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We formulate a theory of the effects of long-range interactions on surface tension and spontaneous

curvature of proteinaceous shells based on the general Deryaguin-Landau-Verwey-Overbeek (DLVO)
mesoscale approach to colloid stability. We derive the full renormalization formulas for the elastic
properties of the shell and consider in detail the renormalization of the spontaneous curvature as
function of the corresponding Hamaker coefficient, capsid inner and outer charges and bathing solu-
tion properties. The renormalized spontaneous curvature is found to be a non-monotonic function
of several parameters describing the system.

I. INTRODUCTION

It has recently become clear that long-range interac-

tions are extremely important also in the self-assembly
of capsid proteins into viral shells and that they de-
termine the self-assembly phase diagram [1]. Electro-
static interactions that originate in the effective charge
on the capsid proteins [2], as governed by the pH and
the ionic strength of the bathing solution, can funda-
mentally change the phase diagram of the capsid protein
of the cowpea chlorotic mottle virus (CCMV) yielding
single-wall and multi-wall capsids, as well as tubes and
free protein [3]. These results seem to implicate that a
change in the spontaneous curvature of the capsid as a
function of the charge asymmetry of the proteinaceous
shell as well as the solution conditions regulates the size
of the shell [4, 5]. We thus focus our attention on pre-
cisely how, in the context of empty capsid shells, the long-
range electrostatic and van der Waals (vdW) interactions
together conspire to modulate the mesoscopic properties
of spheroidal aggregates, specifically their spontaneous
curvature.
Standard principles of colloid and nanoscale stability

theory in fact identify grosso modo two types of inter-
actions that together govern the self-assembly and dis-
assembly of biological macromolecules and their molecu-
lar aggregates [6]: the electrostatic interactions depend-
ing on the specific nature of molecular charges [7] and
the ubiquitous vdW interactions depending on the di-
electric response properties of molecular material [8, 9].
This is also the most fundamental assertion of the DLVO
(Deryaguin-Landau-Verwey-Overbeek) theory of macro-
molecular stability [10]. When macromolecular aggre-
gates are net charged, the ensuing (screened) Coulomb
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interactions between identical molecules are usually re-
pulsive, with solvent effects due to hydrophillic moieties
contributing an additional short-range component to the
overall molecular repulsions [11]. On the other hand, neu-
tral molecular aggregates usually interact via non-specific
vdW attractions [12], augmented again by the solvent ef-
fects engendered by the hydrophobic moieties along the
solvent-exposed surfaces [13]. In fact, in the context of
proteins, the interactions are mostly entropy-driven [14, 15],
usually interpreted to originate in the water-mediated hy-
drophobic interactions. As part of the vdW interactions,
the s.c. zero frequency term, is also entropic in origin, it
is with some difficulty that one can differentiate between
this part of vdW interactions and the hydrophobic interac-
tions proper [16]. Of these four interactions hydrophobic
and/or hydration forces correspond to an effective in-
teraction arising from the statistical properties of water
molecules around the dissolved macromolecular moieties,
while the electrostatic and vdW forces are indeed ”true”
forces that act even in the absence of any solvent. The
overall stability condition then proceeds from comparing
the strengths of these interactions.
Since the bathing solution in the biological milieu con-

tains various dissolved ionic species the electrostatic in-
teraction depends on its exact composition [17], i.e. the
concentration and valency of salt ions, due to Debye-
Hückel screening, but also on the amount of charge they
carry that can be modified by shifting the dissociation
equilibrium via the solution pH [18, 19]. At the same
time the vdW interaction is a complicated functional of
the dielectric response function of the components of the
macromolecular aggregates [8] as well as of the bathing
solvent, that can be modified by solutes, e.g., low molec-
ular weight solutes such as glucose and sucrose [20].
While there are obvious similarities, there are nev-

ertheless fundamental differences between elasticity of
rigid proteinaceous shells of tethered capsomeres [21] and
spheroidal lipid vesicles that are composed of a quasi 2D
fluid layer of lipid molecules [22]. The electrolytes on the
two sides of an impermeable membrane can in principle
differ, an assumption usually unrealistic for viral shells

mailto:hshojaei@physics.umass.edu
mailto:anze.bozic@ijs.si
mailto:muthu@polysci.umass.edu
mailto:podgornik@physics.umas.edu


2

that are typically completely permeable to various ionic
species (however, see Ref. [23]). The contribution of elec-
trostatic interactions to spontaneous curvature as well
as bending rigidity renormalization of lipid membranes
was standardly analyzed within the mean-field Poisson-
Boltzmann (PB) framework starting from the seminal
work of Winterhalter and Helfrich [24] and later gener-
alized to more realistic scenarios [25–30]. In what fol-
lows we will also delimit ourselves to monovalent elec-
trolytes described on the level of the mean-field PB the-
ory. Though the effects of multivalent electrolytes have
been standardly studied on the PB level [29], they cannot
in general be analyzed within the mean-field framework
[17] and lead to instabilities which have no counterpart in
the behavior of the monovalent salts [31]. Contribution
of vdW interactions to spontaneous curvature and bend-
ing rigidity renormalization of lipid membranes have also
been extensively analyzed on a variety of levels starting
with the Lifshitz theory of vdW interactions based ap-
proach of Parsegian and Weiss [32] and later generalized
on different levels [33–38].

The main differences between the 2D fluid layer of
soft lipid molecules and crystal-like assemblies of tethered
capsomers boil down to the fact, that the latter are usu-
ally permeable to salt ions (even to larger ones), being in
thermodynamic equilibrium with the bulk reservoir that
sets the ions’ chemical potential. The effective surface
charge density of capsomers can thus be viewed as highly
constrained and as not responding to small curvature
deformations. These specific features of proteinaceous
shells lead to important differences and make the avail-
able theoretical results valid for lipid layers in general
not applicable. We will consider spherical shells only and
calculate the contribution of vdW interactions to spon-
taneous curvature on the level of the Lifshitz theory for
general asymmetric layers and at the same time use the
linearized PB theory to evaluate also the contribution of
asymmetric charged shells with fixed surface charge den-
sity. This will allow us to derive the full DLVO expression
for the change in the spontaneous curvature while as-
suming a known experimentally determined value for the
bending rigidity. In this way, we bypass the unknown po-
sition of the ”neutral surface” that actually changes the
exact renormalization of the bending rigidity only (see
below).

II. THEORY

A. Curvature expansion of the free energy

We analyze a thin spheroidal charged shell and expand
its vdW - Lifshitz interaction free energy as well as its
electrostatic free energy in terms of the reciprocal radius
of curvature R. The total interaction free energy of the

spheroidal shell can be written as

F =

ˆ

S

dS

(

σ0 +
a

R
+

b

R2
+ . . .

)

, (1)

where S is the area of the shell, dS is its element and
σ0, a and b are constants that depend on the details of
the long-range interactions. This expansion should be
compared with the mesoscopic elastic deformation free
energy [39]

F =

ˆ

S

dS

(

σ + 1
2Kc

(

1

R
−

1

R0

)2

+ . . .

)

, (2)

where σ is the surface tension, Kc is the bending rigidity
and R0 is the spontaneous radius of curvature, allow-
ing us to identify the interaction renormalization of the
mesoscopic bending rigidity and spontaneous radius of
curvature as

σ −→ σ0 +
Kc

R2
0

,Kc −→ Kc + 2b,
1

R0
−→

1

R0
−

a

Kc

. (3)

All the mesoscopic parameters of shell elasticity thus con-
tain a bare part, due to short range interactions that is
not taken into account specifically, and a renormalized
long-range DLVO interactions part, just as in the case
of semi-flexible polyelectrolytes [40]. While the electro-
static renormalization of mesoscopic elasticity parame-
ters has been analyzed on various levels of sophistica-
tion (see above), the complete DLVO assessment of elas-
tic parameter renormalization has not been properly ad-
dressed.
It is obvious from expansion Eq. 1 that depending on how

we define the origin for the radius of curvature, or by mak-
ing the substitution R −→ R+ δR, part of the a coefficient
can migrate into the b coefficient and thus the renormaliza-
tion of the bending rigidity depends on the details of the
deformation process, i.e., what part of the layer remain un-
affected by the deformation and what is the exact position
of this ”neutral surface”. In order to avoid this ambiguity
in the definition of the bending rigidity renormalization, we
will concentrate purely on the spontaneous curvature and
the surface tension, taking the bending rigidity as an empir-
ical parameter. Similar indeterminacy has been noted also
in the context of membrane electrostatics [29], where the
results on the bending rigidity renormalization depend on
the details of the deformation process. We will derive the
first two terms of the curvature expansions of both, the
vdW interactions on the level of the macroscopic Lifshitz
theory, as well as the electrostatic interactions on the
level of the Deby-Hückel theory. As will become obvious,
both of them can be derived in an explicit analytic form
suitable for relevant numerical computations.

B. Curvature expansion of the vdW-Lifshitz

interaction

The Lifshitz theory of vdW interactions connects the
dielectric response function at imaginary frequencies,
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ǫ(iζ), defined via the imaginary part of the dielectric re-
sponse function ǫ”(ω), as [41]

ε(iζ) = 1 +
2

π

ˆ ∞

0

ω ε′′(ω)

ω2 + ζ2
dω, (4)

with the interaction free energy between the materials de-
scribed by this dielectric response [8]. The connection is
via the fluctuation-dissipation theorem and the Lifshitz the-
ory actually evaluates the free energy contribution of all
the electromagnetic field fluctuations. We will consider
the vdW interactions across a curved parallel single layer
system that will mimick a thin spherical curved molec-
ular sheet. In the derivation of the curvature expansion
we modify the original methods of Weiss, Parsegian and
Witte [32, 35] based on the Lifshitz theory.
The vdW free energy of this system depends on the

dielectric mismatch ∆(iζ) at the inner and outer bound-
aries of the thin spherical sheet of inner radius R and
thickness w ≪ R, i.e.,

∆32(iζ) =
ǫ3(iζ)− ǫ2(iζ)

ǫ3(iζ) + ǫ2(iζ)
(5)

∆21(iζ) =
ǫ2(iζ)− ǫ1(iζ)

ǫ2(iζ) + ǫ1(iζ)
.

Here, by assumption, the dielectric response of the shell
is that of the capsid proteins, ǫ2(iζ) = ǫp(iζ), and
ǫ3(iζ) = ǫ1(iζ) = ǫw(iζ) is the dielectric response of the
aqueous solvent. Dielectric response functions at imag-
inary frequencies ǫk(iζ) are obtained from a Kramers-
Kronig transform of the imaginary part of the dielectric
function in a standard way [8], once one either chooses a
model for the frequency response or measures it directly
for a particular material. While the frequency response
of capsid proteins is presently not (yet) available, it exists

for many other materials [12]. It is obvious that for any
value of the argument as well as any model one should
have −1 < ∆ij(iζ) < 1.
In the Lifshitz theory of vdW interactions the free energy

for a single spherical parallel layer system can be calculated
in a closed form as a sum over the log of the secular de-
terminant, D(ω,k; g), whose zeros on the real frequency,
ω-axis yield the wave-vector k dependent frequencies of the
eigenmodes of the Maxwell’s equation in the chosen inter-
action geometry as a function of the parameters describing
that geometry g [8]. The vdW interaction free energy can
then be derived in the general form

GvdW ≡

∞
∑

N=0

′
∑

k

log (D(iζN ,k; g)), (6)

where the sums are over the geometry dependent set of
wave-vectors k and over the thermal Matsubara frequen-
cies, ζN = 2πNkBT/~, where N is an integer, kBT and
~ are the thermal energy and the Planck’s constant. The
N = 0 term is counted with a weight 1/2 indicated by
the prime in the sum. The Matsubara sum, embodying the
finite temperature effects, is trivial and can be done numer-
ically for a chosen model of the frequency dependence of
the dielectric response function.
For a single spherical parallel layer system, of thickness

w and inner shell radius R, this general formula is reduced
to [32, 35]

GvdW (R,w,∆32,∆21) =

∞
∑

N=0

′

GN (R,w,∆32(iζN ),∆21(iζN )),

(7)
where we have defined the single Matsubara frequency free
energy function

GN (R,w,∆32(iζ),∆21(iζ)) = kBT
∞
∑

ℓ=0

(2ℓ+ 1) ln

[

1 +
4ℓ(ℓ+ 1)∆32∆21

(

1 + w
R

)−(2ℓ+1)

(2ℓ+ 1 +∆32)(2ℓ + 1 +∆21)

]

=
∞
∑

ℓ=0

G(ℓ)(R,w;N),

(8)

that can be obtained from the solutions of the Maxwell’s
equations in the spherical shell geometry [32, 35]. The only
remaining ”wave-vector” in the sum Eq. 6 is then the degree
ℓ of the spherical harmonic function.

Since what we want is an expansion in curvature

up to the second order, Eq. 1, we will only consider
terms in the above free energy up to that order. In
what follows we will analyze the R and w dependence
of GN (R,w,∆32(iζ),∆21(iζ)) by modifying the previous
method [35]. Using Euler-Maclaurin summation formula,
we transform Eq. 8 into

∞
∑

ℓ=0

G(ℓ)(R,w;N) =

ˆ ∞

0

dℓ G(ℓ)(R,w;N)−
1

12
G′(0)(R,w;N) + . . . , (9)

where the other terms are either zero or do not contribute to the order R−2. We next introduce the variable l =
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xR/w and keep terms to the second order, i.e., to (w/R)
2
, as assumed in our curvature expansion Eq. 1. This yields

the following expansion for the surface free energy density

1

4πR2
GvdW (R,w,∆32,∆21) = kBT

∞
∑

N=0

′ [

F0

(

∆∗,∆;w
)

+
1

R
F1

(

∆∗,∆;w
)

+
1

R2

(

F2

(

∆∗,∆
)

+ F̃2

(

∆∗,∆;w
)

)

]

(10)
with the definitions

F0

(

∆∗,∆;w
)

=
1

2π w2

ˆ ∞

0

dx x ln
(

1 + ∆∗e−2x
)

= −
1

8πw2
Li3(∆

∗) (11)

F1

(

∆∗,∆;w
)

= =
1

4π w

[
ˆ ∞

0

dx ln
(

1 + ∆∗e−2x
)

+

ˆ ∞

0

dx
∆∗e−2x

1 + ∆∗e−2x
(x2

− x−∆)

]

=
1

4π w
f̃1
(

∆∗,∆
)

(12)

F2

(

∆∗,∆
)

=
1

24π

ˆ ∞

0

dx
∆∗e−2x

(1 + ∆∗e−2x)
2

(

(

6x3
− 20x2 + 6x(3−∆)− 6(1−∆)

)

−∆∗e−2x
(

8x2
− 12x+ 6

)

)

−

−
∆∗

12π (1 + ∆ +∆∗)
(13)

and

F̃2

(

∆∗,∆;w
)

= −
1

48π

ˆ ∞

0

dx

x

∆∗e−2x

(1 + ∆∗e−2x)
2

(

6
(

1 + ∆∗ −∆
2
)

+∆∗e−2x
(

6 + 6∆∗ − 3∆
2
))

≃

≃
∆∗
(

6
(

1 + ∆∗ −∆
2
)

+∆∗
(

6 + 6∆∗ − 3∆
2
))

48π (1 + ∆∗)
2 log

w

a
, (14)

where

∆ =∆32 +∆21= ∆wp +∆pw (15)

∆∗ = ∆32 ∆21 = ∆wp ∆pw.

This is now the final expression for the vdW free en-
ergy expansion in terms of the inverse radius. All the
integrals in the above expression can in fact be calcu-
lated explicitly and analytically via the Lerch function,
see Appendix. The implied Matsubara summation can
finally be taken for any concrete model of the dielectric
response. The lowest order term, containing the inte-
gral of F0

(

∆∗,∆;w
)

, is identical to the vdW free energy
of interaction between semi-infinite media ”1” and ”3”
across the plane-parallel slab of medium ”2”, scaling as
the inverse second power of the thickness of the slab, w
[8].

The logarithmic divergence of F̃2

(

∆∗,∆;w
)

is consis-
tent with the previous results on the renormalization of
the bending rigidity to the lowest order in the dielectric
mismatch [33], while formula Eq. 14 presents the full Lif-
shitz result to all orders in the dielectric mismatch. Of
the three terms in Eq. 10, we will concentrate only on the
first two. The first pertains to the renormalization of the
surface free energy where its bare value, stemming from
short range interactions between the capsid proteins is

unknown, while the third term, describing the bending
rigidity renormalization, allows for an ambiguity because
- depending on the definition of the ”neutral surface” -
it contains an undefined constant. We thus take the full,
renormalized value of the bending rigidity as an empirical
constant.

C. Curvature expansion of the electrostatic

interaction

The PB theory of electrostatic interactions sets the
framework for calculation of the curvature expansion of
the electrostatic part of the free energy [7]. In the model
considered, based on the rigid nature of the proteinaceous
virus shell, we assume a fixed surface charge density at
the inner and at the outer boundary of the shell, which
can nevertheless differ [2]. We also assume a different
static dielectric permittivity for the shell then for the
bathing aqueous solution in which the shell is immersed,
following closely the approach of Ref. [42]. Again we will
delimit ourselves to the surface tension and the spon-
taneous curvature term for the same reasons as already
invoked in the context of the vdW interaction.

The inner radius of a charged shell is again taken as
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R, with surface charge density σ1, and the outer of ra-
dius R + w, with surface charge density σ2. Both can
be extracted from a detailed statistical analysis of the
VIPERdb for different virus families [43]. The majority
of analysed viruses tend to have a slightly negative σ2.
The charge on the inner shell is however less universal
and most of the analyzed viruses have either negative or
positive σ1. This conclusion has to be amended if one
adds disordered N-tails of the proteins on the inner sur-
face that shift the inner shell charge to more positive
values (for details see Ref. [43]) strongly influencing also
the stable length of the encapsidated genome [44].

We are seeking again an expansion of the free energy up
to the second order in terms of the inverse powers of the
inner radius of curvature R, assuming again that w ≪ R.
The static dielectric constant of water is εw, and that of
the of the capsid protein εp < εw are taken as εp = 5 and
εw = 80. Additionally, we denote µ = εp/εw < 1.

In what follows we delimit ourselves exclusively to
the linearized PB (Debye-Hückel, DH) theory within its
range of validity [7]. The electrostatic part of the free
energy is then given as a functional of the mean-field elec-
trostatic potential, ϕ(r), in the form

Gel =
1
2εwε0

ˆ

(V )

(

(∇ϕ(r))2 + κ2ϕ(r)2
)

d3r =

= εwε0

˛

(S=∂V )

ϕ(rS) (n ·∇ϕ(rS)) d
2
rS . (16)

κ is the inverse Debye screening length set by the ionic
strength of the monovalent salt of concentration c0 in the
regions r < R and r > R+w, i.e., κ2 = 2βe2c0/(ε0εw) and
is the same inside and outside the shell, whereas within the
shell κ ≡ 0. For a spherical shell of thickness w and inner
radius R, the mean-field electrostatic potential by assump-
tion depends only on the radial coordinate, ϕ(r) = ϕ(r),
and satisfies either the DH equation or the Laplace equation

∇
2ϕ(r) = κ2ϕ(r), or ∇2ϕ(r) = 0 for R ≤ r ≤ R+ w.

(17)
These two equations have to be solved with appropriate
boundary conditions, i.e. εwε0∂rϕ(r = R) has a jump equal

to σ1 and at εwε0∂rϕ(r = R+w) a jump equal to σ2. The
overall form of the mean-field electrostatic potential on r is
very similar to the one displayed on Fig. 5 of Ref. [42].
While one could formally extend the PB theory to

multivalent salts [29] the results could not be properly
validated on the mean-field level [17] and lead to addi-
tional considerations that will not be addressed here [31].
Furthermore, we work exclusively in the grand canoni-
cal ensemble where the screening parameters of the elec-
trolyte are set by the bulk reservoir, a straightforward
consequence of the fact that the viral capsids are usually
completely permeable to salt as opposed to lipid vesicles
where the number of the salt ions in the interior can be
constrained [29].
Within the limit of the DH theory for spherically symmet-

ric shells, the electrostatic free energy Eq. 16 for a charged
shell of thickness w as defined above, can be rewritten as
[27]

Gel = εwε0

˛

(S=∂V )

ϕ(rS) (n ·∇ϕ(rS)) d
2
rS =

= 1
24πR

2 σ1 ϕ(R) + 1
24π(R+w)2 σ2 ϕ(R+w),(18)

where the mean-field electrostatic potential can be obtained
from the solutions of the DH equation outside the proteina-
ceous layer, and from the Laplace equation inside, Eq. 17,
since the proteinaceous shell itself is impenetrable to ions,
with the boundary conditions specified above. The general
solution of this problem can be obtained analytically but
we will only use the expansion in terms of R to the second
order.
The final form of the free energy Eq. 18 for this par-

ticular geometry can then be derived as

Gel =
2πR2

κε0εw

(

σ1
M

L
+ σ2

N

L

)

, (19)

where the general forms of M , N , and L are derived in
Ref. [42] and are related to the electrostatic potential at
the two boundaries.
To the second order in 1/ρ = 1/(κR) we can simplify

the general expressions for the electrostatic potential and
after some algebra obtain the following form of the three
terms in the inverse curvature expansion

L = (2µ+ (κw)) ×

(

1 +
(κw)

ρ
+

(κw)2

ρ2

[

((κw) + 1)(µ− 1)

(κw)(2µ+ (κw))

]

)

, (20)

M =
(

µ(σ1 + σ2) + (κw)σ1

)

+
(κw)

ρ

(

((κw) + 1)σ1 + 2µσ2

)

+
(κw)2

ρ2
µσ2, (21)

and

N =
(

µ(σ1 + σ2) + (κw)σ2

)

+
(κw)

ρ

(

2µσ1 + (4µ+ 3(κw)− 1)σ2

)

+
(κw)2

ρ2

(

µσ1 + 3(2µ+ (κw)− 1)σ2

)

. (22)

In fact the only place where the curvature expansion needed to be taken into account is in the last expres-
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sion, N ; everything else being exact. This allows us to
derive the final expression for the curvature expansion of

the electrostatic part of the surface free energy density
as

1

4πR2
Gel(σ1, σ2, κ, w) =

1

2κε0εw

(

f0 (σ1, σ2, κ, w) +
f1 (σ1, σ2, κ, w)

κR
+

f2 (σ1, σ2, κ, w)

(κR)2

)

, (23)

where we introduced the shorthand

f0 (σ1, σ2, κ, w) =
µ(σ1 + σ2)

2 + (κw)(σ2
1 + σ2

2)

2µ+ (κw)
, (24)

f1 (σ1, σ2, κ, w) = (κw)
( (3µ+ 2(κw)− 1)σ2

2 + 2µσ1σ2 − (µ− 1)σ2
1

2µ+ (κw)

)

, (25)

and

f2 (σ1, σ2, κ, w) =
κw

(2µ+ (κw))2

(

(µ− 1) [(κw)(µ − 1)− µ]σ2
1 − 2µ((κw) + 1)(µ− 1)σ1σ2 +

+
[

(κw)3 + (κw)2(4µ− 1) + (κw)(5µ2
− 4µ+ 1)− µ(µ− 1)

]

σ2
2

)

(26)

In general the above free energy density is not symmetric
in the two surface charge densities that were assumed to
be constant during the deformation. As already stated
this seems a reasonable assumption in the context of the
rigid proteinaceous shells but can not be invoked in the
context of symmetric lipid vesicles [29]. In the latter
case the lipid membrane is to a good approximation im-
permeable to water as well as to hydrated ions and thus
represents an impermeable barrier that decouples the two
compartments, a situation very much opposite to the case
of a porous proteinaceous capsid.
In the limit of vanishing thickness w → 0 we

then obtain straightforwardly limw→0 Gel(σ1, σ2, κ, w) =
π(σ1 + σ2)

2R2/κεwε0, which is the correct expression for
a single shell of radius R and surface charge σ0 = σ1+σ2.
This corresponds to the dielectrically transparent case of
Duplantier [28], considered before. Perhaps more inter-

esting is the fact that the higher order terms are asym-
metric in terms of σ1 and σ2. Our analysis takes fully
into account the coupling between the inner and the outer
layer of the proteinaceous shell and we made no approx-
imation to decouple the two [45].

D. Combining the electrostatic and vdW

interactions

We can now write down the curvature expansion for
the total free energy. Adding Eq. 10 and Eq. 23 will
give us the terms in the free energy expansion: R0, R−1,
and R−2. This total surface free energy density then
leads to the following interaction renormalization of the
surface tension, spontaneous radius of curvature and the
mesoscopic bending rigidity

σ −→ σ0 +
Kc

R2
0

+ kBT

∞
∑

N=0

′

F0

(

∆∗,∆;w
)

+
1

2κε0εw
f0 (σ1, σ2, κ, w) (27)

1

R0
−→

1

R0
+

1

2Kc

(

kBT
∞
∑

N=0

′

F1

(

∆∗,∆;w
)

+
1

2κ2ε0εw
f1 (σ1, σ2, κ, w)

)

. (28)

Kc −→ Kc +
1

2Kc

(

kBT

∞
∑

N=0

′

F2

(

∆∗,∆;w
)

+
1

2κ3ε0εw
f2 (σ1, σ2, κ, w)

)

. (29)

Though we wrote down the full result for the surface en-
ergy, spontaneous curvature and bending rigidity renor-

malization, we will specifically investigate only the con-
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tribution of vdW and electrostatic interactions to the sur-
face tension and spontaneous curvature of the spheroidal
shell, Eq. 28, treating the bending rigidity as a phe-
nomenological parameter derived from experiment. As
already stated, the exact form of the interaction renor-
malized bending rigidity depends crucially on the as-
sumed position of the neutral surface pending on the na-
ture of the model one assumes for the shell. To avoid this
ambiguity, we consider the value of the bending rigidity
as an input phenomenological parameter.

III. NUMERICAL RESULTS

The spontaneous curvature interaction renormaliza-
tion depends on several parameters and we will inves-
tigate specifically the dependence on the capsid charge
σ1 and the charge asymmetry r = σ1/σ2 between the in-
ner and outer surface, the thickness w, the ionic strength
of the bathing solution and the dielectric response of all
the media involved. The latter in fact represents the
biggest challenge, as the dielectric response of capsid pro-
teins in the optical and UV regime of frequencies, that
contributes most to the vdW interactions, is simply not
known because the unavailable details of the electronic
structure of large capsid proteins (W.-Y. Ching, personal
communication and Ref. [46]).

The variation of the charge ratio r can be seen as a
proxy for the pH dependence of both surface charge den-
sities in a more complete theory of virus shell electro-
static, that would consistently include also charge regu-

lation of the capsid proteins [19, 47, 48]. Charge regula-
tion refers to the details of the protonation/deprotonation
equilibria at the dissociable sites of the capsid proteins
amino acids as formalized in the seminal work of Ninham
and Parsegian [49] and formulated within the Poisson-
Boltzmann (PB) theory of electrostatic interactions [7]. In
this theory the charges are not assumed to be fixed but
respond to pH and salt concentration changes.
While some partial dielectric data for bovine serum al-

bumin (BSA) do exist and were used by Roth et al. [50]
to calculate the Hamaker coefficient of protein-protein vdW
interactions, no full spectral data for capsid proteins are
available [12]. We thus approximate the frequency de-
pendent dielectric response of capsid proteins, εp(iζ), by
that of hydrocarbons with four ultraviolet relaxation fre-
quencies (for details see Ref. [8]). Without detailed cap-
sid protein spectral data this is the best thing we can do.
For the numerical computations we then use the standard
forms for the frequency dependent dielectric response of
water, εw(iζ), described with one microwave relaxation
frequency, five infrared relaxation frequencies, and six ul-
traviolet relaxation frequencies [51].
The additive renormalization of the surface tension and

spontaneous curvature can then be cast into the form

σ −→ σ0 +
Kc

R2
0

+
kBT

2πw2

(

H+
1

(κℓB)

(

w

ℓGC

)2
[

εp
εw

(r + 1)2 + (κw)(r2 + 1)

2
εp
εw

+ (κw)

])

(30)

1

R0
−→

1

R0
+

(kBT/Kc)

8π w

(

H′ +
2

(κℓB)

(

w

ℓGC

)2
[

(3
εp
εw

+ 2(κw)− 1) + 2
εp
εw

r − (
εp
εw

− 1)r2

2
εp
εw

+ (κw)

])

(31)

Above we introduced the Gouy-Chapman length per-
taining to the outer surface charge density σ2 as
ℓGC = 1/(2πℓB(σ2/e0)) and the Bjerrum length ℓB =
e20/(4πεε0 kBT ), with r = σ1/σ2. Numerically the Bjer-
rum length in water equals 0.74 nm. The above form of
the additive renormalization of the spontaneous curva-
ture has a minimal value at rmin = εp/(εp−εw), whereas

the renormalized surface tension is monotonic in r. These
are the final expressions for the surface tension and sponta-
neous curvature renormalization.
Two ”Hamaker coefficients” pertaining to the zeroth and

first order curvature expansion, H and H′, , are obtained
by assuming a symmetric configuration, where water is
on both sides of the proteinaceous shell, i.e.

H =

∞
∑

N=0

′
ˆ ∞

0

dx x ln
(

1−∆wp(iζN )2e−2x
)

= −
1

4

∞
∑

N=0

′

Li3
(

−∆wp(iζN )2
)

(32)

H′ =

∞
∑

N=0

′

f̃1 (∆wp(iζN )∆pw(iζN ),∆wp(iζN ) + ∆pw(iζN ))

=

∞
∑

N=0

′ [
ˆ ∞

0

dx ln
(

1−∆wp(iζN )2e−2x
)

−

ˆ ∞

0

dx
∆wp(iζN )2e−2x

1−∆wp(iζN )2e−2x

(

x2
− x
)

]

(33)
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FIG. 1. Dependence of the dimensional scaling functions σ̃, Eq. 34, the surface charge ratio r = σ1/σ2 and different values of

the inverse screening length, κ. The renormalized surface tension is always positive, tends to zero for large screening, but shows

non-monotonic dependence on the charge asymmetry ratio.

With the standard water dielectric spectra [51] and
hydrocarbon spectra [8] taking the place of the unknown
protein dielectric spectra, this yields H ≃ −0.177 and
H′ ≃ −0.386, where the Matsubara summation included
the first 500 terms.
Empty viral capsids tend to have at least slightly neg-

ative outer shell [43]. There is more diversity concern-
ing the charge on the inner shell which can be negatively
or positively charged. The inclusion of disordered N-tails
of the capsid proteins into the charge statistics notice-
ably shifts the inner shell charge towards more positive
values. This is especially relevant in the case of ssRNA
viruses, where the disordered N-tails contribute significantly
to the strongly positively charged interior, and where the
charge is correlated with the genome length due to the
non-specific electrostatic interactions acting as an assem-
bly mechanism [44, 53, 54].
In addition, models of multishell capsids in the presence

of N-tails have highlighted the importance of charged tails in
determining the capsid size, which can in the multishell con-
formations differ from the capsid’s preferred (spontaneous)
radius of curvature, due to the interplay of eletrostatic re-
pulsion between the tails and attraction between the tails
and the outer surface of the neighbouring shell [55]. While
we simply assign the contribution of the N-tails to the inner
surface charge density σ2 in order to keep our model con-
sistent, we thus consider the possibility that σ2 has either

negative or positive sign, the latter stemming from the con-
tribution of the positively charged tails to the inner charge.
The inner and outer surface charge density of the

virus capsids is in general quite large when compared
with other charged biomolecules, being in the range
[−0.4, 0.4] e0/nm

2. Invoking the previously obtained aver-
age capsid radii this implies net charge values in the range
∼ 4500 e0 [52]. The exact values of the surface charge den-
sity depend on the charge model, i.e., single- vs. double-
shell models, and on the presence of the charged N-tails as
discussed above (for details see Ref. [43]). We thus intro-
duce the charge asymmetry parameter as the ratio of inner
and outer surface charge as r = σ1/σ2 and in the following
consider the range r ∈ [−1, 1].
According to the above statistics of virus charges the

Gouy-Chapman length corresponding to 0.4 e0/nm
2 is

ℓGC = 0.54 nm, while the outer-inner charge ratio spans
−1 < r < 1. For more than 75% of viruses analyzed in
Ref. [43], the thickness is confined to a narrow range,
w ≃ 1.5− 4.5 nm, with w ≃ 3 nm as a good estimate of
the average. The monovalent salt concentration can be
taken in the typical range 0.001 − 1 M, which amounts
to Debye lengths of 10.75− 0.34 nm.
In order to understand the consequences of sponta-

neous curvature renormalization we rewrite Eq. 30, 31
in the form that contains only the interaction-renormalized
part

σ =
kBT

w2
σ̃ with σ̃ =

F0

(

(κℓB), (w/ℓGC), κw, r
)

2π (κℓB) (κℓGC)2
(34)

1

R0
=

(kBT/Kc)

w

1

R̃0

with
1

R̃0

=
F1

(

(κℓB), (w/ℓGC), κw, r
)

8π (κℓB)(κℓGC)2
, (35)
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FIG. 2. Dependence of the dimensional scaling function 1/R̃0, Eq. 35, on the surface charge ratio r = σ1/σ2 and different values of

the inverse screening length, κ. The renormalized curvature is in general a non-monotonic function of r and κ, and can be of either

sign depending on the charge asymmetry parameter and the amount of screening in the system.

where σ̃ and R̃0 are now dimensionless contributions to the
surface tension and spontaneous curvature due to DLVO in-
teractions. The surface tension and spontaneous curvature
obviously have the scale of kBT/w

2 and (kBT/Kc)/w, re-
spectively. For the former it amounts to a fraction of the
surface tension of water (∼ 0.5 − 4 pN/nm) and for the
latter within the range of the capsid radii (10 − 100 nm),
obtained from the estimated values of capsid elasticity [52].

F0,1

(

(κℓB), (w/ℓGC), κw, r
)

are complicated dimension-

less scaling functions. Alternatively they can be written in

the form F0,1

(

(κℓB)(κℓGC)
2, κw, r

)

. The salient features

of dimensionless contributions to the surface tension and
spontaneous curvature are presented in Fig. 1 and Fig.
2.

Fig. 1 shows that DLVO interaction renormalized sur-
face tension tends in a monotonic way to the bare value, as
the screening length is decreased, i.e. salt is added to the
system, and is always positive, irrespective of the detailed
values of the interaction parameters. The dependence on
the charge ratio is more complicated and in general leads to
non-monotonic behavior. The charge asymmetry thus en-
genders a minimum in the interaction renormalized surface
tension, whose depth depends on the amount of screening
present in the system.

Fig. 2 shows analogous dependencies for the DLVO in-
teraction renormalized curvature, but in this neither of the
dependencies is monotonic. While the dependence on the
charge asymmetry again shows a pronounced minimum at
rmin = εp/(εp − εw), whose depth depends on the salt
screening, the dependence on the inverse Debye length can
be either monotonic when r ∼ ±1 or non-monotonic, when
it is close to rmin. Furthermore, depending on the charge
asymmetry parameter, the interaction renormalized sponta-
neous curvature can be either positive or negative. In the

above numerical analysis we have not considered explicitly
the variation of the dielectric spectrum of the capsid pro-
teins as very little is presently known of its details.

IV. CONCLUSION

Motivated by recent experiments, revealing that elec-
trostatic interactions can be of paramount importance for
the morphology of capsid-like aggregates and can funda-
mentally change the phase diagram of e.g. the CCMV cap-
sid protein, where besides regions of single-wall and multi-
wall capsids, tubes and free protein regions can be observed
as a function of electrolyte solution parameters [3], we de-
rived an interaction renormalization of the elastic properties
of a proteinaceous shell of the virus capsid type. The in-
teractions potentials taken into account are of the DLVO
type, and by assumption composed of the vdW and elec-
trostatic part. The first one considered on the level of the
Lifshitz theory and the second one on the level of the lin-
earized PB theory. This formulation of the problem
then hinges only on mesoscale parameters characterizing
the shell, such as the dielectric function of the capsid
proteins, the magnitude of the dielectric discontinuity at
the capsid-aqueous solvent boundary, capsid thickness,
Debye screening length as well as the inner and the outer
surface charge densities. Just as in the case of the DLVO
theory of the stability of colloids, microscopic details are
not necessary to calculate the effect of the solution pa-
rameters on the magnitude of the spontaneous curvature.
The approach advocated here, avoiding all the micro-

scopic details of the capsid shell composition, such as the in-
ternal structure of its proteins, possible non-isotropic dielec-
tric response, detailed distribution of charged sites etc. obvi-
ously bypasses more detailed microscopic calculations, start-
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ing from the interaction free energy between capsomeres
and its dependence on their mutual orientation, that could
be eventually translated into the spontaneous curvature of
the shell. Just as more microscopic approaches to the col-
loid stability problem illuminate the mesoscale parameters
used in the macroscopic DLVO approach, they could also
fill in the details of our macroscopic description of the pro-
teinaceous shells and our theory could be in principle re-
fined, but with much effort and with the introduction of
new, completely unknown and unquantified properties, like
the anisotropic dielectric function of the proteinaceous shell,
the inclusion of detailed charge dissociation equilibria for all
the (de)protonated amino acids [19], or even explicit in-
troduction of the non-DLVO interactions such as hydration
and hydrophobic interactions [9]. We are convinced at this
point that such a generalization, even if possible, would
not clarify the problem but make it completely untranspar-
ent and unquantifiable. The thickness of the proteinaceous
shell, confined to the narrow range of ≃ 1.5− 4.5 nm [43],
and comparable to the thickness of the lipid bilayers, does
make our approach susceptible to criticism regarding the
limitations of the continuum approach. While this criti-
cism could be relevant, one should not gloss over different
types of drawbacks of at first sight “exact” results, that
could be provided by more detailed molecular simulations,
based however on molecular potentials that as a rule com-
pare poorly with the measured interaction potentials be-
tween (bio)macromolecules. Before model molecular poten-
tials reach maturity, interim continuum results which can be
expected to be qualitatively relevant, if not quantitatively
predictive, are the best we can do.
While the calculation of the surface tension and spon-

taneous curvature renormalization by the long-range DLVO
potentials on the mesoscale level leaves no ambiguities in
the results, the calculation of the renormalized bending
rigidity is more sensitive to the detailed assumptions re-
garding the neutral surface with respect to which one
renormalizes the long-range interaction part of the free
energy. This is why we took the bending rigidity as a
phenomenological parameter determined by the experi-
ment.
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VI. APPENDIX

We define the Lerch transcendental function in the
standard form as

Φ(z, s, ν) =

∞
∑

n=0

zn

(ν + n)s
. (36)

Obviously the polylog function can be expressed as
Lis(z) = zΦ(z, s, 1), and the more familiar Riemann zeta
function then follows as ζ(s) = Lis(1) = Φ(1, s, 1). The
analytical continuation of the Lerch function is particu-
larly appropriate to evaluate the integrals that figure in
the vdW part of the spheroidal shell free energy expan-
sion.

In fact the exact expressions that we use in the section
on vdW free energy curvature expansion are of the form

ˆ ∞

0

dx x log
(

1 + ∆∗e−2x
)

= −
1

4
Li3(∆

∗) (37)

as well as

ˆ ∞

0

dx xν−1e−2x

1 + ∆∗e−2x
=

1

2ν
Γ(ν)Φ(−∆∗, ν, 1) (38)

and

ˆ ∞

0

dx xν−1e−4x

(1 + ∆∗e−2x)2
=

=
1

2ν
Γ(ν) [Φ(−∆∗, ν − 1, 2)− Φ(−∆∗, ν, 2)] . (39)

We use the Lerch transcendental function to obtain val-
ues of all the integrals in the curvature expansion of the
vdW interaction energy.
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[2] A. Šiber, A. Losdorfer Bozic, and R. Podgornik, Phys.
Chem. Chem. Phys. 14, 3746 (2012).

[3] J. R. Vega-Acosta, R. D. Cadena-Nava, W. M. Gelbart,
C. M. Knobler, and J. Ruiz-Garćıa, J. Phys. Chem. B
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