossing over lamel-
lar structures, crack deflections at cement lines surround-
ing osteons and other complex processes [42]. One pos-
sible simplified approach could involve a correlation of
fractal dimension of bone with bone strength. Several
studies have addressed measurement of fractal dimen-
sions of cortical bone based on its porosity [43, 44]. Such
analysis of cortical bone as a function of age is outside of
the scope of the current study.

IV. CONCLUSIONS

We have shown that the statistical distributions of en-
ergy and waiting times during uniaxial compression of
cortical femoral bones of pigs depend on the age of the
pig. In particular, we have found that the critical ex-
ponent that characterizes the distribution of AE event
energies decreases with pig age, which reflects the fact
that large events can occur with larger probability in
more mature pigs than in younger pigs. Events are not
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correlated for younger pigs, however; these correlations
develop with age. We suggest that the increase of such
correlations with increasing pig age is responsible for the
apparent increase of the energy exponent.
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