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When European starlings come together to form a flock, the distribution of their individual
velocities narrows around the mean velocity of the flock. We argue that, in a broad class of models
for the joint distribution of positions and velocities, this narrowing generates an entropic effect that
opposes the cohesion of the flock. The strength of this effect depends strongly on the nature of the
interactions among birds: If birds are coupled to a fixed number of neighbors, the entropic forces
are weak, while if they couple to all other birds within a fixed distance, the entropic effects are
sufficient to tear a flock apart.

I. INTRODUCTION

Entropic forces are a familiar concept in equilibrium
statistical mechanics. From the ideal gas to the elastic-
ity of random polymers and the effective forces between
molecules in solution, we know that changing the entropy
of a system generates an emergent, phenomenological ef-
fect analogous to the forces that result from changes in
energy [1–3]. Does this intuition carry over into complex,
non-equilibrium systems?

Consider a flock of European starlings, Sturnus vul-

garis. As the birds come close to one another, they in-
teract in ways that may cause their velocities to align
[4]. If we imagine constructing the joint distribution of
velocities for all the birds in the flock, alignment means
that the entropy of this distribution goes down. Is there
an entropic effect that might push the birds apart, allow-
ing the entropy to increase? If this were an equilibrium
system, the answer would be yes. But this is not an equi-
librium system, by any means. Are there still entropic
effects?

In recent years, there has been renewed interest in the
use of maximum-entropy methods to describe the collec-
tive behavior of biological networks, with applications
spanning scales from the network of amino acids in a fam-
ily of proteins [5–9], to biochemical and genetic networks
[10, 11], networks of neurons [12–20], and flocks of birds
[21, 22]. The idea of the maximum-entropy method is
to construct the least structured model of a system that
is consistent with certain measured average properties
[23]. In particular, if the only quantity that we measure
is the energy, then constructing the maximum-entropy
distribution is exactly the construction of the thermal
equilibrium, leading to the Boltzmann distribution [24].

By using the maximum-entropy framework, we will
show that even a non-equilibrium system can be subject
to entropic effects. In the context of flocking [25, 26],
this means that birds are subject to a repulsive effect
due to the loss of entropy associated with their mutual
orientation. But, in detail, we will see that this effect
depends dramatically on the nature of the interactions
and ordering in the system. If we imagine that the flight
direction of individual birds maintains a certain level of
interaction with the average direction of its nc nearest
neighbors (“topological interactions” [27]), then these en-
tropic effects are weak and, in a sense that we will make
precise, flocks can cohere even without explicit forces
holding them together. On the other hand, if flocks are
characterized by interaction between a bird and its neigh-
bors within some characteristic distance rc (“metric in-
teractions”), then the entropic effects are strong enough
that almost all realistic flocks will be broken into multi-
ple disconnected pieces unless there are other explicitly
cohesive forces. Although such forces surely exist, recent
observations on real flocks of starlings suggest that the
positional correlations among birds are weak [28], so if
there is a strong repulsion from the entropy of flight di-
rections, these would have to be finely balanced by other
attractive interactions. Such fine tuning is unnecessary
in the case of topological interactions.

Although we can make analytic progress on evaluating
the entropic impact that results from directional ordering
in the flock, computing its effect on the distribution of the
birds’ positions must be done numerically. This becomes
challenging for large flocks, and so we have formulated a
simpler problem where we do not keep track of the full
configuration of birds’ positions in space, but only of the
graph that results from their network of mutual interac-
tions. We carry out Monte Carlo (MC) simulations in
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the space of these graphs, and we can see that the two
problems have similar structures: In particular, the dif-
ferences between metric and topological interactions arise
in both cases, and the graph model allows us to follow
these differences out to larger systems.

II. ENTROPIC EFFECTS IN

MAXIMUM-ENTROPY MODELS

The essential intuition that we use in building
maximum-entropy models for flocks of birds is that the
dominant interactions are local, thus if we want to charac-
terize the nature of order in the flock we should measure
the degree of correlation between the flight velocities ~vi

of birds and their near neighbors [21, 22]. To be concrete,
we will neglect variations in speed and consider only nor-
malized velocities, so each bird i is described by a unit
vector ~si ≡ ~vi/ |~vi|, and it is located at position ~xi. We
define a neighborhood Ni around bird i, and within Ni

there are ni neighbors—details of how this neighborhood
is defined are discussed below. To measure the correla-
tion of each bird’s flight direction with the average of its
neighbors, we compute

Cint =
1

N

N
∑

i=1

〈

~si ·
(

1

ni

∑

j∈Ni

~sj

)〉

, (1)

where the sum over index i runs over birds with ni 6=
0, and 〈 〉 denotes the average with respect to the joint
distribution of directions s ≡ {~si}. It will be crucial in
what follows that, although Cint depends explicitly on
flight directions, it depends also on the birds’ positions
x ≡ {~xi}. We can make this explicit by defining an
adjacency matrix nij(x) such that nij = 1 if j ∈ Ni, and
zero otherwise. Then we have

Cint =
1

N

N
∑

i=1

N
∑

j=1

〈

nij(x)

ni(x)
~si · ~sj

〉

, (2)

ni(x) =

N
∑

j=1

nij(x). (3)

If local correlations Cint characterize the nature of or-
dering in the flock, then a good approximation of the
full, joint distribution of flight directions can be obtained
by building the maximum-entropy distribution consistent
with the value of Cint observed in real flocks. Indeed, re-
cent studies have shown that the maximum-entropy dis-
tribution that matches Cint provides accurate, parameter-
free predictions for the behavior of two- and four-point
correlations as functions of distance [21].

We now focus on the maximum-entropy construction
for both flight directions and positions, for which there
are two different points of view that we can take. In the
first view, the relative positions of the birds are fixed, and

we construct the distribution of flight directions of a sin-
gle, connected flock given these positions: This method
has been used in a recent work by some of the authors
[21], and it is particularly useful for studying how local
correlations between flight directions result in a propaga-
tion of order out to length scales comparable to the size of
the flock. The resulting maximum-entropy distribution
is

P (s|x) =
1

Z(x)
exp



J

N
∑

i=1

N
∑

j=1

nij(x)

ni(x)
~si · ~sj



 , (4)

where, as usual, the partition function is given by

Z(x) =

ˆ

ds exp



J
N
∑

i=1

N
∑

j=1

nij(x)

ni(x)
~si · ~sj



 , (5)

and

ˆ

ds ≡
N
∏

i=1

ˆ

d~si δ
(

|~si|2 − 1
)

. (6)

The parameter J is determined by the condition that
Cint computed from this distribution matches what we
observe for the real flock, Cobs

int [21], and this is equivalent
to solving the equation

∂ ln Z(x)

∂J
= NCobs

int . (7)

This description of flight directions given the relative po-
sitions is useful in part because the neighbor relations
among birds in the flock change slowly compared to flight
directions [29], and because fluctuations in Cint from mo-
ment to moment in a single flocking event are small.

In the second approach, which is the one used in this
study, we imagine that we observe a flock for a time
long enough that the birds’ relative positions and nearest-
neighbor relations rearrange substantially, and the flock
possibly disconnects into multiple subflocks. It follows
that when we compute the average involved in defining
Cint, Eq. (2), we are averaging not just over flight di-
rections, but also over positions. Now we can ask for
the joint maximum-entropy distribution of positions and
flight directions that is consistent with the Cobs

int , and the
answer is

P (x, s) =
1

Z0
exp



J

N
∑

i=1

N
∑

j=1

nij(x)

ni(x)
~si · ~sj



 . (8)

Of course we might know more about the flock than
just Cobs

int . For example, we might have some informa-
tion about the distribution of pairwise distances between
birds, in which case the maximum-entropy distribution
becomes
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P (x, s) =
1

Z1
exp



J

N
∑

i=1

N
∑

j=1

nij(x)

ni(x)
~si · ~sj −

N
∑

i=1

N
∑

j=1

V (|~xi − ~xj |)



 , (9)

where the effective potential V (r) must be tuned to
match the distribution of pairwise distances.

Once we have a model for the joint distribution of posi-
tions and velocities, we can integrate out the velocities to
give the distribution of positions alone. We will refer to
this as the “motional distribution”, Pmot(x), because if
we start in the simplest case of Eq. (8) all the nontrivial
structure of this distribution arises from the motion of
the birds. We have

Pmot(x) ≡
ˆ

dsP (x, s) =
Z(x)

Z0
. (10)

Thus, allowing ourselves the usual language of statistical
mechanics, the free energy F (x) = − ln Z(x) acts as an
effective potential for the flock,

Pmot(x) ∝ e−F (x). (11)

Notice that if the flock is perfectly ordered, so that all
~si are equal, then the exponential in Eq. (5) is just JN ,
independent of x. In fact, real flocks are highly polarized,
and we can compute Z(x) with an expansion around this
perfectly ordered state [21, 22] by means of the spin-wave
approximation—a method used in solid-state physics to
study perturbations in fully ordered ferromagnetic states
[30]. In this approximation, the free energy F (x) is dom-
inated by the entropy of the fluctuations in the flight
directions, so that gradients in this free energy result in
an entropic effect on the birds’ spatial configuration.

We conclude this discussion with a cautionary remark
about the interpretation of maximum-entropy models,
and their relation to equilibrium statistical physics.
When we look at Eq. (11), it is tempting to note the
equivalence with a Boltzmann distribution and interpret
F (x) as the Hamiltonian of the system, and we will
sometimes lapse into this language ourselves. In more
biologically motivated models of flocks, one speaks of
“social forces” that drive cohesion and orientational or-
dering [31–35], and one might tempted to identify these
social forces with derivatives of the terms in the effective
Hamiltonian F (x), but this need not be correct. Indeed,
the maximum-entropy construction does not imply that
F (x) is really the energy of the system, nor does it even
mean that the dynamics of the system correspond to
the Brownian motion in the potential F (x). As is well
known, there are infinitely many dynamical processes
that can give rise to the same stationary distribution [36].
The maximum-entropy method aims to characterize this
distribution directly, incorporating only the minimal
structure needed to match a small set of empirical

observations. The choice of which observations to match
is based on the phenomenology: for example, in the case
of bird flocking the marked polarization of flight direc-
tions suggests that a natural quantity to match is the
correlation between directions of flight [21]. Such choice
of matched observations must be tested by checking that
the resulting maximum-entropy distributions provide
an accurate description of the system, as in Ref. [21].
Finally, the equivalence between the maximum-entropy
distribution and equilibrium statistical physics models
means that we can carry over much of what we know
about expectation values, correlation functions and, as
we have seen, entropic effects. But we cannot jump from
this probabilistic description back to a model of the
underlying dynamics.

III. THE MOTIONAL FREE ENERGY

Our task now is to compute the partition function in
Eq. (5). It is useful to note that this can be rewritten
more symmetrically, as

Z(x) =

ˆ

ds exp





N
∑

i,j=1

Jij(x)~si · ~sj



 , (12)

Jij(x) =
J

2

(

nij(x)

ni(x)
+

nji(x)

nj(x)

)

. (13)

For future reference, we observe that a configuration x
defines a graph G(x) with N vertices, where each nonzero
element of the adjacency matrix nij(x) corresponds to an
edge between vertices i and j in G—see below for details.
We denote by k the number of connected components in
G, and by Nl the number of birds in the l-th connected
component, with l = 1, . . . , k. We can relabel the birds
so that the matrix Jij consists of k uncoupled blocks.

To evaluate Z(x), we will use the spin-wave approxima-
tion, which is valid at large J , such that each connected
component of the flock is strongly polarized. For each
block we define the net polarization

~Sl ≡ 1

Nl

∑

i∈Nl

~si ≡ Sln̂l, (14)

where Sl, n̂l are the norm and the direction of ~Sl, re-
spectively, and the sum for i ∈ Nl runs over all birds in
the l-th connected component. We now decompose the
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velocity ~si, with i ∈ Nl, into components parallel and

perpendicular to ~Sl

~si = sL
i n̂l + ~πi. (15)

Substituting into Eq. (12), we obtain

Z(x) =

k
∏

l=1

ˆ

d~Sl dNlsL dNl~π
∏

i∈Nl

δ
(

sL
i −

√

1 − |~πi|2
)

2
√

1 − |~πi|2
exp





N
∑

i,j∈Nl

Jij(x)(sL
i sL

j + ~πi · ~πj)



 δ

(

~Sl − 1

Nl

∑

i∈Nl

~si

)

, (16)

where in Eq. (16) the first Dirac delta results from Eq.
(6), we used the fact that Jij is a block matrix, we in-
serted a factor of unity

ˆ

d~Sl δ

(

~Sl − 1

Nl

∑

i∈Nl

~si

)

= 1,

and we rewrote the dot product ~si · ~sj in terms of the
sL, ~π coordinates by using Eq. (15).

Guided by the experimental observation that birds in

a block fly in directions mostly parallel to ~Sl [21], we as-
sume that the perpendicular velocity components ~πi are
small, and we will thus expand the right-hand side of
Eq. (16) in powers of ~πi with the spin-wave approxima-
tion. Specifically, we manipulate Eq. (16) as follows: We
rewrite the Dirac delta function in Eq. (16) in terms of
the sL, ~π coordinates as

δ

(

~Sl − 1

Nl

∑

i∈Nl

~si

)

= δ

(

Sl − 1

Nl

∑

i∈Nl

sL
i

)

δ

(

1

Nl

∑

i∈Nl

~πi

)

, (17)

we integrate with respect to {sL
i }, we expand the term in parentheses in the exponent to leading order as

sL
i sL

j =

√

1 − |~πi|2
√

1 − |~πj |2 ≈ 1 − |~πi|2
2

− |~πj |2
2

,

and we perform the integration with respect to ~Sl in spherical coordinates. We obtain

Z(x) =

k
∏

l=1

4π

ˆ

dNl~π
∏

i∈Nl

1

2
√

1 − |~πi|2
exp

[

∑

ij∈Nl

Jij(x)

(

1 − |~πi|2
2

− |~πj |2
2

+ ~πi · ~πj

)

]

δ

(

1

Nl

∑

i∈Nl

~πi

)

. (18)

Note that the factors of 4π in Eq. (18) arise from the angular integration over all possible directions of the mean

velocity ~Sl of the l-th connected component: these are explicitly entropic terms.

We now rewrite the square-root term in Eq. (18) as

1
√

1 − |~πi|2
= exp

[

−1

2
log
(

1 − |~πi|2
)

]

≈ exp

( |~πi|2
2

)

, (19)

we use Eq. (19) in Eq. (18), and we obtain

Z(x) =

k
∏

l=1

4π

ˆ

dNl~π exp

[

∑

ij∈Nl

Jij(x)

(

1 − |~πi|2
2

− |~πj |2
2

+ ~πi · ~πj

)

+
1

2

∑

i∈Nl

|~πi|2
]

δ

(

1

Nl

∑

i∈Nl

~πi

)

, (20)

where we omitted a multiplicative factor independent of x. We now observe that the first term in the exponential of
Eq. (20) is of the order of J |~π|2, while the second term is of the order of |~π|2: We assume that J is large enough [21]
to neglect the second term, and we obtain

Z(x) =
k
∏

l=1

4π

ˆ

dNl~π exp

[

∑

ij∈Nl

Jij(x)

(

1 − |~πi|2
2

− |~πj |2
2

+ ~πi · ~πj

)

]

δ

(

1

Nl

∑

i∈Nl

~πi

)

. (21)
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In what follows, we will drop the first addend in the exponential in Eq. (21), because this term gives rise to a
multiplication factor eNJ which is independent of the positional configuration x as noted above. Then, since ~πi is a
two-dimensional vector, the integral with respect to ~πi can be rewritten as a product of two identical integrals

Z(x) =
k
∏

l=1

4π

[

ˆ

dNlπ exp

(

−
∑

ij∈Nl

πiΛij(x)πj

)

δ

(

1

Nl

∑

i∈Nl

πi

)]2

, (22)

where πi denotes one component of ~πi, and we introduced the Laplacian

Λij(x) ≡ δij

N
∑

l=1

Jli(x) − Jij(x); (23)

since Jij has a block structure, so does Λij . We denote by {λl
p} and {~vl

p} the eigenvalues and eigenvectors of the
l-th block of the Laplacian, respectively. We will now make use of two known results from graph theory: First, all
Laplacian eigenvalues {λl

p} are non-negative [37]. Second, since the l-th component of the flock is connected, the l-th

block of the Laplacian has only one zero eigenvalue [38], which we denote by λl
1. Therefore, we have

0 = λl
1 < λl

2 ≤ · · · ≤ λl
Nl

, (24)

where we labelled the nonzero eigenvalues in increasing order. In addition, summing both sides of Eq. (23) with
respect to j ∈ Nl, we find that the vector ~vl

1 = 1/
√

Nl(1, · · · , 1) is the eigenvector with eigenvalue λl
1 = 0. We now

rewrite the Laplacian in terms of its eigenvalues and eigenvectors:

Λij =

Nl
∑

p=1

vl
p,iλ

l
pvl

p,j , i, j ∈ Nl. (25)

Setting ul,p ≡ ∑Nl

i=1 vl
p,iπi, we finally obtain

Z(x) =

k
∏

l=1

4π

[

ˆ

dNl u exp

(

−
Nl
∑

p=2

λl
p(x)u2

l,p

)

δ

(

ul,1√
Nl

)]2

=
k
∏

l=1

4πNl

Nl
∏

p=2

π

λl
p(x)

. (26)

Because of the delta function in the first line, Eq. (26) involves an integration with respect to the projection of the
perpendicular velocity π on all Laplacian eigenmodes except the first one: as a result, the final expression for Z(x)
in the second line involves a product over all nonzero Laplacian eigenvalues.

Following Eqs. (10) and (26), we obtain

Pmot(x) ∝ Z(x) =

k
∏

l=1

4πNl

Nl
∏

p=2

π

λl
p(x)

. (27)

Equation (27) tells us that if the flock with N birds
consists of one connected cluster, then there is an overall
factor of 4πN , and N − 1 powers of J/π in the denomi-
nator of Pmot, since all λl

p ∝ J . If the flock is cut in two
halves, then we lose one power of J/π, and the factor
4πN → (4πN/2)2; the net result is to multiply Pmot by
NJ . This factor is essentially the increase in entropy as-
sociated with the creation of a new zero mode in the joint
distribution; evidently for large N and large J , it favors
breaking the flock in half. There is some subtlety, how-

ever, since when we break the flock in half we also shift
the eigenvalues λl

p in each half, and it is not clear how
this balances against the zero mode. We will see that the
answer depends on the nature of the interactions between
birds.

IV. METRIC VS TOPOLOGICAL

INTERACTIONS

In what follows we will consider a flock of N birds in
a volume V , hence at mean density ρ = N/V . We can
imagine the interaction between birds having two very
different forms [27]. In the first one, birds interact with
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1

2

3

4

a k = 1

nij =











0 1 1 0

0 0 1 1

0 1 0 1

0 1 1 0











1

2

3

4

b

nij =











0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0











Λij =













0 0 0 0

0 1 −1

2
−1

2

0 −1

2
1 −1

2

0 −1

2
−1

2
1













λ1
1 = 0, {λ2

p} = {0, 3, 3}

k = 2

rc

Λij =













1

2
−1

4
−1

4
0

−1

4

5

4
−1

2
−1

2

−1

4
−1

2

5

4
−1

2

0 −1

2
−1

2
1













{λ1
p} =

{

0, 9−
√

17

8
, 9+

√

17

8
, 7

4

}

FIG. 1: Graphs corresponding to a a two-dimensional flock with N = 4 birds and J = 1. The number of connected components,
the adjacency and Laplacian matrices, and the Laplacian eigenvalues are also shown. (a) Topological case: Here nc = 2, and
the graph G is a directed graph with one connected component. The Laplacian has only one null eigenvalue, corresponding
to one connected component in the graph [38]. (b) Metric case: rc is the radius of the dashed circle centered around bird 4,
and the graph G is an undirected graph with two connected components. The first connected component is given by bird 1
(in red), and the second connected component is given by birds 2, 3, 4 (in green). The adjacency and Laplacian matrices are
block matrices composed of two blocks corresponding to the first and second connected component depicted in red and green,
respectively. The Laplacian has two null eigenvalues, corresponding to two connected components in G.

their nc nearest neighbors, independently of distance. In
the second one, birds interact with other birds within a
characteristic distance rc. The first model is referred to
as a “topological” interaction, while the second is summa-
rized as a “metric” interaction [21, 27]. We can compare
the two models by equating the mean number of inter-
acting neighbors in the topological case with the fixed
number of neighbors in the metric case:

nc = ρ
4πr3

c

3
. (28)

In both models this is the only relevant dimensionless
parameter at large N and V .

For a topological interaction network, the adjacency
matrix is

nij(x) ≡







1 If j 6= i is amongst the first nc

nearest neighbors of i
0 Otherwise

. (29)

Here we have ni = nc for all i, and Eq. (13) takes the

simple form

Jij(x) =
J

2nc
(nij(x) + nji(x)). (30)

For topological interactions, the graph G(x) which cor-
responds to a configuration x is a directed graph, and
it can be constructed by considering all vertex pairs i, j
and inserting a directed edge from i to j if j is amongst
the first nc nearest neighbors of i—see Fig. 1a. In what
follows, we will consider a directed graph as connected if
replacing all of its directed edges with undirected edges
produces a connected undirected graph.

For a metric interaction network, the adjacency matrix
is

nij(x) ≡
{

1 If j 6= i and |~xj − ~xi| ≤ rc

0 Otherwise
, (31)

and the interaction matrix Jij is given by Eq. (13). In
the metric case, the graph G(x) which corresponds to
a configuration x is an undirected graph constructed by
inserting an edge between all vertex pairs i, j such that
|~xj − ~xi| ≤ rc as shown in Fig. 1b.
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In the first models for collective behavior, the metric
structure of interactions seemed obvious. Later on, quan-
titative studies on flocks of starlings [27] led to the idea of
topological interactions, and this has been supported by
further analyses of these data [21]. In particular, the ev-
idence for topological vs. metric interactions in previous
studies is based on the comparison of multiple flocking
events with significantly different densities, where each
event is given by a single, connected flock with fixed
birds’ relative positions [21]: across many such events,
the data are described very accurately by a fixed number
of neighbors nc, rather than by a fixed interaction range
rc. Here, we will allow model flocks to explore a much
wider range of configurations where birds significantly re-
arrange their relative positions, and the flock possibly
disconnects driven by the entropic effects above, and so
we expect the distinction between topological and metric
interactions to emerge more distinctly.

V. MONTE CARLO SAMPLING OF THE

MOTIONAL DISTRIBUTION

We are interested in exploring the entropic effects gen-
erated by the alignment of the birds, as described by Eq.
(27). Even though we can write the distribution of po-
sitions explicitly, computing analytically averages with
the distribution (27) is not an easy task, it is thus natu-
ral to generate samples from this distribution with MC
simulations. We will do this in Section V A, for both
metric and topological interactions. Although there are
clear results, we find that it is difficult to push these sim-
ulations to large N , because calculating the eigenvalues
of the Laplacian requires O(N3) operations. To make
progress, in Section V B we introduce a simpler version
of the problem, in which we sample interaction graphs
rather than the underlying positions. While not quite
the same problem, we will see consistent results that ex-
tend to much larger N . The essential point to emerge
from both analyses is that topological interactions lead
to flocks that stay connected for realistic values of the
number of neighbors, while in metric networks the repul-
sive entropic effects are strong enough to rip the flock
apart into multiple components for all sensible values of
the metric interaction range.

A. Monte Carlo on positions

Equation (27) gives us the motional distribution of
birds’ positions in a flock with only two parameters: The
strength of the interactions J and their range nc. Be-
fore we study the effects of these interactions on the spa-
tial configurations of the flock, we should start by asking
what happens if the N birds are simply in random po-
sitions drawn uniformly throughout a box of volume V ,

which will be set equal to unity in what follows. Even
in this simple case there is a question about whether the
resulting network of interactions—topological or metric—
supports a single, connected cluster of birds, thus allow-
ing for the possibility of coherent flocking behavior.

Concretely, for any spatial configuration we can con-
struct the adjacency matrix nij(x), see Eq. (29) or (31),
the resulting interaction matrix Jij(x) in Eq. (13), and
finally the Laplacian Λij(x) in Eq. (23). Then we count
the zero modes of the Laplacian: if there is just one, then
the flock is connected; if there is more than one, then the
flock has broken into disconnected pieces.

In Fig. 2 we show results on the probability pc of find-
ing a single connected cluster for random configurations,
which is computed as the fraction of configuration sam-
ples that are given by a connected interaction network.
We plot pc as a function of nc for topological and metric
interactions and we see that, for topological interactions,
connectedness is guaranteed by very modest values of nc.
Perhaps surprisingly, this is not the case for metric inter-
actions. When interactions are limited to a fixed distance,
even random fluctuations are enough to prevent the for-
mation of a single connected cluster, unless the range of
interactions is very large. This is a hint that metric and
topological interactions really are very different.

To see the effects of entropic forces, we need to draw
samples from Eq. (27). We will view nc as a parame-
ter to be varied as for random positions, but we would
like to set the strength of interactions to some reasonable
value. To do so, we will use the value J/nc ∼ 16 which
has been obtained from maximum-entropy models built
for real, connected flocks with fixed relative positions [21]
by matching the observed values of Cint [40]. As we draw
samples from Pmot(x), we focus on the probability pc

that these spatial configurations correspond to a single
connected cluster; results are shown in Fig. 2. We see
that the entropic forces are repulsive, so that flocks which
interact through the motional potential are less likely to
be connected than random flocks, and this is true at all
the values of N and nc that we can access, for both metric
and topological interactions. But for topological interac-
tions, once nc & 7 we find that pc is essentially equal to
one. In contrast, for the metric interactions there is a
very gradual dependence of pc on nc that sets in only at
large nc. This effect is dramatic because—in the range
of N we can study—the entropic forces are ripping the
flock apart even when the range of metric interactions is
so large that nc > N .

How does a flock disconnect for small values of the in-
teraction range? To clarify this point, in Fig. 3 we plot
the MC average of the fraction of birds in the largest
connected component, which we will denote by φ. Com-
paring Fig. 3 with Fig. 2, we see that even for values
of nc so small that the connection probability is ∼ 50%,
there is a significant fraction of birds in the largest con-
nected component, and this is true for both topological
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(b). In the metric case, the average number of neighbors nc is obtained as in Fig. 2 .

and metric interactions, and for configurations from both
the motional potential and random positions. It follows
that, as nc is lowered, the flock disconnection is charac-
terized by the appearance of multiple, small connected
components, each of which contains a few individuals,
while the vast majority of birds are still part of a giant
component with ∼ N birds. In addition, Fig. 3 shows
that the curves drawn from the motional potential in the
metric case display an elbow at nc ≈ 11 and nc ≈ 16
for N = 16 and N = 32, respectively. These values of
nc correspond, through Eq. (28), to a characteristic dis-
tance rc of the order of the linear size of the volume V :
the elbows above could thus be interpreted in terms of a
crossover between a regime rc . V 1/3 where each birds
interacts with individuals in a fraction of V , to a regime
rc & V 1/3 where the interaction spans the whole volume.

B. Monte Carlo on graphs

The adjacency matrix nij(x) defines a graph G(x), as
shown in Section IV. In the topological case, any posi-
tional configuration x corresponds to a directed graph
G(x) with a fixed number nc of outgoing edges per ver-
tex and thus a fixed total number of edges. Conversely,
in the metric case the number of edges connected to a
vertex may vary depending on the positional configura-
tion x, but the total number of edges M is almost fixed,
with

M =

N
∑

i<j=1

nij =
N

2

(

1

N

N
∑

i=1

ni

)

≈ N

2
nc. (32)

In the last step we set (1/N)
∑N

i=1 ni → nc, which is valid
at large N if there are no long-range correlations among
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the fluctuations in ni. If we could neglect fluctuations
in ni all together, then Eqs. (13) and (23) would show
that the Laplacian matrix Λij is proportional to a sparse
matrix with integer coefficients, allowing for a much more
efficient computation, as explained below.

These observations suggest a natural way of simplify-
ing MC simulations. Instead of sampling the positional
configurations x, in the topological case we sample all
directed graphs with nc outgoing edges from each ver-
tex, while in the metric case we sample all undirected
graphs with Nnc/2 total edges, assigning to a graph G
the probability

Pmot(G) = C

k
∏

l=1

4πNl

Nl
∏

p=2

π

λp
l (G)

, (33)

where the λp
l are calculated in the approximation that

ni → nc in Eq. (13). Since the total number of edges
is constant both in the topological and metric case, a
MC move is now given by an edge insertion and deletion,
and the impact of these moves on the eigenvalues of the
Laplacian can be computed in O(N2) operations at the
most by using the LDL matrix factorization method [41,
42]—see the Appendix for details. As a result, we will be
able to study values of N comparable to those of natural
flocks, i.e. N ∼ 1000.

As before, we focus on the probability that the flock is
in a single connected graph, which will be denoted by pc;
results are shown in Fig. 4. In the topological case, this
probability is one for all nc > 1, both in the case where
graphs are chosen at random (pran

c ) and when the graphs
are chosen from the motional distribution (pmot

c ) [43]. In
contrast, for the metric case the connection probability
for random graphs pran

c is close to one for only for nc & 10,
while even larger values of nc & 15 are needed for the
connection probability from the motional potential to be
close to one.

We note that our simplified MC method includes
graphs which do not have a three-dimensional layout:
While any configuration x can be mapped onto a graph
G (Fig. 1), not all graphs G correspond to a configura-
tion x. If we break the graph into disconnected pieces, it
is always easier to find a mapping into a configuration x,
and so we expect that sampling graphs rather than po-
sitions will overestimate the probability that flocks are
connected. This is confirmed by a detailed comparison
between Figs. 2 and 4. Despite this quantitative dif-
ference, the MC on graphs confirms the qualitative sce-
nario from the MC on positions: the metric potential has
a strong repulsive effect which rips the flock apart into
multiple components.

Figure 2 gives a hint that, with metric interactions,
larger flocks have a lower probability of being connected,
and this trend continues to larger N for the simulation
on graphs in Fig. 4. Put another way, larger flocks re-
quire a larger range of interaction nc in order to stay

connected. Marking the crossover n∗
c between connected

and disconnected regimes by pc(n∗
c , N) = 1/2 for both

random graphs and graphs drawn from the motional dis-
tribution, we see in Fig. 5 that n∗

c increases with N
along an approximately logarithmic trajectory, such that
a factor of two increase in N requires an extra contact to
maintain coherence.

Proceeding along the lines of Section V A, we show how
the flocks disconnect for small nc by considering the frac-
tion of birds in the largest connected component averaged
with the MC method on graphs, which we will denote by
ϕ. In Fig. 6, we show ϕ as a function of nc. The results
are along the lines of Fig. 3 obtained with the MC on
positions. Namely, ϕ is close to one even for relatively
small values of the connection probability, thus the flock
disconnection is characterized by a giant connected com-
ponent with ∼ N birds and multiple, small components
containing a few birds each: Interestingly, the curves in
Fig. 6 overlap reasonably well for different values of N ,
suggesting that this result holds also for larger flocks.

VI. DISCUSSION

The past decade has seen considerable interest in the
use of maximum-entropy models to describe biological
networks, from single protein molecules up to groups of
organisms. The maximum-entropy method has deep con-
nections to equilibrium statistical mechanics. Although
these connections are a source of intuition, they also cre-
ate opportunities for confusion. Namely, the maximum-
entropy distribution that is consistent with pairwise cor-
relations among the variables in a network, e.g. the nor-
malized velocities of the birds, has the form of a Boltz-
mann distribution in which the “energy” is built out of
pairwise interactions among these variables. This is not,
of course, the actual energy, and there is no reason to
think that the interactions out of which the energy is
built correspond to physical interactions.

In a flock of birds such as European starlings, there is
no part of the problem that is in thermal equilibrium, but
nonetheless we can write a maximum-entropy approxima-
tion to the joint distribution of positions and velocities
for all the birds in the flock, as in Eqs. (8) or (9). Once
we integrate out the velocities, the resulting motional
distribution of positions has a term in the exponential
that is exactly the logarithm of the partition function
for the velocities at fixed positions—the free energy. For
flocks that are strongly polarized, as in real flocks, this
free-energy potential on positions is dominated by the en-
tropy of the birds’ velocities, and in this sense the birds’
positions are subject to entropic effects. We expect these
effects to be repulsive, since disconnected groups of birds
have more freedom to reorient their flight directions and
thus satisfy their tendency to increase the entropy, and
this intuition is borne out by detailed simulations. The
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surprise is that the strength of this repulsion depends
dramatically on the form of the interactions that we con-
strain. If we imagine that the essential interactions are
between a bird and its nc nearest neighbors (topological
interactions), then the entropic effects are quite weak,
and they leave flocks fully connected with high probabil-
ity at reasonable values of nc. In contrast, if the essential
interactions are between a bird and all the other birds
within fixed distance rc (metric interactions), then the
entropic effects are so strong to tear the flock apart into
multiple components.

Given the complicated form of the motional distribu-
tion, Monte Carlo (MC) simulations are computationally
demanding, and they are thus limited to small flocks. To
address this problem, we explored a slightly different for-

4

6

8

10

12

128 256 512 1024

n
∗ c

N

4

6

8

10

12

128 256 512 1024

n
∗ c

N

n∗

cmot
a logN + b, mot

n∗

c ran
a logN + b, ran

FIG. 5: Crossover values n∗

c of the number of neighbors in the
metric case, given by pc(n∗

c , N) = 1/2, for random graphs and
for graphs drawn from the motional potential, as functions of
the flock size N . The fitting functions n∗

c = a log N + b are
shown to guide the eye.

mulation in which we sample graphs of bird-bird inter-
actions rather than the birds’ positions themselves; this
allows for using an efficient MC update algorithm based
on LDL matrix factorization [41], with which we could an-
alyze realistically large flocks. Our main result is in line
with the one obtained by sampling the positions: For a
topological network, the configurations generated by the
motional distribution are connected for all values of the
number of nearest neighbors. On the other hand, for a
metric network the positional configurations are discon-
nected with high probability unless the metric interaction
range is increased to unrealistically large values.

In real flocks, the absence of large local density fluc-
tuations means that the distinction between topological
and metric interactions must be based on comparisons
across different flocking events [21]. Our analysis of en-
tropic effects provides a different path to comparing these
two kinds of interactions. In particular, an important
conclusion of our analysis is that, while the strongly re-
pulsive entropic effects of metric interactions could be
compensated by explicit cohesive forces, the fact that po-
sitional correlations in flocks are weak [28] means that
these strong opposing forces would have to be carefully
balanced. Such fine tuning is not needed if the interac-
tions are topological rather than metric.

Overall, the maximum-entropy analysis presented here
may have interesting applications for studying entropic ef-
fects in systems of biological and physical interest. For ex-
ample, this maximum-entropy model could be extended
to reproduce not only the motional distribution of birds’
positions, but the actual, full positional distribution. Our
method would then provide a direct estimate of the max-
imum size that a flock could reach before it breaks into
multiple components, thus providing a prediction that
could be directly tested in field studies.
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Appendix

Here we discuss the MC simulations with the proba-
bility Pmot(G) from Eq. (33). In Appendix 1 we show
that Pmot(G) can be related to the LDL factorization of
the Laplacian matrix (23), and in Appendix 2 we show
that a MC step can be performed efficiently by using a
known update algorithm for LDL factorizations. For the
sake of simplicity, we consider the metric case, and we
assume that G is connected. The results below can then
be easily extended to the topological case and to graphs
with multiple connected components.

1. Relation between the motional probability and

LDL factorization of the Laplacian

Since G has only one connected component, there is
a single zero eigenvalue of Λ [38], which we denote by
λ1, and Eq. (33) shows that the probability Pmot(G) is
determined by the product of the nonzero eigenvalues of
the Laplacian (23). Here, we will show that this product
is related to the LDL factorization of Λ [42], which reads

A ≡ ΠΛΠT = LDLT , (34)

where in Eq. (34) Π is a permutation matrix, L is a lower-
triangular matrix with unit diagonal elements, D is a
diagonal matrix whose diagonal elements will be denoted
by {di}, and the matrix A has the same eigenvalues as
Λ. Since Λ has one zero eigenvalue, there is a single zero
diagonal entry in D, which we denote by d1. We will now
establish the connection between the spectrum of Λ and
its LDL factorization by proving the following identity

N
∏

i=2

λi = N
N
∏

i=2

di. (35)

To prove Eq. (35), let us consider the characteristic
polynomial of A: by using Sylvester’s theorem [44], we
have

f(λ) ≡ det(A − λI) = det(DLT L − λI). (36)

The characteristic polynomial (36) can be rewritten as

f(λ) = aN − λaN−1 + · · · + (−1)N λN , (37)

where ai is the sum of all diagonal minors of DLT L con-
taining i rows and i columns [45]. Since d1 = 0, the first
row in DLT L is zero, thus the only nonzero diagonal mi-
nor with one row and one column is the one obtained by
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deleting the first row and the first column from DLT L.
It follows that

aN−1 = det(B), (38)

where B is a (N −1)× (N −1) matrix with entries Bij =
∑N

l=1 Dil(L
T L)lj , i, j = 2, · · · , N . Since D is diagonal,

B is given by the product of the matrices obtained by
removing the first row and the first column in D and
LT L respectively: hence, from Eq. (38) we obtain

aN−1 =

(

N
∏

i=2

di

)

det(C1 1), (39)

where C1 1 denotes the matrix obtained from LT L by
deleting the first row and the first column.

From Eq. (24), we have 0 = λ1 < λ2 ≤ · · · ≤ λN , thus
the eigenvalues of A − λI are −λ, λ2 − λ, · · · , λN − λ. It
follows that the characteristic polynomial (36) reads

f(λ) = (−λ)(λ2 − λ) · · · (λN − λ)

= −λ

N
∏

i=2

λi + O(λ2). (40)

Comparing the coefficient of λ in the right-hand side of
Eq. (37) with that in the right-hand side of Eq. (40) and
using Eq. (39), we obtain

N
∏

i=2

λi = det(C1 1)

N
∏

i=2

di. (41)

To derive Eq. (35), let us compute det(C1 1). Equa-
tions (23) and (34) show that the vector u ≡ (1, · · · , 1)
is an eigenvector of A with eigenvalue zero. Setting
e1 ≡ (1, 0, · · · , 0), we have that (LT )−1e1 is also an eigen-
vector of A with eigenvalue zero:

A(LT )−1e1 = LDLT (LT )−1e1

= LDe1

= 0, (42)

where in the second line of Eq. (42) we have De1 = 0
because d1 = 0. Given that Λ is symmetric, the geomet-
ric multiplicity of λ1 is equal to its algebraic multiplicity,
the latter being equal to one. It follows that there is only
one eigenvector of Λ with zero eigenvalue, thus only one
eigenvector of A with zero eigenvalue: hence, u must be
proportional to (LT )−1e1. Also, (LT )−1 is upper triangu-
lar with unit diagonal entries, thus the first component
of (LT )−1e1 is equal to one, implying that

u = (LT )−1e1. (43)

To prove Eq. (35), we will relate the norm of u to L:

N = uT u

= eT
1 L−1(LT )−1e1

= eT
1 (LT L)−1e1

= [(LT L)−1]1 1, (44)

where in the first line of Eq. (44) we used Eq. (43), and
[(LT L)−1]1 1 denotes the entry in the first row and first
column of (LT L)−1. By using Cramer’s rule, the last line
in Eq. (44) can be rewritten as

[(LT L)−1]1 1 =
det(C1 1)

det(LT L)
= det(C1 1), (45)

where in Eq. (45) we used the identity det(LT L) =
[det(L)]2 = 1. Equations (44) and (45) imply that
det(C1 1) = N . Substituting into Eq. (41), we obtain
Eq. (35).

2. Monte Carlo with LDL-factorization update

Since we intend to sample the space of graphs with a
constant total number of edges, a MC move is given by
one edge insertions and one edge deletion. We use Eqs.
(23) and (30) to rewrite the Laplacian of G as

Λij =
J

nc

[(

N
∑

l=1

nil

)

δij − nij

]

. (46)

We then take two vertices i and j in G that are not con-
nected, and we insert an edge between them. As a result,
we obtain a new graph G′ with Laplacian Λ′,

Λ′ = Λ +
J

nc
v · vT , (47)

where the vector v is given by vl = δil − δjl. Since Λ
is sparse and Λ′ is related to Λ by a transformation of
the form (47), it can be shown [41] that the LDL fac-

torization of the Laplacian Λ′ = L′D′L′T can be com-
puted from the LDL factorization of Λ in a number of
steps proportional to the number of nonzero entries in L
that change upon the update, which is bounded above by
O(N2). The probability Pmot(G

′) is then obtained from
D′ according to Eq. (35). An edge insertion can be thus
performed with not more than O(N2) operations; by the
same argument, an edge deletion—and thus a full MC
move—can be also performed with O(N2) operations at
the most.

Finally, it is important to point out that replacing the
denominators ni, nj in Eq. (13) with their average value
nc—see Section V B—is crucial for this efficient update
method to work: indeed, without this simplification the
Laplacian would not have the simple form (46), and a
Laplacian update upon edge insertion or deletion would
not be of the form (47).
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