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ABSTRACT 

Mass fractal scaling, reflected in the mass fractal dimension d f , is independently 

impacted by topology, reflected in the connectivity dimension c , and by tortuosity, 

reflected in the minimum dimension dmin . The mass fractal dimension is related to these 

other dimensions by df = cdmin .  Branched fractal structures have a higher mass-fractal 

dimension compared to linear structures due to a higher c , and extended structures have 

a lower dimension compared to convoluted self-avoiding and Gaussian walks due to a 

lower dmin .  It is found, in this work, that macromolecules in thermodynamic equilibrium 

display a fixed mass-fractal dimension, d f , under good solvent conditions, regardless of 

chain topology.  These equilibrium structures accommodate changes in chain topology 

such as branching, c, by a decrease in chain tortuosity, dmin . Symmetric star polymers 

are used to understand the structure of complex macromolecular topologies. A recently 

published hybrid Unified scattering function, accounts for inter-arm correlations in 

symmetric star polymers along with polymer-solvent interaction for chains of arbitrary 

scaling dimension. Dilute solutions of linear, 3-arm and 6-arm polyisoprene stars are 

studied under good solvent conditions in deuterated p-xylene. Reduced chain tortuosity 

can be viewed as steric straightening of the arms.  Steric effects for star topologies are 

quantified and it is found that steric straightening of arms is more significant for lower 

molecular weight arms. The observation of constant d f  is explained through a 

modification of Flory-Krigbaum theory for branched polymers. 
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INTRODUCTION 

The physical properties of branched polymers are different from linear chains of 

comparable molecular weight [1-3]. Amongst various possible branched architectures, 

symmetric star polymers are one of the simplest topologies and have been widely studied 

from the perspective of synthesis, structure, properties and application [4-8]. Star 

polymers are branched macromolecules with all branches or “arms” emanating from a 

core. The presence of structural constraints, owing to the presence of a common branch 

point, leads to differences in chain conformation and thermodynamics in star polymers 

compared to their linear counterparts [9-15]. Moreover, the number and structure of arms 

have been found to have direct consequences on rheological properties of branched 

polymers [16-18]. 

Zimm and Stockmayer (Z&S) evaluated the radius of gyration, Rg
star , of a star 

polymer with f arms in dilute solution assuming that intra- and inter-arm spacings follow 

Gaussian statistics [11, 12],   

Rg
star = Rg

arm 3 f − 2
f

⎛

⎝
⎜

⎞

⎠
⎟

1
2
                   (1) 

where, Rg
arm  is the radius of gyration of a Gaussian linear chain in dilute solution with the 

mass of one arm. A notable result inferred from equation (1) is that the ratio, Rg
star Rg

arm

has a maximum limiting magnitude of 3  as, f → ∞ under a Gaussian assumption. This 

result is rather meaningless since steric constraints would render the arms highly non-

Gaussian at high f . Moreover, the results from the Gaussian approximation for stars 

may not hold under virtually any conditions since the intra-molecular excluded volume 



 4

becomes more significant due to increase in segment-segment interactions near the 

branch point and the Gaussian assumption fails to recognize the singular nature of the 

branch point [19]. For stars with higher functionality, the arms of the star might behave 

as stiff chains with a limiting conformation of rigid straight arms for very high f . 

Assuming a limiting rigid straight arm configuration for stars, Rg
star Rg

arm ~ zarm , for

f → ∞, where zarm  is the mass associated with each arm and Rg
arm  is assumed to be 

Gaussian.  This is significantly larger than the prediction of equation (1) at large f . 

Daoud & Cotton (D&C) and later Birshtein & Zhulina addressed the issue of 

minimization of the free energy due to intermolecular interactions by generalizing the de 

Gennes’s scaling (blob) model for star polymers [12-14, 20]. The inter-arm repulsive 

interaction was minimized by assuming that equal segments of the arms are confined to 

growing spherical blobs that can fit into a cone as the arms extend away from the branch 

point (core). The star polymer adopts a conformation in which each of the f  arms is 

constrained within a cone of solid angle 4π f  radiating from the branch point which 

leads to increases in the mean separation between the arms with the distance from the 

center [13, 19]. As per the D&C model, the star polymer is confined to shells of 

decreasing chain density. There is no scattering function associated with D&C model so 

it is difficult to directly verify this structural model. Under another widely used theory for 

the star polymers, the chain structure does not display core/shell morphology but it rather 

acquires a uniform chain density as per the Benoit’s model for star polymers [21, 22]. 

The Benoit model assumes Gaussian conformation consistent with the Zimm and 

Stockmayer model but allows for inter-arm correlations that have been verified 

experimentally 
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The Daoud and Cotton, DC, model describes the conformation of a star polymer 

with f  arms with l  and v  as the monomer length and excluded volume [13, 14, 20]. 

According to the DC model, a star polymer has a solid core of radius r2 ~ f 1 2l , where the 

monomer concentration φ r( )  is constant since φ r( ) ~ M V  and for a 3-dimensional solid, 

M ~ r l( )3  and V ~ r l( )3 . Thereafter, φ r( )  varies as r l( )−1 between r2  and r1  which fits 

Gaussian scaling since for a Gaussian chains, M ~ r l( )2  and V ~ r l( )3  leading to 

φ r( ) ~ r l( )−1 , where r1 ~ f 1 2v−1l . Finally, φ r( ) ~ r l( )−4 3  for r > r1 , which suggests good 

solvent scaling for larger distances from core since for a chain under good solvent 

condition, M ~ r l( )5 3  and V ~ r l( )3  leading to φ r( ) ~ r l( )−4 3 . The modified Flory-

Krigbaum model, presented below, predicts that φ r( ) ~ r l( )−4 3  irrespective of distance 

from core, similar to the Zimm-Stockmayer and Benoit models, with packing constraints 

accommodated by straightening out of the arms near the core. The Kuhn unit density is 

constant with good solvent scaling through out the star. The model follows the same 

scaling laws as the large distance prediction of the DC model.  

 For the “swollen region” [13] of the star, the DC model predicts, 

R ~ f
1
5 z

f
⎛

⎝
⎜

⎞

⎠
⎟

3
5
VC

1
5lk ~ f

−2
5z

3
5VC

1
5lk                           (2) 

where, R  is the chain end to end distance and VC  is the excluded volume per Kuhn unit 

of length lk . z = fzarm  is the total mass associated with all the f  arms of the star polymer. 

On the other hand, for the “unswollen” region, 
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R ~ f
1
4 z

f
⎛

⎝
⎜

⎞

⎠
⎟

1
2

lk ~ f
−1

4 z
1
2lk                    (3) 

 For comparison, using Zimm and Stockmayer’s equation (1), Orofino predicts the 

size of symmetric star polymers to be [11, 23, 24], 

R ~ 3 f − 2
f

⎛

⎝
⎜

⎞

⎠
⎟

1
2 z

f
⎛

⎝
⎜

⎞

⎠
⎟

1
2

lk ~
3 f − 2( )

1
2

f
z

1
2lk              (4) 

for θ −solvent conditions. 

Modification of the Flory-Krigbaum Model for Star Polymers 

Flory and Krigbaum [25-27] predicted that the expected mass-fractal dimension 

for a linear chain ( c =1 defined below) in a good solvent is 5/3 ( dmin = d f = 5 3 defined 

below).  This is obtained by modification of the Gaussian chain probability function by a 

term reflecting self-avoidance resulting in the expression, 

W R( ) = kR2 exp − 3R2

2zlk
2 − z2VC

2R3

⎛

⎝
⎜

⎞

⎠
⎟
              (5) 

where k  is a constant. The first term describes Gaussian scaling and the second term 

reflects excluded volume by considering the probability of one Kuhn unit being excluded 

by one of the other Kuhn units of the chain. Assuming that, due to symmetry, a linear 

chain of length 2π f  has the same size as a star of mass z  if the two structures have the 

same degree of tortuosity reflected in dmin , 2π f( )  substituted for z  in equation (5).  In 

the symmetric star VC  from the linear chain of length 2π f  is amplified by f . So fVC  
substitutes for VC , 
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W R( ) = kR2 exp − 3 fR2

4zlk
2 −

2z f( )2 fVC

2R3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟= kR2 exp − 3 fR2

4zlk
2 − 2z2VC

fR3

⎛

⎝
⎜

⎞

⎠
⎟
                  (6) 

Equation (5) can be minimized to find the most likely chain end-to-end distance, R* , 

ignoring higher order terms, 

R* = R*
0

2z
1
2VC

lk
3

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

1
5

= kz
3
5VC

1
5lk

2
5

                               (7)
 

A similar minimization of equation (6) yields, 

R* = k z
f

⎛

⎝
⎜

⎞

⎠
⎟

3
5

fVC( )
1
5 lk

2
5 = kf

−2
5 z

3
5VC

1
5lk

2
5

                    (8)
 

Equation (8) predicts that d f  is independent of f  since R* ~ z1 d f , and that d f = 5 3 for 

macromolecules in good solvents regardless of topology. Equation (8) also predicts a 

dependence on functionality similar to that of DC model described by equation (2).  It is 

expected that Gaussian chains will display a mass fractal dimension of 2 regardless of 

chain topology, as assumed by the DC and Zimm and Stockmayer models. For chains 

with a fixed mass fractal dimension and variable branch content the connectivity 

dimension will increase with branching, and since dmin = d f c , a reduction in dmin  and 

straightening out of the star arms is expected, as discussed below. Table 1 shows the 

three predictions for chain size from the ZS, DC and modified FK models.   

SCALING MODEL FOR SYMMETRIC STAR POLYMERS 

In this paper, a newly proposed method to analyze scattering from star polymers 

is used based on a scaling model that allows for study of steric chain extension as well as 
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accounting for polymer-solvent interactions. The scaling approach quantifies the 

topological as well as thermodynamic parameters for different molecular weights for 

their linear, 3-arm and 6-arm polyisoprene stars under good solvent condition at 34.5 ˚C 

in deuterated p-xylene [28].  

In the scaling model a macromolecular chain composed of z  Kuhn units of length 

lk  [29] is considered. Figure 1 shows a 6-arm symmetric star polymer.  The structure 

displays tortuosity in the chain path associated with a competition between thermal 

randomization of the chain structure, chain continuity and steric constraints. The structure 

also displays topological connectivity that is independent of these thermodynamic and 

steric constraints. These features can be distinguished by considering the average 

minimum path of p  Kuhn units through the structure [30-32]. One possible minimum 

path is shown in units with dark borders in figure 1. In addition to an average minimum 

path, an average connectivity path of s  Kuhn units composed of straight lines connecting 

the branch point and chain end-points is considered as shown by solid black lines in 

figure 1. In the case of symmetric star polymers, the minimum path is composed of two 

arms of the star polymer (dark units in figure 1). For a symmetric star polymer, the 

average minimum path, p , is given by, 

p = 2 z
f

⎛

⎝
⎜

⎞

⎠
⎟                 (9) 

In general, the minimum path, p , is related to the mass, z , through the connectivity 

dimension, c, which represents the mass fractal dimension for the connectivity path. On 

the other hand, the connectivity path of s  is related to the mass through minimum 

dimension, dmin , which represents the mass fractal dimension for the minimum path. Two 
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pairs, s : dmin  and p : c , work in tandem to represent the whole structure as a mutually 

conjugate set of parameters such that the mass, z , can be obtained by raising the 

connectivity path, s , to the minimum dimension, dmin , or alternately, raising the 

minimum path, p , to the topological connectivity dimension, c , giving, [31, 33, 34] 

z = pc = sdmin                     (10)  

 The connectivity dimension, c, quantifies the structural connections between the 

various arms of the polymer and is related to the fractal dimension, df, by [31], 

df = cdmin                (11) 

c increases with increased branching or connectivity, while d f  increases with tortuosity 

in the chain. For a linear polymer chain, dmin = d f  and c =1  while, for a completely 

connected regular object like a sphere or a collapsed coil, d f = c  and dmin =1, since the 

minimum path becomes a straight line across the whole mass. For a chain under good 

solvent conditions, dmin = 5 3 [31].  

For symmetric stars, the mole fraction branch content φBr( )  is given by [31],  

φBr =
z − p( )

z
=1− z

− 1−1
c

⎛
⎝
⎜

⎞
⎠
⎟
=

f − 2( )
f

            (12) 

where, z − p( )  represents the mass of the coil that does not lie on the minimum path. 

Further, the connectivity dimension, c, may be evaluated for symmetric stars from 

equation (12) as [28], 

c = ln z

ln z + ln 2
f

⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎩

⎫
⎬
⎭

                                                                                                           (13) 
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 A “meandering” mole fraction φM( )  can be defined as the fraction that accounts 

for mass that is not used in direct or linear connectivity [28], 

φM =
z − s( )

z
=1− z

− 1− 1
dmin

⎛

⎝
⎜

⎞

⎠
⎟                                                                                                  (14) 

 As the functionality, f , increases, dmin  and φM  are expected to decrease since 

steric constraints on the chain conformation increase in comparison to linear chains. For 

linear chains in the absence of steric effects, ideal scaling behavior is expected. For a 

good solvent, dmin ≈ 5 3. Steric interactions between arms in a star have the effect of 

extending the star arms towards, dmin →1, for a fully extended chain. The limits of an 

unperturbed (linear) chain and a fully extended chain can be used to define a measure of 

steric interaction between the arms of a star as [28, 35], 

φSi =
Δs

f

Δs
∞

=
s f − slinear

s∞ − slinear

= z
1

dmin − z
1

d f ,l

z − z
1

d f ,l

                              (15) 

where d f ,l  is the fractal dimension of an unperturbed arm under the given solvation 

conditions [28] and therefore, d f ,l ~ 5 3 under good-solvent conditions, and 2 under theta 

solvent conditions. φSi  is an unique quantitative measure of steric effects in stars 

(extendible to any branched structure). For star polymers, φSi  is the fraction of the extra 

extension, Δs
f
, in an arm induced due to presence of other connected arms in the chain, 

to that of the maximum possible extension under f → ∞ condition, Δs
∞

. It provides a 

quantitative measure of the extension of an arm induced due to presence of other arms in 

the chain. In absence of other branches, i.e. for linears, φSi  is zero while it is maximum at 

1, for a star with straight arms. 
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Scattering Functions for Star Polymers: 

Small-angle scattering can be used to quantify the scaling model parameters [28, 

31, 36-38]. For macromolecules in dilute solution, contrast enhancement is often 

achieved by examining hydrogen polymers in deuterated solvents using neutron 

scattering (SANS). 

In order to examine stars under good solvent conditions, a fractal model by 

Teixeira et al. [39], has been employed [40], which is based on the pair correlation 

function [41], 

g r( ) ~ rd f −3e−r ξ
                                                                                                                (16) 

This pair correlation function takes advantage of the simple Fourier transform of a fractal 

scattering power law for the first term.  The problem with this transform is that it reaches 

infinity at r = 0  making the inverse transform impossible. Since there is no basis to “cut-

off” the power-law term at low r , an ad hoc approach is introduced. In equation (2), r  is 

the distance between chain units, d f  is the fractal dimension and ξ  is defined as the 

fractal correlation length which is an artificially introduced size scale for the ad hoc 

exponential ‘cutoff’ term in equation (16). This exponential term was proposed by Debye 

and Bueche when they observed the scattering profile of blue light by Lucite [42]. Debye 

and Bueche treated g r( )  in a similar way to Debye’s charge screening function 

parameterized by the screening length. They introduced an exponential cut-off function 

as an “example” after defining ξ  as a “kind” of correlation length, in direct analogy to a 

screening length [42]. Equation (16) is used to obtain the scattered intensity given by 

Teixeira et al. [39], 
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I q( ) =1+ 1
qRm( )d f

d f Γ d f −1( )
1+ qξ( )−2{ }

d f −1( )
2

sin d f −1( ) tan−1 qξ( ){ }                                               (17) 

where, q = 4π
λ

sin θ
2
⎛
⎝
⎜

⎞
⎠
⎟ , is the scattering wave vector for a radiation of wavelingth λ  and 

Rm  is the mean radius of the particle. Equations (16) and (17) are based on the ad hoc 

exponential cutoff term, e−r ξ , that was an empirical proposition of Debye and Bueche 

[42]. The exponential function has no connection to physical structure and the length 

scale ξ  lacks physical meaning.  

Benoit evaluated intensity for a star poymer with f  arms by modifying Debye’s 

scattering function for a Gaussian polymer chain to account for inter-arm interactions 

[43-45], 

I q( ) ≈ 2
fx2 x − 1− e− x( ){ } + f −1

2
1− e−x( )2{ }⎡

⎣⎢
⎤
⎦⎥                                                               

(18) 

with, x = f
3 f − 2

q2 Rgarm

2  where, Rgarm

2  is the Gaussian mean squared radius of gyration 

of an arm. Equation (18) includes two terms in the main bracket, the first of which 

reflects scattering from the f  arms as individual Gaussian chains, 

I1 q( ) ≈ 2
x2 x − 1− e−x( ){ }

 
 and is similar to Debye’s scattering function for linear chains.  

This term dominates the scattering at very high-q. The second term in the main bracket, 

I2 q( ) ≈ f −1
fx2 1− e−x( )2{ } , reflects interference between chain units on different arms of 

the star polymer and dominates the scattering at intermediate and low-q but imparts 

negligible contribution to the scattered intensity at high-q. Therefore equation (18) 
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predicts a slope of -2 at high-q associated with a Gaussian chain.  This is consistent with 

the modification of the Flory-Krigbaum theory presented above for star polymers and the 

Zimm-Stockmayer prediction for star size. The Beniot model is a fractal model with 

constant chain scaling, that is, it does not agree with the DC model.  For Gaussian stars 

the Benoit model has been widely used to model scattering data. 

Hybrid Unified Fit Function 

Generally, SANS data from a dilute polymer solution displays two structural 

levels [28, 32, 35]. In each structural level, a Guinier's law, I q( ) ~ G exp −q2Rg
2 3( ) , and 

a power-law, I q( ) ~ Bf q
−d f , are observed at lower and higher q-values respectively, 

where G , Rg , Bf  and d f  are the Guinier’s law prefactor, radius of gyration, power-law 

prefactor and fractal dimension 1 ≤ d f ≤ 3( )  respectively. Together, these laws give an 

account of local features like size ( Rg  and persistent length, lp = lk 2) and mass fractal 

dimension. However, in star polymers, owing to the common branch point for the arms, 

Benoit found that another set of Guinier and power laws are induced due to inter-arm 

interactions [45]. This has been experimentally demonstrated. In addition to these 

structural parameters, the Flory interaction parameter, χ , can be quantified using the 

random phase approximation, RPA, equation, accounting for the enthalpy of mixing for a 

polymer in solution. Taking account these interactions in the star polymer under dilute 

solvent conditions, Rai obtained [28], 
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1
I q( )

= 1
Gf

f −1
2

e− qRg( )2
3 +

dmin
2 Γ d f −1( )

Rg
2d f

e− qlp( )2
9 qf

*( )−2d f
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

+ e− qRg( )2
3 + K f e

− qlp( )2
9 qf

*( )−d f{ } + 1
z

e− qlp( )2
9 + zKp qp

*( )−1{ }

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

−1

+ zφKv 1− 2χ
Kv

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 

     (19)

 

where, Γ  is the gamma function,
 
qi

* = q erf qkscRg,i 6( ){ }3
, ksc ≈ 1.06, and erf  is the 

error function [33, 34]. Equation (19) has three structural levels in the square bracket 

along with a term outside of the square brackets that accounts for the enthalpy of mixing. 

χ  is the Flory-Huggins’ interaction parameter per Kuhn unit and is based on the zero 

conformational entropy units, the Kuhn units, rather than the chemical mer units, φ  is the 

polymer volume fraction and Kv =
vpol

vsol

, where, vpol  and vsol  are the segmental volume of 

the Kuhn unit and the solvent molecule respectively. Amongst the three pairs of structural 

terms in the square brackets, the first term with lead factor of f −1( ) 2  accounts for the 

inter-arm interactions similar to Benoit’s second term in equation (18). The second term 

accounts for scattering from the star in the absence of correlations between arms while 

the third term with subscript p represent the rod-like persistent scaling regime. In each 

bracket, the first term represents the Guinier’s exponential decay and the second term 

yields the power-law. z = Gf Gp , is the weight average number of Kuhn units in the star 

molecule [31]. K f  and Kp  are ratios of power-law prefactor to Guinier prefactor for 

fractal and persistent regimes. lp  and Rg  are the persistent length and the radius of 

gyration of the fractal star polymer respectively [32]. It is assumed here that the Kuhn 
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length, lk = 2lp  is the zero entropy unit [29] for the star. The Guinier prefactor for the 

fractal regime, Gf  is given by [28], 

Gf = vpolzφNA bpol − bsol( )2
                              (20) 

where, and bpol  and bsol  are the scattering length densities of polymer Kuhn unit and 

solvent molecule respectively [28, 46]. dmin  for a monodisperse star is given by [28, 31, 

32, 47], 

dmin =
Bf Rg

d f

Gf Γ
d f

2
⎛

⎝
⎜

⎞

⎠
⎟

                 (21) 

Equation (21) is valid for monodisperse samples [32, 47]. The second virial coefficient 

A2( )  is related to the Flory’s χ -parameter by, [28] 

A2 =

1
2

− χ⎛
⎝
⎜

⎞
⎠
⎟

Vpolρpol
2                                (22) 

where, Vpol  and ρpol  are the molar volume of the solvent and the density of polymer 

respectively. 

MATERIAL AND METHODS 

Small-angle neutron scattering (SANS) was performed on one weight percent 

solutions of polyisoprene stars in deuterated p-xylene at 34.5 ˚C. Deuterated p-xylene 

was purchased from Cambridge Isotopes. A small amount of 500 ppm of 

butylhydroxytoluene was added as a stabilizer before addition of polymer. It was 

experimentally determined that the solutions were below the overlap concentration. 



 16

SANS experiments were carried out at the HFIR CG-2 General-Purpose SANS facility at 

Oak Ridge National Laboratory (ORNL) and at the NCNR NG7 SANS facility at the 

National Institute of Standards and Technology (NIST).  At CG-2, SANS experiments 

were run at sample to detector distances of 18.5 and 0.75 m, while at NG7, experiments 

were done at 15, 7 and 1m. The low-q data was calibrated with aluminum standard to 

obtain absolute intensity.  

Two linear standards were purchased from PSS Polymer Standards Service 

GmbH, Mainz, Germany with Mw of (i) 23.6 kg/mole, Mn of 23.3 kg/mole, PDI of 1.01 

and (ii) 85.4 kg/mole, Mn of 84.2 kg/mole, PDI of 1.01. Other linear, three arm, four-arm 

and six-arm polyisoprene stars were synthesized by anionic polymerization utilizing high 

vacuum techniques and standard chlorosilane chemistry [48]. In brief, all polymerizations 

and linking reactions were carried out in evacuated, n-BuLi-washed, and solvent-rinsed 

glass reactors. Reagents were introduced via break-seals and aliquots for characterization 

were removed by heat-sealing of constrictions. Firstly, narrow molecular weight linear 

living polyisoprenes were prepared, with sec-BuLi as initiator, in benzene at 25 ˚C. A 

small aliquot of the living PI was removed, terminated with degassed MeOH, and used 

for molecular weight characterization (arm of the star). The living polyisoprenyllithium, 

prior to reaction with the multifunctional chlorosilane compound, was end-capped with a 

few butadiene (Bd) units, in order to increase the living site reactivity. Trichloromethyl 

silane (CH3SiCl3), tetrachlorosilane (SiCl4) and 1,2-bis(trichlorosilyl)-ethane (6-SiCl) 

were used as coupling agents for the synthesis of 3, 4 and 6-arm star PIs respectively. 

About 10% excess of the living end-capped PI to the SiCl, was used in order to force the 

linking reaction to completion. The excess living chains were terminated with degassed 
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methanol and the final products (star + excess arm) were extensively fractionated 

(solvent/non-solvent: toluene/methanol) to remove the arm chains [48].  

All intermediates and final products were analyzed by SEC and nuclear magnetic 

resonance (NMR). Size exclusion chromatography (SEC) experiments were carried out at 

25 ˚C with a Waters model 510 pump, a Waters model 410 differential refractometer, and 

three Styragel columns having a porosity range from 103 to 106 Å. The carrier solvent 

was a mixture of chloroform/triethylamine (95/5, v/v) at a flow rate of 1.0 mL/min. 

Polystyrene standards were used for calibration, the Mn was obtained after applying 

appropriate correction coefficients. For all arms and stars the polydispersity index was 

lower than 1.1. The details for samples are givin in table 2. NMR spectra, generated with 

a Bruker 400-MHz instrument in CDCl3 at 25 ˚C, revealed that all PIs have a high 1,4-

content (93-94 %). 

RESULTS AND DISCUSSION 

The distinguishing feature of the SANS data on all samples is a power-law decay 

of close to -5/3 slope reflecting a mass fractal dimension of 5/3 following the prediction 

of equation (8), as shown in figure 2.  In addition to this feature a prominent knee is 

observed at low-q reflecting correlations between the star arms. The effect of arm length 

can be seen in figure 2(b) where the knee shifts towards lower-q for higher arm molecular 

weights. Equation (19) was used to fit the experimental curves for the star samples listed 

in table 2, also shown for 4-arm stars in figure 2(b). The fitting and evaluated scaling 

parameters from the hybrid Unified fit are tabulated in table 3.  
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 For constant arm length, both z  as well as Rg  increase with increase in 

functionality, as shown in figure 3(a) and (b). The persistence length, lp , varies in the 

range of ~12.5±1.5 Å except for the linear sample for the 38k series. z , Rg  and lp  all are 

somewhat higher for this sample. 

 The χ -parameter was constant within error limits at ~0.22±0.04, shown in figure 

4(a). This agrees rather well with the reported values of 0.27 in literature [49, 50]. It 

should be pointed out that the χ -parameter evaluated here is based on the zero entropy 

Kuhn unit rather than the chemical mer unit. The second virial coefficient, A2 , shown in 

figure 4(b), has a value of ~0.0026±0.0004 molcm3 g2 . None of these local enthalpic 

parameters are affected by functionality or molecular weight of the star polymers.  

 The data shows a rather constant fractal dimension, d f , close to 5/3 across all sets 

of samples, figure 5(a), consistent with equation (8). The natural tendency for the 

structures to equilibrate to d f = 5 3  is remarkable, supporting the modified Flory-

Krigbaum prediction. The connectivity dimension, c , shown in figure 5(b), is bound by 

equation (12) to the functionality, f  and z . Therefore differences between the three sets 

of samples with the same functionality reflect the effect of mass alone. Figure 5(b) also 

shows that c  is high for short armed stars which is consistent with equation (13). dmin , 

figure 5(c), is a conjugate parameter reflecting the average tortuosity in the structure. The 

decrease in tortuosity with functionality indicates that the arms straighten out as 

functionality increases, maintaining a constant mass fractal dimension. As c  is high for 

short-armed stars, dmin  actually decreases since the overall mass density remains constant. 
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It essentially means that at an average, the arms of stars with higher mass are 

comparatively more tortuous.  

The minimum path, p , is the number of Kuhn units from one side of the star to 

the other, so two arm lengths, figure 6(a). This remains constant with functionality for a 

fixed arm mass, as anticipated. The connective path, s  quantifies the mass of a stick 

figure structure connecting end points and the core in terms of number of Kuhn units, 

shown in figure 6(b). Normalizing by the number of arms, s f , it can be clearly seen that 

the arms straighten out with increasing functionality, shown in figure 6(c). s  increases 

with functionality due to straightening of the arms. s  also increases with mass of the 

arms. The meandering mole fraction, φM , which is the fraction of chain that accounts for 

mass that is not used in linear (stick figure) connectivity can be evaluated using equation 

(9). φM  decreases with increase in functionality, shown in figure 6(d), indicating that  the 

arms are less convoluted with increasing functionality.  

 The monomer density of the chain is a function of the mass, ρ = z
1− 1

d f . The stars 

display constant mass fractal dimension according to equation (8). Since the mass fractal 

dimension is constant, there is no significant change in local density as a function of 

radial position in the star as was predicted by the D&C model. Rather, the stars behave 

similar to the Benoit fractal model, but with good-solvent scaling. The radially varying 

feature of the star structure is an increase in chain tortuosity with distance from the core 

rather than the density gradient assumed in the D&C model. The radial increase in 

tortuosity allows for a constant radial density profile. 

The scaling parameters consistently point toward straightening of the arms with 

functionality, shown in figure 5. The local mass density, reflected in the mass-fractal 
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dimension, remains the same, Figure 5(a), while the minimum dimension decays with 

functionality indicating a reduction in tortuosity with functionality. Such a steric 

phenomenon can be quantified using equation (15). φSi  is a mole fraction quantifying 

steric effects, shown in figure 7(a).  Steric effects are greater at higher functionalities and 

lower arm molecular weights. φSi  for the 6-arm stars rise to 0.36±0.06, 0.181±0.007 and 

0.135±0.004 for 10.5k, 38k, and 46k-arm stars respectively. The corresponding φSi  for 4-

arm stars are 0.17±0.02, 0.101±0.001, and 0.085±0.005 and that for 3-arm stars are 

0.104±0.006, 0.059±0.003 and 0.049±0.002. φSi  for the six arm 10.5k sample is about 

36% of a fully extended arm structure!  

 Figure 8 is a schematic, projected in 2D for clarity, summarizing the scaling 

parameters considered in the present investigation. The local mass density of the structure 

remains radially the same. In order to accommodate an increase in conical volume with 

radius the chain becomes more tortuous. The results may be compared and contrasted 

with the Daoud & Cotton (D&C) model where the local density is predicted to decrease 

with radial position away from the center. The D&C model predicts three regimes based 

on relationships between density, f  and z . In contrast, the modified Flory-Krigbam 

approach and results shown here predict that the density is given by φ r( ) ~ r l( )−4 3  

irrespective of distance from core. 

CONCLUSION 

Molecular topology generally has a direct influence on the mass fractal dimension and 

other scaling dimensions for fractal structures. In this paper it is shown that polymers at 

thermal equilibrium are a distinct class of fractals where the mass-fractal dimension is not 
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affected by chain topology. The consequence of this is chain straightening with 

increasing chain complexity. A theoretical basis for this observation comes from a slight 

modification to the Flory-Krigbaum theory. 

The chain scaling dimensions and interaction parameter of star topologies was 

obtained using a hybrid Unified scattering function that accounts for inter-arm 

correlations in symmetric star polymers along with the polymer-solvent interaction 

parameter for chains of arbitrary scaling dimension. The structural and thermodynamic 

parameters for different molecular weights and functionality polyisoprene stars were 

considered under good solvent conditions.  

The results were compared and contrasted with the Daoud & Cotton (D&C) 

model where equal segments of the arms are confined to blobs of radially increasing size, 

which can fit within a cone, leading to a radially decreasing chain density. Our results 

contradicted the presumption that a radial density gradient exists. The results demonstrate 

the ability of star topologies to redistribute the mass through changes in chain tortuosity 

such that the mass fractal dimension remains constant throughout the structure and for 

stars of different functionality. 

For symmetric star polymers the branch fraction, φBr , can be directly calculated 

from the star functionality, leading to a verification of the structure. Our results quantify 

steric effects in symmetric stars and show that steric straightening in star polymers is 

more significant for lower molecular weight arms and stars with higher functionalities. A 

modification of the Flory and Krigbaum theory showed that the size of stars depends on 

the mass, functionality and Kuhn length with a similar dependence to that of the D&C 

model except that the dependence on Kuhn length is slightly different. 
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Figures and Tables 

Figure 1: Schematic of a six-arm PI star polymer of fractal dimension d f  and composed 

of z  Kuhn units of length lk . The structure can be decomposed into two sets of conjugate 

parameters describing connectivity s,c( )  and tortuosity p, dmin( ) . The connective path is 

composed of s  units and has its nascent fractal dimension called the connective 

dimension c; and describes the branching characteristics in chain is shown in straight 

black dashed lines. Any two branches of a symmetric star forms a minimum path across 

the whole structure composed of p  Kuhn units with a nascent fractal dimension called 

minimum dimension of dmin . p  describe the average topological tortuosity and is shown 

in units with dark borders. 

Figure 2 (a) SANS data from ~1% by weight 38k-arm star polyisoprene polymer solution 

in xylene for linear, 3-arm, 4-arm and 6-arm in black, dark grey dots, grey dash-dot and 

light grey dashes respectively (b) SANS from solution of ~1% by weight for 4-arm star 

polyisoprene in xylene for 10.5k, 38k and 46k arms in black triangles, dark grey squares 

and light grey circles with respective with Hybrid Unified Fits {Eq (19)} in solid contrast 

lines. The data and their respective fits are offset for visual clarification. Slopes of -5/3 

and -1 are also shown for reference. 

Figure 3 (a) Mass z , (b) radius of gyration, Rg , and (c) persistent lengths, lp , as a 

function of functionality, f . 

Figure 4 (a) Flory-Huggins’s interaction parameter, χ , and (b) second virial coefficient, 

A2 , as a function of functionality, f . 

Figure 5 (a) fractal dimension, d f , (b) connectivity dimension, c, and (c) minimum 

dimension, dmin as a function of functionality, f . 

Figure 6 (a) minimum path, p , (b) connectivity path, s , (c) s f , and (d) meandering 

mole fraction φM( )  as a function of functionality, f . 
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Figure 7 (a) φSi , and (b) s z  as a function of functionality, f . 

Figure 8 Schematic demonstrating changes in scaling and thermodynamic parameters 

with functionality for the same arm length. The scaling model for 6-arm is compared with 

that of Daoud-Cotton model [13]. l  and v  are monomer length and excluded volume 

associated with each monomer. 

Table 1. Summary of R  dependence on scaling parameters, f , z , lk  and VC . 

Table 2. Synthesis and characterization details for linear, 3-arm, 4-arm and 6-arm PI 

star polymers each with an arm molecular weight of ~10.5, 38 and 46 kg/mole. 

Table 3. Fitted, thermodynamic and calculated scaling parameters for PI polymer 

samples using the Unified Fit Function Eq. (19) 
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Table 1 

 

Model Theta Solvent Good Solvent 

Zimm Stockmeyer 3 f − 2( )
f

1
2

z
1
2lk  - 

Daoud Cotton
 

f
−1

4 z
1
2lk  f

−2
5 z

3
5Vc

1
5lk  

Modified Flory-Krigbaum
 3 f − 2( )

f

1
2

z
1
2lk  f

−2
5 z

3
5VC

1
5lk

2
5  
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Table 2 

 

Arm 1,4-PI Type 
M

n
 arm (kg/mol), SEC Final star-branched PI 

(SEC-MALS) 
f = M

n,star
/M

n,arm
 

Cal.
a
 SEC

b
 M

w
/M

n
 M

n
, kg/mol M

w
/M

n
 Cal.

c
 SEC

d
 

10.5k 

Lineara 23.6 - 1.01 - - Linear - 

3-arm  10 10.5 1.02 30.27 1.02 2.88 3.03 

4-arm  10 10.5 1.02 39.76 1.03 3.79 3.98 

6-arm  10 10.5 1.02 64.05 1.02 6.10 6.41 

38k 

Linear 74 68 1.01 68.13 1.02 Linear - 

3-arm  35 38 1.03 101.0 1.01 2.66 2.89 

4-arm  35 38 1.03 133.2 1.01 3.51 1 

6-arm  35 38 1.03 201.4 1.01 5.30 5.75 

46k 

Linearb 85.4  1.01 - - Linear - 

3-arm  50 46 1.01 132.7 1.03 2.88 2.65 

4-arm  50 46 1.01 181.7 1.01 3.95 3.63 

6-arm  50 46 1.01 267.7 1.01 5.82 5.35  
aPurchased from PSS Polymer Standards Service GmbH (Mw of 23.6 kg/mole, Mn of 23.3 
kg/mole), bPurchased from PSS Polymer Standards Service GmbH (Mw of 85.4 kg/mole, 
Mn of 84.2 kg/mole),

  c
Calculated values from chemical stoichiometry, 

d
SEC/MALS 

determined values. 
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Table 3 

Arm 
MW 

f  
Rg   

Å( )  
z  d f  χ a  

103 A2  

molcm3g−2( )
lp   
Å( )

dmin  c  p  s  φBr
b  φM  φSi  

10.5k 

Linear 44.6 
±0.2 

19 
±1 

1.67 
±0.02 

0.22 
±0.03 

2.7 
±0.3 

12.5
±0.1

1.67 
±0.07

1.00 
±0.05

19.0 
±0.6 

5.8 
±0.5 

0.0 
±0.0 

0.69 
±0.06

0.0 
±0.0 

3 62 
±1 

34 
±1 

1.67 
±0.01 

0.21 
±0.03 

2.8 
±0.3 

11.8
±0.8

1.47 
±0.04

1.13 
±0.04

22.5 
±0.4 

11 
±1 

0.33 
±0.05

0.67 
±0.08

0.104
±0.006

4 67 
±2 

44 
±2 

1.69 
±0.02 

0.19 
±0.03 

3.0 
±0.3 

13.3
±0.4

1.4 
±0.1 

1.2 
±0.1 

22.0 
±0.8 

16 
±4 

0.5 
±0.1 

0.6 
±0.1 

0.17 
±0.02

6 68 
±2 

61 
±4 

1.66 
±0.01 

0.18 
±0.03 

3.1 
±0.3 

12.2
±0.3 

1.2 
±0.1 

1.4 
±0.1 

20.4 
±0.8 

30 
±10 

0.7 
±0.2 

0.5 
±0.2 

0.36 
±0.06

38k 

Linear 110 
±7 

80 
±1 

1.75 
±0.04 

0.36 
±0.02 

2.7 
±0.3 

16.6
±0.2 

1.75 
±0.07

1.00 
±0.07

80 
±1 

12.2 
±0.1 

0.0 
±0.0 

0.85 
±0.09

0.0 
±0.0 

3 114 
±2 

104 
±2 

1.66 
±0.02 

0.20 
±0.02 

2.8 
±0.3 

12.9
±0.2 

1.52 
±0.06

1.10 
±0.06

69 
±1 

21.4 
±0.3 

0.33 
±0.08

0.79 
±0.09

0.059
±0.003

4 119 
±3 

148 
±1 

1.66 
±0.01 

0.19 
±0.03 

3.0 
±0.3 

11.4
±0.2 

1.43 
±0.03

1.16 
±0.03

74.1 
±0.6 

32.9 
±0.2 

0.50 
±0.07

0.78 
±0.06

0.101
±0.003

6 133 
±5 

202 
±3 

1.66 
±0.02 

0.22 
±0.03 

3.1 
±0.3 

11.7
±0.2 

1.32 
±0.04

1.26 
±0.05

67.4 
±0.7 

56.3 
±0.6 

0.7 
±0.1 

0.72 
±0.09

0.181
±0.007

46k 

Linear 112 
±1 

98 
±3 

1.67 
±0.07 

0.17 
±0.04 

3.2 
±0.4 

11.1
±0.2 

1.7 
±0.1 

1.00 
±0.05

98 
±3 

15.5 
±0.3 

0.0 
±0.0 

0.84 
±0.06

0.0 
±0.0 

3 138 
±6 

155 
±2 

1.66 
±0.06 

0.25 
±0.09 

2.4 
±0.9 

13.4
±0.1 

1.53 
±0.08

1.09 
±0.09

104 
±2 

27.0 
±0.3 

0.3 
±0.1 

0.83 
±0.08

0.049
±0.002

4 144 
±6 

201 
±4 

1.67 
±0.04 

0.24 
±0.02 

2.5 
±0.2 

13.1
±0.6 

1.45 
±0.06

1.15 
±0.08

101 
±2 

39.1 
±0.5 

0.5 
±0.2 

0.81 
±0.1 

0.085
±0.005

6 160 
±10 

293 
±3 

1.68 
±0.05 

0.23 
±0.03 

2.7 
±0.2 

12.4
±0.2 

1.36 
±0.06

1.24 
±0.09

98 
±1 

65.3 
±0.5 

0.7 
±0.2 

0.78 
±0.2 

0.135
±0.004

 
aχ determined per Kuhn unit, bBound by equation (8) 


