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Rotational relaxation time as unifying time scale for polymer and fiber drag reduction
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Using hybrid Direct Numerical Simulation with Langevin dynamics, a comparison is performed
between polymer and fiber stress tensors in turbulent flow. The stress tensors are found to be similar,
suggesting a common drag reducing mechanism in the onset regime for both flexible polymers and
rigid fibers. Since fibers do not have an elastic backbone, this must be a viscous effect. Analysis
of the viscosity tensor reveals that all terms are negligible, except the off-diagonal shear viscosity
associated with rotation. Based on this analysis, we identify the rotational orientation time as the
unifying time scale setting a new time criterion for drag reduction by both flexible polymers and
rigid fibers.
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I. INTRODUCTION

When a Newtonian fluid transitions from laminar flow
to turbulent flow, changes in pressure and velocity fields
become chaotic, and eddies, coherent patterns of flow
velocity and pressure, start to form. As eddies break
up into smaller eddies, an energy cascade forms, which
transports the kinetic energy of the flow to smaller, and
smaller time and length scales. Eventually, at the small-
est scales, also called the Kolmogorov scales, this kinetic
energy gets dissipated into heat, due to viscosity. Once a
flow is turbulent, the energy cascade is sustained through
the turbulence regeneration cycle [1]. Drag reduction is
the phenomenon where, by either modifying the bound-
ary conditions on the wall [2, 3] or by adding additives
[4–7] to the flow, the turbulence regeneration cycle is dis-
rupted and the dissipation of turbulent kinetic energy
is reduced. Because of their effectiveness as drag reduc-
ing agents, polymers are a popular type of additive [4].
By adding only a couple of parts per million of certain
polymers to a fluid, well below their overlap concentra-
tion where polymer-polymer interactions are negligible,
a drag reduction of up to 80 percent can be observed [8].
Fibers are another additive that also generate drag reduc-
tion [7], and one of the open questions in drag reduction
is whether fibers and polymers share the same drag re-
duction mechanism. Considering that fibers are simply
very stiff polymers, one could regard fiber drag reduction
as a limiting case of polymer drag reduction and make
the assumption that they share the same drag reducing
mechanism. On the other hand, it has been reported that
polymers have an onset criterion [9], while fibers do not
[10]. Additionally, it has been found that fibers are not
as effective drag reducing agents as polymers [10], and
there is the viscosity [11] versus elasticity [12] debate.

Because polymers are typically a lot smaller than the
Kolmogorov length scale, while their relaxation times
overlap with the Kolmogorov time scale, the onset of drag
reduction for polymers is determined by a time criterion
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[11]. Fibers are not elastic and thus do not have an onset
criterion like flexible polymers do. However, their molec-
ular weight does have an effect on their drag reducing
effect [13], and a critical aspect ratio for fibers has been
found [7]. Since fibers are also typically smaller than the
Kolmogorov scale, rather than a length scale, it can be
expected that, like polymers, there is a fiber time scale as-
sociated with their effectiveness as drag reducing agents.

The viscosity versus elasticity debate is centered
around the question as to whether polymer drag reduc-
tion is a local phenomenon caused by extensional viscos-
ity, or a non-local phenomenon caused by the transport
of turbulent kinetic energy into the polymer chain. In
an extensional flow, when a critical shear rate is reached,
polymer coils stretch significantly compared to their equi-
librium state, which results in a significant increase of the
elongational viscosity [14]. Replacing the inverse critical
shear rate with the Kolmogorov time scale, this viscosity
increase was proposed by Lumley [11] as a mechanism
for drag reduction. The first to suggest that elasticity is
essential for drag reduction was De Gennes [12]. Based
on work by Daoudi and Brochard [15] he concluded that
the elongational viscosity theory could not be correct due
to the absence of the coil-stretch transition for polymers
undergoing randomly fluctuating stresses in a turbulent
velocity field, and reasoned that drag reduction had to
be the result of the elastic properties of polymers instead
[16, 17]. Based on experimental work, theory, and simula-
tions, there is support for both theories [18]. Since fibers
do not have an elastic backbone their drag reducing ef-
fect is caused by viscosity effects, and if elastic theory
is right, it has to be concluded that fibers and polymers
have different drag reducing mechanisms. However, if the
drag reducing mechanism for polymers and fibers is the
same, the conclusion has to be that for polymers the drag
reducing effect is also caused by viscosity.

The present work investigates the effect of elasticity
on drag reduction by studying the stress tensor, effective
viscosity, and torque generated by different polymers and
fibers in turbulent pipe flow. To model the polymers and
fibers, a hybrid Direct Numerical Simulation/Langevin
Dynamics approach is taken. This way no closure mod-
els are needed to calculate the stress tensor for either the
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polymers [19, 20] or the fibers [10, 21], and a direct com-
parison of the polymer and fiber stress tensors is possible.
While the polymers or fibers and solvent are two way cou-
pled, the number of molecules in the system is too small
to observe drag reduction in the velocity profile of the
flow [18]. This means that the results presented here are
only applicable to the onset of drag reduction and not
the Maximum Drag Reduction (MDR) regime, the max-
imum amount of drag reduction that can be observed in
turbulent flow [22].

The MDR regime has been previously addressed by
L’vov et al. [23] and Benzi et al. [24]. They have used the
Doi and Edwards [37] stress tensor to model the fibers
and the Giesekus [38] stress tensor, assuming that the
flexible polymers are in the Hookean regime [31], for the
elastic flexible polymers. They have reported that the
physical origins of the stresses of flexible polymers and
rigid fibers are different, and have proposed different scal-
ing laws for the Reynolds stresses at the wall for elastic
polymers and inelastic fibers. Nevertheless, in the regime
of the maximum drag reduction (MDR) asymptote, they
argued that both flexible polymers and rigid fibers give
rise to an effective viscosity and that this viscous effect
is responsible for drag reduction in the MDR regime for
both flexible polymers and fibers.

In the present work, we focus on the onset regime of
drag reduction, as pointed out above. Both the flexi-
ble polymer and fiber are modeled as Finitely Extensible
Nonlinear Elastic (FENE) dumbbells with different Deb-
orah numbers distinguishing them. The main conclusion
from the present Direct Numerical Simulation/Langevin
Dynamics approach is that both flexible polymer and
fiber stress tensors have the same shape. This suggests
that the drag reduction mechanism for the flexible poly-
mers and fibers are the same in the drag reduction on-
set regime. Furthermore, analysis of the conformations
of the dumbbell model representing flexible chains shows
that it is first stretched into an anisotropic state with suf-
ficiently large aspect ratio, thus contributing to torque
similar to fibers. In agreement with Sibilla and Baron
[25] and Kim et al. [26], based on the work by L’vov et al.
[23], De Angelis et al. [27] and Gillissen et al. [28], we re-
port that the off-diagonal stress component is dominant
in drag reduction. According to the Kramers-Kirkwood
equation [29], the off-diagonal stress component is associ-
ated with rotation. Therefore, the dominant mechanism
for drag reduction in the onset regime is the rotation for
both flexible polymers and fiber. We also propose that
the rotational relaxation time is the unifying time scale
between polymer and fiber drag reduction.

II. MODEL

Different drag reduction methods act by reducing the
momentum flux towards the wall [30]. Since drag reduc-
tion is a wall phenomenon, time and length scales are

non-dimensionalized as:

t+ =
t u2

τ

ν1
and x+ =

x uτ

ν1
. (1)

In the above equations uτ =
√

d1/ (4ρ1) |∆p/∆x| is the
friction velocity, and ν1 the kinematic viscosity [22]. The
subscript 1 is used to indicate that the variables describe
the solvent, while the polymer and fiber variables have
a subscript 2. d1 is the diameter of the pipe, ρ1 the
density of the solvent, and ∆p/∆x is the pressure gradi-
ent. All variables in this paper are in + units, i.e. non-
dimensionalized with the friction velocity and kinematic
viscosity, but for improved readability the + superscript
has been omitted. In non-dimensional form, the Navier-
Stokes equation describing the momentum balance of the
solvent is:

∂u1

∂t
+ u1 · ∇u1 = −∇p+∇2

u1 + f2 (2)

and conservation of mass is guaranteed by the continuity
equation. In the above equation, u is the velocity, t is
time, p is the pressure, and f2 is the polymer dumbbells
acting on the solvent. Polymers and the solvent are two-
way coupled, i.e. both the solvent acting on the polymers,
and the resulting reactive force are accounted for. To
minimize the number of variables, gravity is neglected.
To be able to describe the forces of the polymer dumb-

bell back onto the solvent, the polymer dumbbells are
described by Langevin dynamics. Because the dominant
time scale for polymer drag reduction is the longest re-
laxation time [11], they are modeled as Finitely Extensi-
ble Nonlinear Elastic (FENE) dumbbells [31], and their
longest relaxation time is the Zimm relaxation time. The
two beads of the dumbbell are called A and B, and the
drag force on the beads is assumed to be Stokes drag.
Polymer-polymer interactions are neglected. Writing the
equation of motion for bead A in wall units gives:

τ2ẍ2,A = − (ẋ2,A − u1,A)

−
1

De

x2,AB

1− (x2,AB/x2,Max)
2
+ fR (t) (3)

with x2,AB = (x2,B − x2,A) − x2,0. x2 is the position of
a bead, x2,0 is the equilibrium distance between beads
A and B, x2,Max is the maximum extension, and u1,A

is the fluid velocity at the position of bead A. Dots
signify derivatives with respect to time. The random
force, fR (t), is zero on average, and each hit by a solvent
molecule is assumed to be independent from all others.
For the fibers, the spring force is left out of their equa-
tion of motion and the beads are kept at fixed distance
using the RATTLE algorithm [32].
The simulations are modeled after a system of

polyethylene glycol (PEG) in water, and the following
non-dimensional numbers result from making the above
equations dimensionless. The friction Reynolds number:

Reτ =
d1uτ

ν1
= 560 (4)
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corresponds to a bulk Reynolds number of Re = 8800,
and is equivalent to the non-dimensional diameter of the
pipe. A constant friction Reynolds number implies a con-
stant pressure gradient, and variable bulk velocity. The
Deborah number:

De = τZ = 0, 1, 10 (5)

is defined as the ratio of the characteristic time scales of
the polymers and the solvent, and is a measure for poly-
mer elasticity. Since the characteristic time scale of the
fluid in wall units is equal to one, the Deborah number
is equal to the Zimm relaxation time in wall units, τZ .
De = 1 defines the onset of drag reduction, De = 10 is a
value well within the drag reduction regime, and De = 0
is the value for fibers. The particle relaxation time:

τ2 =
1

ρ∗d∗2
Re2τ
18

= 1.789 · 10−3 (6)

with ρ∗ = ρ1/ρ2, and d∗ = d1/d2, is a measure of how sen-
sitive a bead is to velocity fluctuations in the fluid. The
last dimensionless group, the diffusion constant, equals:

D =
(kBT )

+

ζ
= 8.133 · 10−4 (7)

with (kBT )
+

= kBTuτ/ρ1ν
3
1 , kB the Boltzmann con-

stant, T the temperature, and ζ = 3πReτ/d
∗ the non-

dimensional friction factor. This number determines
whether diffusion or advection is dominant. With chang-
ing Deborah numbers, the molecular weight of the dumb-
bells has been kept constant, which results in the fol-
lowing equilibrium lengths in order of increasing Debo-
rah number: x2,0 = 4.000 · 10−1, x2,0 = 2.836 · 10−2,
and x2,0 = 6.110 · 10−2. The maximum extensions
are: x2,Max = 1.000 · x2,0, x2,Max = 14.10 · x2,0, and
x2,Max = 6.546 · x2,0. The number of dumbbells in the
system is N2 = 9.600 ·105. Keeping the molecular weight
constant is equivalent to the experiments performed by
Virk [33] on drag reduction by rod-like and coiled poly-
electrolytes.
The code solves the Navier-Stokes equations in cylindri-

cal coordinates using Direct Numerical Simulation, and
is based on work by Eggels [34]. r, φ, and z, are the
radial, angular, and streamwise directions, respectively,
and u, v, and w, are the corresponding velocity compo-
nents. The code is a 4th order predictor-corrector finite
volume code working on a non-homogeneous staggered
grid with Leap-Frog time stepping. Bead tracking uses
the velocity Verlet algorithm, and is based on work by
Boelens and Portela [35]. Simulations are run on a grid of
128×256×256. This is a coarse mesh, but the results are
expected to hold for higher resolutions [3]. More detailed
information about the code can be found in Boelens [36].

III. RESULTS

In Figures 1 and 2 the diagonal and off-diagonal com-
ponents of the polymer and fiber stress tensor, σ2, are
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Figure 1: Diagonal components of the polymer and fiber stress
tensor.
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Figure 2: Off-diagonal components of the polymer stress ten-
sor.

shown as functions of the dimensionless distance from
the wall. Taking the difference in coordinate systems
into consideration, the different components of the stress
tensor are in agreement with literature [28]. It can be
observed that dumbbells with Deborah number De = 0
have the largest, De = 10 the second largest, and De = 1
the smallest stress tensor components. This is consistent
with the results of Virk [33], who found that for low con-
centrations in the onset regime rod-like polyelectrolytes
have a stronger drag reducing effect than coiled polyelec-
trolytes with the same molecular weight. In addition, the
behavior of the polymer stress tensors is also as expected,
because the dumbbell with De = 1 was parameterized to
be the dumbbell at which drag reduction onset occurs,
and thus polymer stresses are the weakest. Comparing
the stress tensor for De = 0 with the other two stress
tensors for De = 1 and De = 10, it can be seen that,
apart from different values for the maxima and minima,
the different stress tensor components have exactly the
same shape. Since the stress tensor describes the full
interaction of the dumbbells with the solvent, this sug-
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Figure 3: Effective polymer viscosity.

gests that the polymers and fibers share the same drag
reducing mechanism in the drag reduction onset regime.
In addition, since the elastic theory does not apply to
fibers, it can be concluded that drag reduction is a local
phenomenon and is caused by viscous effects. This is in
agreement with Gillissen et al. [28]. After recognizing
that the r axis points to the wall while the y axis points
out of the wall, and considering whether the forces are
on the beads or on the solvent, our results of the stress
tensor are completely consistent with Fig.3 of Gillissen
et al. [28]. On the other hand, our results are differ-
ent from L’vov et al. [23] and Benzi et al. [24]. In their
work, they use the Doi and Edwards [37] stress tensor
for the fibers and the Giesekus [38] stress tensors for the
elastic polymers. In their analysis they find a coupling
between the diagonal and off-diagonal components of the
conformation tensor which is linear for elastic polymers
and quadradic for rod-like polymers. Benzi et al. [24]
propose a different scaling for the Reynolds stresses at
the wall for elastic and rod-like polymers. Since the ve-
locity profile at the wall in + units is expected to be
independent of the details of the drag reduction agent
[30], this means that the stress tensors for our rigid and
elastic dumbbells should show different scaling as well.
We do not observe this difference in scaling in our sim-
ulations. A possible origin of this difference is that the

Giesekus tensor assumes that the polymers are in the
Hookean regime [31], while in our system the polymers
are modeled as Finite Extensible Nonlinear Elastic dumb-
bells. Another difference is that the work of L’vov et al.
[23] and Benzi et al. [24] concerns the Maximum Drag
Reduction (MDR) regime, while our simulations are in
the onset regime. Furthermore, our results show that
the stress for rod-like polymers is higher than that for
flexible polymers. This is in agreement with Virk [33],
where polyelectrolyte chains in salt-free conditions (rod-
like) and salty conditions (coil-like) were investigated.
A follow up question that one can ask is where the effec-

tive viscosity originates from. Both polymers and fibers
are known to show a large increase in viscosity in exten-
sional flow, associated with the diagonal components of
the stress tensor [14], but there is also the shear viscos-
ity which is associated with the off-diagonal stress tensor
component and rotation. To analyze this question, we
evaluate the contribution of the effective viscosity to the
momentum balance in its most general form:

∇ · σ2 = 2∇ · (ν2 : s1) (8)

with s1 = 1/2(∇u1
T + ∇u1) the rate-of-strain tensor,

and ν2 the fourth order viscosity tensor. Performing a
Reynolds decomposition on this equation and taking into
account the symmetries of our system gives:

∇ · σ2 = ∇ ·

[

ν̃2(r)
∂ 〈w1〉

∂r
+ 2 〈ν′2 : s

′

1〉

]

. (9)

Here ′ denotes the fluctuating part and 〈〉 the average
with:

ν̃2(r) =





ν̃2,rr(r) 0 ν̃2,zr(r)
0 ν̃2,θθ(r) 0

ν̃2,zr(r) 0 ν̃2,zz(r)



 . (10)

Further expanding the above equation gives the following
contributions to the Navier-Stokes equations:

(∇ · σ2)r =
1

r

∂

∂r

[

rν̃2,rr(r)
∂ 〈w1〉

∂r

]

−
ν̃2,θθ(r)

r

∂ 〈w1〉

∂r
+ 2 (∇ · 〈ν′2 : s

′

1〉)r (11)

(∇ · σ2)θ = + 2 (∇ · 〈ν′2 : s
′

1〉)θ (12)

(∇ · σ2)z =
1

r

∂

∂r

[

rν̃2,zr(r)
∂ 〈w1〉

∂r

]

+ 2 (∇ · 〈ν′2 : s
′

1〉)z . (13)

These equations show how, in addition to viscosity-
velocity correlations, both the diagonal and off-diagonal
components of the stress tensor act on the solvent. While
it has been shown that at least at the Maximum Drag Re-
duction limit all components of the polymer stress tensor

are coupled [39], one can expect that by leaving out dif-
ferent terms in the above equations their contribution to
drag reduction can be investigated. Based on work by
L’vov et al. [23] the results of this can already be found
in literature [27, 28], where the above viscosity tensor is
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Figure 4: Average relative length of the end-to-end vector of
the polymer dumbbells.

replaced by a scalar viscosity function ν̂2(r). The contri-
bution to the Navier-Stokes equations can then be writ-
ten as:

∇ · σ2 = ∇ · (ν̂2(r)s1) , (14)

which, after Reynolds decomposition, gives a contribu-
tion of the form:

(∇ · σ2)r = 0 (15)

(∇ · σ2)θ = 0 (16)

(∇ · σ2)z =
1

r

∂

∂r

[

rν̂2(r)
∂ 〈w1〉

∂r

]

. (17)

The above equations only contain the off-diagonal shear
viscosity component and none of the extensional viscosity
or viscosity-velocity fluctuations. Calculating the fiber
viscosity function and using this as an input in a new
simulation, all the characteristics of the drag reduced flow
can be recovered [28]. De Angelis et al. [27] showed that
a viscosity gradient at the wall is also able to reproduce
the characteristics of a polymer drag reduced flow. This
means that not only fluctuations can be ignored [28], but
also shows that the diagonal components of the stress
tensor, and thus extensional viscosity, can be neglected.
Figure 3 shows the effective polymer and fiber viscosi-

ties calculated from the stress tensor. Their shape of a
gradient at the wall and a plateau in the center is consis-
tent with the viscosity profile used by De Angelis et al.
[27].
To further explore the idea of polymers and fibers cre-

ating drag reduction by rotation, the average relative
length of the end-to-end vector of all dumbbells normal-
ized by their maximum extensions are shown in Figure 4.
Because the molecular weight is kept constant between
the different simulations, the maximum extension is 1
for all cases. The dumbbell with a Deborah number of
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Figure 5: Standard deviation of the torque exerted by the
polymer dumbbells on the solvent.

De = 0 is always fully extended. Because it represents
the most elastic dumbbell with the longest relaxation
time, the dumbbell with a Deborah number of De = 10
gets stretched further than the dumbbell with a Deborah
number of De = 1. This is in agreement with the results
shown in Figure 2, which showed that De = 0 displays
the largest amount of drag reduction followed by Deborah
numbers De = 10 and De = 1. Both elastic dumbbells
are stretched the most when close to the wall where gra-
dients are the largest, and relax towards the center of the
pipe. That the amount of drag reduction is proportional
to the average relative length of the end-to-end vector
of the fibers and dumbbells, i.e. their moment arm, and
not to the amount of turbulent kinetic energy that can be
stored in the backbone, is an additional indication that
polymer rotation is essential for drag reduction in the
onset regime.
In addition to the end-to-end vector, one can also look

into the standard deviation of the torque, which is shown
in Figure 5. The torque on the solvent is defined as:

T2 = −
n

2V

〈

∆x2 ×∆F
h
2

〉

(18)

where n is the number of polymer dumbbells in volume V ,
∆x2 = x2,A−x2,B is the moment arm (i.e. the end-to-end
vector), ∆F

h
2 = F

h
2,A−F

h
2,B, with F

h
2,i the hydrodynamic

drag force on bead i, and 〈〉 indicates an ensemble average.
Because of the symmetry of the polymer stress tensor,
all components of the torque vector on average are zero.
By looking at the standard deviation of the torque, it is
possible to gain more insight into polymer/fiber-solvent
interactions. Away from the wall the standard devia-
tion of each torque component is about the same for
each polymer, indicating that they are freely tumbling
around in the bulk. However, as the wall is approached,
the different components diverge. The torque has three
contributions: i) the length of the moment arm or end-to-
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end vector, ii) the magnitude of the hydrodynamic forces,
and iii) the wall blocking rotation. For the radial com-
ponent, the wall does not block rotation, and the arm is
maximized due to alignment in the streamwise direction.
This results in a strong increase of the radial torque fluc-
tuations at the wall. In the streamwise direction, on the
other hand, the wall is blocking full rotation, which gives
fluctuations which decline monotonically to zero at the
wall. For the angular torque fluctuations, the component
associated with the shear viscosity, close to the wall rota-
tion is blocked, so the fluctuations go to zero. However,
further away from the wall, the maximum moment arm
causes a large increase in the torque fluctuations. This
shows that, although elasticity is not strictly necessary
for drag reduction, the coil-stretch transition is impor-
tant for polymer drag reduction because it generates a
moment arm. Another way of looking at this is that a
polymer coil without any stretching can be thought of as
a rough sphere which has no drag reducing effect. Fibers,
on the other hand, because of their aspect ratio, always
have a drag reducing effect. Polymer elasticity allows
the roughly spherical coil to stretch into an anisotropic
state with an aspect ratio larger than unity. It is not
the elasticity that makes a polymer drag-reducing, but
the fact that it can transform into anisotropic conforma-
tions. This is consistent with the results of Sibilla and
Baron [25] who suggested that shear viscosity cannot be
neglected, and Kim et al. [26], who found that counter-
torque by polymers suppresses the formation of hairpin
vortices at the wall.

IV. CONCLUSIONS

To summarize, analyzing the polymer stress tensor it
can be observed that polymer and fiber stress tensors
show the same characteristics. This indicates that, at
least in the low drag reduction regime, polymers and
fibers show the same drag reduction mechanism. Be-
cause fibers cannot store turbulent kinetic energy in their
backbone, this mechanism has to be caused by viscos-
ity effects. We find that the viscous effect arises from
rotational motion of fibers and partially stretched flexi-
ble chains, which is taken as the unifying drag reduction
mechanism in the onset regime. Although viscous effects

have been previously attributed to drag reduction in the
MDR asymptote regime by L’vov et al. [23] and Benzi
et al. [24], they have argued that the physical origins of
drag reduction by flexible polymers and rigid fibers are
different. The difference in scaling between elastic and
rod-like polymers suggested by Benzi et al. [24] is not
observed in our simulations. It must be emphasized that
the conclusions of Benzi et al. [24] deal with the regime
of maximum drag reduction (MDR) asymptote, whereas
our present work is in the onset regime of drag reduction.
In addition, Benzi et al. [24] assume the polymers are
in the Hookean regime while our dumbbells are modeled
as Finite Extensible Nonlinear Elastic (FENE) springs.
Our result in the onset regime is qualitatively different
from the arguments in [30] that for flexible polymers the
main source of interaction with turbulent fluctuations is
the stretching of polymers by the fluctuating shear and
for rod-like polymers dissipation is only taken as the skin
friction along the polymer. We find that the molecular
rotation is the microscopic mechanism for the onset of
drag reduction. By analyzing the different contributions
to the effective viscosity tensor, based on work by L’vov
et al. [23], De Angelis et al. [27], and Gillissen et al. [28],
it is found that all terms can be neglected except for
the off-diagonal component associated with polymer and
fiber rotation. To further explore the idea of polymer
and fiber rotation being important in the onset of drag
reduction regime, polymer and fiber torque fluctuations
are investigated. The results suggest that the reason that
the coil stretch transition is important for polymer drag
reduction is that it generates a moment arm. This is
consistent with the results of Kim et al. [26].

Based on the findings in this work, we propose the
rotational orientation time [40, 41] as a time criterion for
drag reduction.
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