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We consider the symmetry and physical origin of collective displacement modes playing 
a crucial role in the morphological transformation during the maturation of the HK97 
bacteriophage and similar viruses. It is shown that the experimentally observed hexamer 
deformations and pentamer twists in the HK97 procapsid correspond to the simplest 
irreducible shear strain mode of a spherical shell in the continuous approximation.  We 
also show that the icosahedral faceting of the bacteriophage capsid shell is driven by the 
simplest irreducible radial displacement field. The shear field has the rotational 
icosahedral symmetry group I while the radial field has the full icosahedral symmetry Ih. 
This difference makes their actions independent. The radial field sign discriminates 
between the icosahedral and the dodecahedral shapes of the faceted capsid shell, thus 
making the approach relevant not only for the HK97-like viruses but also for the 
Parvovirus family. In the frame of the Landau-Ginzburg formalism we propose a simple 
phenomenological model valid for the first reversible step of the НК97 maturation 
process. The calculated phase diagram illustrates the discontinuous character of the virus 
shape transformation. The characteristics of the virus shell faceting and expansion 
obtained in the in vitro and in vivo experiments are related to the decrease in the capsid 
shell thickness and to the increase of the internal capsid pressure. 

PACS numbers: 62.23.St, 64.70.Nd, 87.15.Zg 

 

I. INTRODUCTION 

Self-assembly and shape transitions in biological nanostructures with non-trivial topology 
are characterized by unconventional properties and unusual pathways. In contrast to classical 
condensed matter, bionanoassemblies undergo a multistep process which involves several 
physical transformations. Virus self-assembly is a typical example of a multistep process of this 
type [1].  Viral capsid, the protein shell which protects viral genome, passes through several 
successive steps of the assembly process. At the first step the so-called procapsid shell self-
assembles from the aqueous solution of individual viral proteins. The process called capsid 
maturation is the final step of the virus self-assembly. During maturation the virus acquires the 
ability to infect the host cell. The process is characterized by a number of considerable correlated 
structure changes in the procapsid shell resulting in the mature infectious virion.  

One of the most interesting features of the maturation process in a variety of viruses is a 
morphological transformation of the capsid shell resulting in a shape transition from the 
spherical to the faceted polyhedral geometry. It is worth noting that maturation in the host cell 
secretory pathway is often accompanied by irreversible biochemical events in capsid proteins 
including protein domain cleavage or neighboring protein cross-linking [2,3]. However, 
irreversible events usually take place at the stages of the maturation process different from the 
stage of the structural modification leading to final protein positions and orientations in the shell 
(see e.g. [4]).  Direct in vivo experiments [4] evidenced this fact and allowed the authors of [4] to 
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perform the in vitro structural procapsid-to-capsid transformation of a complex virus in a 
reversible and perfectly controlled manner. They have shown that the reversible structural 
transition during the maturation process can be considered as an independent physical 
phenomenon. This fact makes it possible to treat the reversible stage of the maturation process 
within the general frame of condensed matter physics. 

To illustrate the notions of the theory developed in our work we choose the example of 
bacteriophage HK97. Other viruses with similar structural characteristics can be considered in 
the same framework. The HK97 bacteriophage is a dsDNA virus with the icosahedral capsid 
protein shell. The protein density in the capsid has the rotational icosahedral symmetry group I 
and consists of 420 proteins distributed in seven 60-fold general positions of this group. The 
capsid structure satisfies to the well-known Caspar and Klug geometrical model [5] which limits 
the number of proteins constituting the shell to N=60T where the number of different positions T 
takes the value hkkhT 22 ++= , with h and k being non-negative integers. The eventful 
maturation scenario of the HK97 bacteriophage is studied in detail by high-resolution structural 
methods. The morphological transformation of the spherical procapsid into the faceted capsid 
during the HK97 maturation process is accompanied by a strong increase in the shell volume and 
in the mean capsid diameter [6,7]. The diameter undergoes a growth of about 20%. The protein-
shell wall becomes much thinner, the shell thickness becomes more homogeneous, and, finally, 
the shell acquires a pronounced icosahedral shape. The multistep maturation process with a 
faceting transition at its intermediate stages is typical not only for the HK97 bacteriophage, but 
for a variety of viruses (e.g. P22 phage, Herpes Simplex Virus, etc.) with similar structural 
organization [8].  

The morphological changes at different steps of the HK97 maturation process are 
observed in both in vivo and in vitro experiments. On the one hand, in the host cell pathway 
these morphological changes are induced by the intracellular pH-level gradient and by the ATP-
dependent genome packaging into the pre-assembled procapsid protein shell. On the other hand, 
in in vitro experiments the same structure and shape variation are reproduced in the absence of 
viral genomic DNA, by using the controlled pH decrease of the buffer [8]. Intermediate steps of 
the HK97 bacteriophage maturation in vivo are practically inaccessible experimentally while in 
vitro experiments provide the information which is still not complete. The structures of the 
procapsid and matured capsid shells are usually determined by means of X-ray crystallography 
and high-resolution cryoelectron microscopy (cryoEM) [7,9]. It is difficult to obtain from these 
data the information about the intermediate states of the in vivo maturation process. Biochemical 
in vitro experiments study maturation dynamics in the buffers with controlled pH level [10,11] 
and manage to distinguish several intermediate states with the faceted capsid shells and one 
intermediate state with the spherical shape symmetry. The intermediate states are stabilized at 
different pH levels and are characterized by successive increase in the shell volume.  

Reversibility of the processes taking place at different steps of the structural 
transformation during the HK97 maturation was discussed in a series of previous works [10,12-
15]. In our opinion, the most realistic scheme of the maturation process, which clearly indicates 
the reversible and the irreversible steps, was given in [12]. The transition between the spherical 
procapsid (Prohead-II) and the flattened Expansion Intermediate (EI) state was shown to be 
reversible in [10]. Reversibility of maturation steps is often investigated using the HK97 
bacteriophage mutants exhibiting no protein cross-linking. In this case even the transformation 
between the EI and the so-called Balloon state is reversible [12]. The next stage of the in vitro 
process, i.e. the Balloon-to-Head II transformation was also found reversible in [13]. However, 
these results are in contradiction with the data obtained by [14] indicating that the Balloon-to-
Head transition is not readily reversible, even in the absence of crosslinks. Note also that at 
T>54°C the transformation between the spherical procapsid (Prohead I) and the flattened 
Expanded Prohead I states is reversible in in vitro experiments [15]. Thus, the HK97 
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bacteriophage represents an example of a virus with the structural transformation during 
maturation process that can be studied within the frame of well-established physical methods. 

In spite of the progress in experimental studies the relation between the pH-induced 
structure variation in in vitro experiments and the in vivo capsid transformations induced by the 
genome packaging with the help of motor proteins [3] remains unclear. It is still difficult to 
characterize virus maturation dynamics and kinetics experimentally. This situation renders the 
predictions of theoretical and numerical modeling essential for the understanding of the 
procapsid shell transformation into the mature infectious virion. 

Several models have been proposed to approach theoretically the HK97 capsid 
morphological transformation [16-20]. Structural changes during maturation have been described 
in [16] as a condensation of several low-frequency modes in a model system with the icosahedral 
symmetry. Two types of modes were considered to be responsible for the capsid faceting, the 
modes of the capsid isotropic expansion (or compression) and the modes of the pentamer 
displacements. The HK97 virus maturation was also modeled [17] in the frame of the simplified 
Landau-Ginzburg theory of phase transitions. In contrast with the classical Landau-Ginzburg 
approach, the model proposed in [17] did not take into account the normal mode symmetry. In 
this simplified approach the order parameter was taken as a scalar physical quantity. Thus, this 
approximation has disconnected the free energy of the model from the capsid structure and 
symmetry characteristics. At the same time additional terms dependent on continuous derivatives 
of the order parameter with respect to the variables on the shell surface were introduced in the 
free energy, though the shell consists of only 420 particles. The intermediate structures of the 
maturation process obtained in the frame of this approach are spatially inhomogeneous and their 
interpretation on the basis of available experimental data is not straightforward. The model [17] 
was then modified [18] by introducing the methods of continuum elasticity theory but still 
remained disconnected from the mode symmetry. 

The present work aims to provide a detailed group theory analysis of the critical modes 
responsible for the morphological changes in the HK97 bacteriophage, and to propose a minimal 
model of the procapsid-to-capsid transformation. The model is developed in the frame of the 
Landau-Ginzburg approach with the well-defined physical meaning of the free energy terms.  

The paper is organized as follows. In section II we show that all basic morphological 
changes of the HK97 protein shell during the maturation process are related to the well-defined 
normal modes of a homogeneous spherical membrane. We clarify the roles of the global 
expansion mode and of the shape symmetry-breaking mode responsible on the shell faceting. In 
addition, we explain how the simplest irreducible global shear strain mode of the spherical 
membrane induces the experimentally observed hexamer distortions and pentamer rotations. We 
elucidate the found relation between the global shear mode and the local distortions which is not 
obvious and was never discussed previously. A thermodynamic model of the capsid 
transformation is developed in the third section. The proposed theory is applicable to a variety of 
viruses demonstrating the maturation process accompanied by a capsid faceting and a 
discontinuous volume jump.  

 
II. CRITICAL ORDER PARAMETERS RESPONSIBLE FOR THE 

MORPHOLOGICAL TRANSFORMATION 

As it was shown previously in [16], the structural changes during maturation in the capsid 
shell of the HK97 bacteriophage, and in capsids of several similar viruses, involve two coupled 
low-frequency modes. First of them induces an isotropic capsid expansion, the second one is 
responsible for the shell faceting. Let us discuss the symmetry characteristics of the capsid 
protein shell and their incidence on the modes responsible for the morphological changes during 
the maturation process. Note that the symmetry of the microscopic protein density distribution 
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differs from the macroscopic symmetry of the shell shape. During the morphological procapsid-
to-capsid transformation the protein distribution symmetry remains unchanged though the 
symmetry of the shell shape changes. Due to the asymmetry (and namely to the chirality) of coat 
proteins the protein density distribution in both the procapsid and the capsid states have the same 
chiral symmetry group I of all icosahedral rotations [5,21]. In contrast, the 2D shell shape is 
given by a regular system of points in the 3D space and is independent on the symmetry of 
individual proteins. The shape of the procapsid shell with the icosahedral density distribution is 
spherical with a good accuracy. During the morphological transformation the capsid shell 
acquires icosahedral faceted shape with the average macroscopic symmetry of the Ih group, 
which contains all symmetries of an icosahedron including spatial inversion and mirror planes. 
The displacement field relating the spherical procapsid and the icosahedral capsid shell shapes 
also has the average macroscopic symmetry given by the Ih group. This field is evidently 
invariant with respect to the spatial inversion operation. Consequently, the modes responsible on 
the transformation should be classified according to the sphere symmetry group O(3) which 
contains spatial inversion (in contrast with the SO(3) group).  

Different modes of a spherical membrane with the O(3) symmetry are classified 
according to irreducible representations (IRs) of this group. Three types of modes are usually 
distinguished, bending, stretching and shear. In contrast to the case of the planar membrane, 
bending and stretching modes of the spherical membrane can be strongly coupled. It is the case 
of the bending and stretching modes with the same wave number l which form two linearly 
coupled bending-stretching modes. The displacement field corresponding to each coupled 
bending-stretching mode contains both radial and tangent components. On the contrary, the 
symmetry of the shear mode differs from the symmetry of the bending-stretching mode with the 
same wave number l, and the shear displacement field has the tangent component only. Due to 
the symmetry difference the shear field is linearly independent from the bending-stretching 
modes. 

 Linearly coupled bending-stretching modes can be classified in a function of the relative 
contribution of radial and tangent components in the mode amplitude. The mode with the main 
contribution of the radial component can be conventionally called “bending” of the spherical 
membrane. On the one hand, the mode with the main tangent contribution can play the role of 
“stretching”. It is the radial displacement field which brings the main contribution to the 
spherical membrane shape variation (for the full mode classification and detailed study of the 
corresponding mechanical problem see [22]). Consequently, the main shape changes in the viral 
capsid during its maturation process are related to the shape variation induced by the radial 
displacement field component. The stretching component of the displacement field spans the 
same irreducible representation of the O(3) group as the radial component does, and, 
consequently, its amplitude is directly determined by the coupling with the radial component. 
Thus, we start our symmetry analysis with the radial displacement field component. 

 Any radial displacement field of the spherical membrane is expanded in scalar spherical 
harmonics:  
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where θ  and φ  are the angles of a standard spherical coordinate system. Corresponding 
Cartesian vector R’ of a point on the deformed sphere surface has the form:  

 >+++=< θφθφθ cos)(,sinsin)(,cossin)(' RuRuRu rrrR , (2) 
where R is the radius of the initial non-deformed sphere. The normal mode responsible for the 
shape symmetry breaking spans the irreducible representation of the O(3) group labeled by a 
fixed value of the wave number l. 
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The spherical harmonic Y00 describes an isotropic expansion (or compression) of the 
procapsid shell and plays the role of the first one-dimensional fully symmetrical order parameter 
of the minimal model developed in our approach. The second order parameter responsible for the 
shape variation from the spherical to the icosahedral one is not so simple, and needs much more 
detailed discussion. Because of the shape invariance with respect to spatial inversion, expansion 
(1) is limited to the spherical harmonics with even wave numbers l only. Furthermore, there are 
additional drastic rules which select possible l values for the irreducible modes which can drive 
the transition from the spherical shape to the shape with the full icosahedral symmetry Ih. The 
analysis based on the invariant theory (see Appendix) shows that these modes correspond to the 
functions ),(. φθmlY  with the wave numbers l satisfying the following selection rules: 

 10j6il += , (3) 
where i and j are positive integers or zero. The sequence L of the wave number l values ( Ll ∈ ) 
allowed by (3) has the form: L = (6, 10, 12, 16, 18, 20, 22, 24 ...). It selects the spherical 
harmonics, and, consequently, the symmetry breaking modes which can give a contribution to 
icosahedral faceting of the spherical viral capsid.  

The explicit form of the displacement field ),( φθru  in the state with the icosahedral 
shape is obtained in terms of orthogonal icosahedral functions ( )ϕθ ,i

lf  with the full icosahedral 
symmetry 

 
,),(),(

1
.0.0 ∑∑

∈

=

=

+=
Ll

ni

i

i
lilr

t

fDAu φθφθ  (4) 

where ilD , are the amplitudes of the functions.  The index i (i=1,…, tn ) in Eq. (4) runs over all 

functions with the same fixed wave number l. The number of tn values is equal to the number of 
non-negative integer solutions (i, j) of equation (3) for a given allowed value of l. Consequently, 
the number of linearly independent icosahedral functions ( )ϕθ ,i

lf  is quite limited. According to 
Eq. (3) this number is equal to 1=tn  for all l<30. The explicit form of the icosahedral functions 

( )ϕθ ,i
lf  with a given fixed l value is easily obtained by the averaging of spherical harmonics lmY  

over the full icosahedral symmetry group Ih:  
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where G=Ih  and the coefficients i
lC can be determined from the normalization and (for l≥30) 

from the orthogonality condition for functions (5) with the same l value.   
 Number tn  can also be obtained by a classical method widely used in condensed matter 
physics, especially in Raman and IR spectroscopies for the active mode determination [23]. It is 
based on the well-known character relation of the representations for the symmetry groups of the 
symmetric state and the state with the broken symmetry (i.e. the state with non-zero mode 
amplitude). For the procapsid spherical shell the harmonics ),(. φθmlY  with  m=-l, -l+1, ... l span 
one (2l+1)–dimensional irreducible representation of the O(3) group. The icosahedral functions 

( )ϕθ ,i
lf  introduced above form an orthogonal basis of the identity representation of the 

icosahedral capsid shell symmetry group. They are linear combinations of ),(. φθmlY  with the 
given l which are obtained by the restriction of the O(3) group to the icosahedral group Ih. The 
number of identity representations tn  is given by the character relation in the form [24]: 
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where the sum runs over the elements 
∧
g  of the  Ih symmetry group, |G | = 120 is the number of 

elements in the group, and )(
∧
glξ  are the characters of the irreducible representation of O(3) with 

the fixed l value. Taking into account the fact that all functions with even wave numbers l are 
invariant with respect to spatial inversion we limit sum (6) to the 60 icosahedron rotations only. 
After partition of the representation characters into conjugacy classes Eq. (6) takes the following 
form: 

 
))5/4(12)5/2(12)3/2(20)(1512(

60
1)( πξπξπξπξ llllt lln +++++= , (7) 

where )2/sin())2/1sin(()( αααξ += ll  is the character of the rotation through an angle α 
matrix. 
 For an arbitrary surface with the icosahedral shape symmetry Ih displacement field (4) 
can contain a number of functions ( )ϕθ ,i

lf  with different values of l.  However, here we adopt 
the approach of the Landau theory of phase transitions [25], and assume that the considered 
shape transformation is driven by a single critical order parameter which spans one irreducible 
representation. The amplitude of this function with the fixed l gives the main contribution to the 
capsid free energy variation in the vicinity of the morphological transformation point where the 
amplitudes of other non-critical components in (4) are negligibly small. Then, the group theory 
analysis presented above shows that the simplest radial displacement field responsible for the 
capsid shape symmetry breaking is characterized by the wave number value l=6. In Cartesian 
coordinates the ( )zyxf ,,6  function has the following simple form: 
 ( ) )25(21/1))()((,, 222222222

6 −−−−−= τττ yxxzzyzyxf , (8) 

where 2/)15( −=τ  is the golden mean, and coordinates <x, y, z> of a point on a unit sphere 
are related in a standard way to θ and φ  variables of a spherical coordinate system. Note that two 
opposite signs of the ( )zyxf ,,6  function amplitude lead to two different surface shapes with the 
icosahedral symmetry. The displacement field with the positive amplitude results in a surface 
with the icosahedral shape, while for the opposite sign the surface acquires the dodecahedral 
shape (see Fig. 1). A similar relation was obtained in [20] for tethered spherical networks 
undergoing buckling transitions.  Experimentally, in the case of bacteriophage HK97 considered 
in our work the capsid shape induced by the displacement field is icosahedral (see Fig. 1,c) [12]. 
However, there exist a number of viruses which display dodecahedral capsid shape. An example 
of viruses of this type is given by the pathogenic human Parvovirus B19 (Fig. 1,d) [26]. It is 
remarkable that the simplest critical function given by Eq. (5) catches this structural difference 
and describes it in a very simple way.  
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FIG. 1. (a-b): Spherical surface deformation by the radial displacement fields proportional to the 
icosahedral function ( )ϕθ ,6f . The amplitudes iD ,6  of the displacement fields in panels (a) and 
(b) have opposite signs. (c-d): Experimental realization of the capsid shapes induced by 
displacement fields (a) and (b). Viral capsid of the bacteriophage HK97 [12] with the icosahedral 
faceted shape (c), and viral capsid of the pathogenic human parvovirus B19 [26] (d) with the 
dodecahedral faceted shape.  

 The next step of the symmetry analysis is devoted to shear modes of the spherical 
membrane. Below we construct explicitly the shear displacement fields with the icosahedral 
symmetry and show that the simplest of them is responsible for the protein reorganization during 
the specific intermediate stage of the HK97 maturation, i.e. the EI state formation (see 
Introduction). This stage results in the symmetrization of the initially skewed hexamers, and is 
followed by the irreversible cross-linking of capsid proteins [12,27-28].  

Displacement fields which correspond to shear modes of the spherical membrane are 
tangent to the sphere surface and are described by the so-called vector spherical harmonics lmW
[29, 22].  These functions have the rotational symmetry similar to that of scalar spherical 
harmonics lmY  with the same wave number l, but their parity with respect to spatial inversion is 
opposite to the parity of lmY  functions. Let us present the principle of shear displacement field 
construction, the selection rules for the shear modes preserving the global icosahedral symmetry 
of the assembly, and the explicit form of the icosahedral shear displacement field with l = 6 
responsible on the capsomer deformation. 

In order to obtain the icosahedral shear functions we use classical methods similar to 
those used above for the radial function lf  construction [24]. The form of the shear function is 
simpler in Cartesian coordinates. The spherical harmonic Yll with m=l (up to its normalization) 
reads in Cartesian coordinates as: Yll=(x-iy)l, where (x,y,z) are the components of a vector. 
Analogously, the vector harmonic Wll  with m=l is a simple function dependent on the 
components of two different vectors r=(x,y,z)  and  r' =(x’,y’,z’): Wll=z’(x-iy)l-z(x’-iy’) (x-iy)l-1. 
Then, all other vector harmonics lmW  with m=l-1, l-2,…-l forming the basis of the (2l+1)-
dimensional representation with the fixed wave number l are easily obtained by successive 
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application of the lowering operator [24] ''' )''()(')()( zyxzyx iyxiziyxizJ ∂+−∂+∂+∂+−∂+∂=−  
which acts on the r and r' components. 

The rotational symmetry of lmW  and lmY  functions being the same, the selections rules 
for the wave number l value for the radial and the shear icosahedral functions are also the same. 
Thus, the allowed values of l for the shear functions with the icosahedral symmetry are given by 
condition (3) obtained previously for the radial fields. The explicit form of the icosahedral shear 
functions ( )',rri

lS  with a given fixed l value is readily obtained by the averaging of vector 
spherical harmonics lmW  over the icosahedral symmetry group I:  
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where G=I  and the coefficients i
lC can be determined from the normalization and (for l≥30) 

from the orthogonality condition for functions (9) with the same l value. Similar to the case of 
radial icosahedral fields, the icosahedral shear function ( )', rrlS  with the fixed l value obtained 
by the averaging is unique for l<30 and contains no internal fitting parameter. The components 
of the irreducible shear field u with the icosahedral symmetry are then expressed as the 
derivatives of scalar shear function (9) with respect to the r’ components: 
 >∂∂∂<= i

lz
i
ly

i
lx SSS ''' ,,u  (10) 

In the simplest case (i.e. for l=6) icosahedral shear field (10) has the following explicit form (up 
to normalization coefficients): ݑ௫ ൌ ሺെ√5߬ݔସ ൅ ସݕ ൅ ߬ଶݖସ ൅ 2√5߬ଶݔଶݕଶ െ ଶݖଶݔ5√2 െ ௬ݑ ;ݖݕଶሻݖଶݕ5߬√2 ൌ ሺ߬ଶݔସ െ ସݕ5߬√ ൅ ସݖ െ ଶݕଶݔ5√2 െ ଶݖଶݔ5߬√2 ൅ 2√5߬ଶݕଶݖଶሻݑ (11)                                ;ݖݔ௭ ൌ ሺݔସ ൅ ߬ଶݕସ െ ସݖ5߬√ െ ଶݕଶݔ5߬√2 ൅ 2√5߬ଶݔଶݖଶ െ  .ݕݔଶሻݖଶݕ5√2
 

 
FIG. 2. Simplest irreducible shear field (l=6) with the icosahedral symmetry and hexamer 
deformation in the HK97 procapsid. (a) Shear field on a spherical surface. Vectors of the field 
are given by segments, segment color intensity gradient indicates vector direction, and segment 
length is proportional to the field amplitude. For the sake of clarity the amplitude is exaggerated 
with respect to the sphere size. The field is antisymmetric with respect to spatial inversion. It is 
invariant with respect to all icosahedron rotations and vanishes at the global icosahedral 
symmetry axes. With a good accuracy, in the vicinity of the 5-fold axes spherical membrane 
regions rotate as a whole under the shear field action, amplitude of the field being proportional to 
the distance from the axis. (b) Global deformation of the sphere tessellation (Caspar-Klug 
« spherical lattice » triangulation) with T=7 by the icosahedral shear field shown in panel (a). 
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Structure of the HK97 bacteriophage is commonly interpreted in terms of this tessellation 
containing 12 pentamers and 60 hexamers. (с) Distorted hexamer shape in the HK97 procapsid 
(structural data taken from [7]).  

 Figure 2 shows the relation between icosahedral shear field (11) and the deformation of 
hexamers observed experimentally at the early stages of the HK97 maturation process. Let us 
stress that this shear field induces not only hexamer deformations but pentamer rotations also. It 
is remarkable that the corresponding “twist of pentamers” was observed experimentally [7]. In 
addition, the angle of the pentamer twist during the HK97 maturation process is approximately 
equal to the pentagonal tile rotation shown in Fig. 2,b. It is also worth noting that, according to 
the authors of [7], the sides of pentamers and hexamers in the HK97 capsid are not parallel to 
each other, making this capsid slightly different from the classical Caspar-Klug structure. Fig. 
1,c in [7]  shows also that in the HK97 procapsid the side of the deformed hexamer adjacent to 
the pentamer is not parallel to the corresponding pentamer side. Thus, the difference from the 
Caspar-Klug structure is inessential; the pentamer twist and symmetrization of the adjacent 
hexamer are correlated and are described with a good accuracy by the icosahedral shear field 
given in Figs 2, (a,b). Finally, let us note that the calculated shear field vanishes at the 
icosahedral 3-fold axes making them local rotation centers. The comparison of the experimental 
procapsid and capsid structures given in [7] reveals the corresponding “pivots” in the HK97. Due 
to the global icosahedral symmetry of the shear field all 60 hexamers in the capsid are 
equivalent. The same concerns the procapsid hexamers. Thus, the local 3-fold axes are shifted 
only slightly during the morphological transformation. 
 Resuming this analysis we can say that the capsomers in the HK97 procapsid structure 
are deformed by the simplest continuous icosahedral shear field. The field is very close to the 
irreducible (IR number l=6) shear strain mode of the spherical membrane. Though the shear field 
and radial displacement field (8) have the same wave number l=6 they are linearly decoupled 
since they have different parity properties with respect to spatial inversion. Therefore, these 
fields correspond to different independent normal modes of the spherical shell and their 
overlapping cannot be essential. 
 To proceed further, let us note that the EI state formation occurs in two steps [12,27-28]. 
The first of them, the PII <->EI-1 transformation, is reversible [10]. At the irreversible second 
step cross-linking bonds between the capsid proteins appear. Below, in the frame of the Landau-
Ginzburg theory, we construct a simple thermodynamic model of the reversible stage of the 
maturation process.  For the sake of clarity, we consider only the critical degrees of freedom 
related to the capsid shape variation and described by the radial fields with l=6 and l=0.  
 

III. FREE ENERGY OF THE PROCAPSID-TO-CAPSID SHAPE 
TRANSFORMATION 

  The symmetry and structure analysis performed in the previous Section shows that the 
main features of the shape variation during the maturation process in the HK97 bacteriophage 
and in similar viruses are described by the radial displacement fields with the minimal set of 
spherical harmonics. The critical order parameters span two irreducible representations of the 
O(3) symmetry group with l=0 and l=6. The former field is responsible for the isotropic volume 
changes while the latter one breaks the shape symmetry from the spherical to the icosahedral 
one. Free energy of the transformation is dependent on the amplitude A00  of the fully symmetric 
function with l=0, and 13 amplitudes A6,m  of the harmonics with l=6.  

The Landau free energy dependent on the components of the considered order parameters 
can describe different low-symmetry states. The number of linearly independent order parameter 
components in different states is quite different because the linear relations between 13 
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amplitudes A6,m  are strongly dependent on the state symmetry. In the simplest free energy model 
developed in the present work we are interested not in all transitions into all possible ordered 
states, but in the spherical-to-icosahedral transition only. To describe this single transformation 
(and not a system of phase transitions) we apply the well-known method of “effective” order 
parameter and “effective” free energy widely used in the theory of phase transitions (see e.g. 
[30,31]). The method reduces the description to linearly independent components of the order 
parameter. A similar method is applied in [20] to the problem of the spherical tethered network 
buckling.  

In the considered case the symmetry group analysis performed in the previous section 
shows that in the icosahedral state all 13 amplitudes A6,m are linearly dependent and proportional 
to a single variable noted below as η. This “effective” order parameter coincides with the 
amplitude B6,1 of the ( )ϕθ ,6f   function in Eq. (4). The “effective” free energy depends only on η 
and on the variable responsible on the isotropic volume variation. It describes only the transition 
between the spherical and the icosahedral states. The value of the order parameter η obtained by 
the free energy minimization defines the degree of the capsid faceting. The sign of η 
discriminates between the icosahedral and dodecahedral shape of the resulting capsid.  

In what follows, instead of the A00 amplitude of the fully symmetric harmonic Y00 
responsible for the isotropic expansion (or compression) we use the capsid’s volume variation 
∆V as a variable in the free energy expansion. This choice is more suitable for physical 
interpretation of the results obtained in the frame of the developed approach. It is evident that the 
amplitude A00 and the volume variation ∆V are related linearly. This justifies the change of 
variable proposed here. Then, the minimal expansion of the free energy density F describing the 
morphological transformation during the maturation process in the HK97 capsid takes the form: 

 F = A(d)η2 + a2η3 + a3η4 - P∆V + b∆V2 - |g|∆Vη2, (12) 

The symmetry of the considered problem forbids two terms in free energy density (12). 
First of all, the term linear in η is absent. This term would make impossible the free energy 
minimum in the spherical non-faceted state (η=0). Secondly, free energy density (12) does not 
contain the bilinear coupling term proportional to the η∆V product.  It is forbidden by the fact 
that ∆V and η span two different representations of the spherical membrane symmetry group. 
The phenomenological coefficient A(d) in free energy density (12) is dependent on the capsid 
shell thickness d, which depends in turn on a number of biochemical parameters. Detailed 
discussion of the biochemical processes involved in the maturation and corresponding 
microscopic parameters is out of the scope of the present phenomenological work. Here we focus 
on the minimal model construction and on the full symmetry analysis of the shape 
transformation problem. We limit our discussion to the well-established experimental result: a 
decrease in the capsid shell thickness leads to the faceting transition which is proved to be 
reversible in vitro.  
 The applicability region of the proposed model for in vitro experiments concerns the 
maturation steps experimentally proved to be reversible, e.g. the Prohead I-to-Expanded Prohead 
I transition [15] and the Prohead II-to-Expansion Intermediate I transformation [10]. It is evident 
that genome packaging in in vivo experiments is an irreversible process and cannot be described 
explicitly in the frame of phenomenological theory of phase transitions. However, several 
physical aspects induced by the genome packaging, e.g. internal capsid pressure variation, can be 
taken into account phenomenologically. 

 In the frame of the Landau approach developed in our work the morphological 
transformation thermodynamics is described by free energy (12). The stability limit for the 
spherical capsid shape corresponds to the coefficient A(d) vanishing. But the faceting instability 
transition takes place even earlier, when A(d) is still positive. More detailed analysis shows that 
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the considered shape transition is discontinuous. The procapsid undergoes the first order faceting 
transition before the full softening of the normal mode responsible for this shape transition takes 
place.  

The discontinuous character of the faceting transition is directly related to the presence of 
the cubic term a2η3 in free energy density (12). It is worth noting that any irreducible 
representation of the O(3) group with even value of the wave number l admits an invariant term 
which is cubic in a function of amplitudes of spherical harmonics. This fact was widely used 
previously in many different fields of physics. It is the case, for example, of nematic liquid 
crystal physics [30]. The orientational ordering of rod-like molecules is described by the second-
rank symmetric traceless tensor Qij , and the nematic order parameter spans the irreducible 
representation of the O(3) group with l=2 [30,31]. It is evident that the determinant of the 
corresponding tensor is the cubic invariant of the irreducible representation. The same principles 
applied to other values of l show that cubic invariant exists for all even wave numbers. Direct 
calculation of the cubic invariant for the irreducible representation with l=6 can be performed 
explicitly using properties of Clebsch-Gordan coefficients [24,32]. Because of its cumbersome 
form, we omit it in the present work. Note, that the cubic term in the free energy is not only 
responsible for the discontinuous character of the transition, but also plays the crucial role in the 
choice between the icosahedral and the dodecahedral shapes of the resulting capsid shell.  

Other terms of free energy density (12) have a rather straightforward form and physical 
meaning. Because of the identical symmetry of the mode responsible for the isotropic volume 
change the free energy contains the term which is linear in ∆V and the coupling term which is 
quadratic in the symmetry-breaking order parameter η and linear in ∆V. The term quadratic in 
∆V with the positive coefficient b>0 ensures the global stability of the isotropic expansion (or 
compression) mode. The fourth-degree term in powers of the order parameter η with the positive 
coefficient a3>0 ensures the existence of a global minimum in the considered system. The 
coefficient P in free energy density (12) expresses the pressure difference between the inner and 
the outer regions of the capsid shell. In a more complex model it is possible to take into account 
higher non-linearity of the free energy in a function of the isotropic expansion (or compression) 
mode represented here by the variable ∆V. Nonlinear in ∆V terms would favor intermediate 
states between the spherical procapsid and the icosahedral capsid. But in the minimal model of 
the shape transformation these terms lead to unjustified mathematical complications. 

The minimization of the free energy functional with the density given by (12) leads to 
three possible solutions with different symmetries: i) η=0; ii) η<0; and iii) η>0, volume change 
∆V being nonzero for all three states. Solutions ii) and iii) with opposite signs of the order 
parameter correspond to the shell with the icosahedral and the dodecahedral shape, respectively. 
They are usually called anti-isostructural states in the theory of phase transitions in condensed 
matter [30]. The free energy density being non-linear in η and quadratic in ∆V, it is more 
convenient to minimize it first with respect to ∆V, and then substitute the solution in (12). 
Simplified in this way, free energy (10) depends only on the symmetry breaking order parameter 
η and its minimization yields the values of η in both the icosahedral and the dodecahedral states 
of the shell: 

 F(η) = (A(d) - |g|P/(2b))η2 + a2η3 + (a3 - g2/(4b))η4 - P2/(4b), (13) 

In free energy density (13) the pressure increase induced by the genome packaging into the 
capsid shell contributes to the variation of the phenomenological coefficient multiplying the term 
quadratic in order parameter η.  Negative sign of the term with |g| corresponds to the fact that the 
packaging-induced growth of internal pressure leads to the capsid volume increase and favors the 
shape transformation. Shell faceting could be then favored not only by the experimentally 
observed capsid shell thinning, but by an eventual internal pressure increase also. Let us stress 
that besides the capsid shell thinning, the factors which influence shell faceting are still not 
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elucidated experimentally. In addition to the increase of the internal pressure these could be other 
physical mechanisms, e.g. surface interaction between the inserted genome and the capsid 
proteins leading to the conformational changes in coat proteins. In the present model the degree 
of shell faceting is determined by the equilibrium value of the order parameter η. Thus, the 
model predicts that the degree of shell faceting grows with the shell wall decrease and the 
internal pressure increase according to the law: 
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 The phase diagram of the model is presented in Fig. 3. Free energy (13) graphs for 
several typical points in the phase diagram are given in inserts a), b) and c) in Fig. 3. The points 
are taken in the corresponding regions in the phase diagram. The phase diagram shows that the 
in-out pressure difference variation and the A(d) coefficient variation, induced by the shell 
thinning and by the pH level decrease, contribute to the same part of the free energy. 

 
FIG. 3. Phase diagram of the free energy functional with density (12). Full line 1 and dash-dotted 
line 2 divide the phase diagram in qualitatively different regions: the region of stability of the 
minimum with the spherical symmetry, the region of stability of the minimum with the 
icosahedral symmetry, and the region where two minima with different symmetries coexist. The 
minimum with η=0 (spherical shape state without faceting) exists only in the region above line 2. 
The state with the icosahedral shape (η<0) appears below line 1. At dashed line 3 free energies of 
the spherical and the icosahedral faceted states are equalized. Below line 2 the minimum which 
corresponds to the spherical state disappears. It is replaced by the weak metastable minimum 
with η<0. Inserts a), b) and c) show free energy density (13) as a function of the order parameter 
η in several typical points. Corresponding points are given by the same letters in the phase 
diagram. Two qualitatively different thermodynamic paths of the morphological transformation 
are shown by arrowed lines. Line 4 (downward) corresponds to the shell thinning induced by the 
pH level decrease. Line 5 (from left to right) illustrates the result of the pressure difference 
increase.  During the in vivo genome packaging into the capsid the thermodynamic path of the 
system passes between lines 4 and 5 and corresponds to the simultaneous capsid shell thinning 
and internal capsid pressure increase.   
  

The phase diagram in Fig. 3 was calculated for the case a2>0. For negative values of this 
coefficient, each graph of free energy density (13) in inserts a), b) and c) is reflected with respect 
to the F axis. With this change of the sign the ordered state with the icosahedral symmetry 
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changes its shape from the icosahedral to the dodecahedral one. Corresponding lines in the phase 
diagram separate in this case the regions of stability of the spherical and the dodecahedral shell 
shapes. Dashed line 3 indicates in this case the first-order transition between the spherical and 
the dodecahedral states. 

The minimal model of the shape transition developed here allows us to calculate 
analytically the equation of line 3 where the free energies of the spherical and the icosahedral (or 
dodecahedral) states become equal: 
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Another important quantitative characteristic which is also obtained analytically in the frame of 
the minimal model is the value of the volume jump at the discontinuous transition from the 
spherical to the faceted state: 
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IV. DISCUSSION AND CONCLUSION 

 We have analyzed three collective displacement modes responsible for the morphological 
changes taking place during the maturation process in capsids of the HK97 bacteriophage and 
similar viruses. In the continuous approximation all three modes correspond with a good 
accuracy to the simplest irreducible deformation fields of a spherical shell. We have shown that 
the continuous approximation describes not only the capsid faceting and volume variation, but 
also the capsid hexamer symmetrization and pentamer rotations [7,33]. In in vitro experiments 
the shape transition is followed by the irreversible cross-linking of the capsid proteins [12, 27-
28]. The reversible shape transformation, at the preceding stage of the maturation process, results 
in a capsid faceting and expansion. We construct a thermodynamic Landau-Ginzburg model of 
the corresponding shape transition. The model establishes the relation between the faceting 
transition and two external thermodynamic parameters of the system. First of them is the capsid 
shell thinning induced by the pH level decrease, observed in in vitro experiments. The second 
one is connected to the pressure difference increase between the inner and outer regions of the 
shell.  During the in vivo virus maturation process, a progressive genome packaging into the 
capsid shell with the help of motor proteins leads to the pressure difference increase. Here we 
show that the in vivo shell faceting could be favored not only by the experimentally observed 
capsid shell thinning but by the internal pressure increase also.  

In our work we developed for the capsid maturation transition the idea [16] of critical 
mode selection. Both our theory and the approach proposed in [16] are based on the Landau’s 
ideas about critical degrees of freedom playing a key role during structural phase transitions. Let 
us stress that, in contrast to [16] we use a continuous model of the capsid and perform a detailed 
symmetry analysis of the structural data obtained in [7], which were published after the 
publication of [16]. As a consequence, we distinguish the critical modes partially different from 
those proposed in [16]. In our opinion, these modes are more suitable to account for the 
experimentally observed variation of the HK97 capsid structure during its maturation process. 

The capsid shape transformation mechanism proposed in our work is consistent with 
classical works [34,35] on the capsid shell faceting based mainly on the continuum elasticity 
theory. These works have used the analogy between the faceting phenomenon and the 
longitudinal instability of disclinations in two-dimensional crystals. They have shown that in the 
locally hexagonal protein packing, proposed as a model for viral capsid organization by Caspar 
and Klug [5], disclination instabilities in the vicinity of five-fold axes lead to the capsid faceting 
for viruses of sufficiently big size. The model proposed in [34] was based on the non-linear 
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physics of thin elastic shells. It analyzed the shell buckling instability and elucidated the 
dependence of the viral capsid faceting on the value of a dimensionless Föppl–von Kármán 
(FvK) number γ. The FvK number is the combination γ=YR2/κ, where Y is the two-dimensional 
Young modulus of the shell, κ is its bending rigidity, and R is the mean radius of the capsid shell 
[34]. High bending rigidity favors smooth, practically spherical shell shape while low bending 
rigidity leads to the faceted shape. In the model developed in our work the capsid shell thinning 
is shown to be one of the two important external thermodynamic parameters of the shape 
transformation.  It is evident that the shell thinning results in the decrease of its bending rigidity 
κ. The decrease in κ leads to the shell faceting in good agreement with the predictions of [34].  
To complete the approach [34,35] we took into account the experimentally observed increase in 
the capsid average radius and the shell volume during the HK97 maturation process [27].   

The capsid faceting phenomenon was also a subject of numerical modeling based on the 
simplified interaction potentials of capsomers taken as interacting particles. Recent work [19] 
considered both spherical and faceted states in the frame of the simplest inter-capsomer Lennard-
Jones pair potential for several viruses satisfying Capsar and Klug selection rules. The pair 
potential put in the basis of this work conserves the average distance between the capsomers, 
and, consequently, makes the surface areas of the spherical and the faceted capsids 
approximately equal. This condition makes, in turn, the radius of a sphere circumscribed around 
the faceted capsid greater than the radius of the spherical one while the volume of the faceted 
capsid decreases. Though mathematically such a model is self-consistent, its geometric 
properties differ greatly from the experimentally observed increase in both the average capsid 
radius and the capsid volume during the maturation process in the HK97 and similar viruses. 

In recent work [18] the classical approach developed in [34,35] was submitted to a certain 
criticism. The continuous elastic model developed in [18] proposed to relate the faceting 
transition not to the FvK number but to the hexamer shape variation. However, the X-ray 
crystallography and the high-resolution cryoEM data reveal one more intermediate state of the 
HK97 maturation process which is characterized by the spherical capsid shape and the regular 
symmetric hexamer shape simultaneously [11]. Thus, we consider that the hexamer shape 
variation is not directly related to the capsid shell faceting. By contrast, further development of 
the shape transition theory in spherical shells with the fixed highly symmetric positions of 
disclinations [20] seems to us very interesting and promising. We expect that in the near future it 
will be possible to construct a micromechanical model of such a shell which admits the simplest 
shear mode (Fig. 2,a) as a critical order parameter for the shell “torsion” preserving its 
icosahedral symmetry.  

We also expect that the progress in the cryoEM technique will soon result in new high-
resolution data on the intermediate states of the HK97 morphological transformation. These 
additional data would constitute the basis for the further development of the minimal model 
proposed in the present work. The simplest extension would be the model which takes into 
account in (12) the terms of higher order in ∆V. It is easy to see that by adding the fourth–order 
terms in ∆V in (12) one obtains additional states which differ by the shell volume values. They 
might correspond to several spherical shells with different volumes observed in in vitro 
experiments [3,7,36]. 

In conclusion, let us note that the minimal thermodynamic model with a clear physical 
meaning of the free energy parameters proposed in the present work describes the viral capsid 
shape transformation during the maturation process in the HK97 bacteriophage and in similar 
viruses. The underlying physical processes are driven by the order parameters spanning 
irreducible representations of the O(3) symmetry group, which characterizes the procapsid 
macroscopic spherical shape. The considered morphological transformation during the 
maturation process is understood as a phase transition leading to the isotropic shell expansion 
and the symmetry-breaking faceting. The first fully symmetric order parameter is related to the 
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shell volume change ∆V. The second 13-dimensional order parameter responsible for the 
procapsid shape symmetry breaking describes explicitly the icosahedral faceting of the viral 
shell. It spans the even irreducible representation of the O(3) group with l=6 and represents the 
linear combination of the spherical harmonics with l=6 invariant with respect to the icosahedral 
symmetry group Ih. In the state with the icosahedral symmetry all 13 components of this order 
parameter depend on only one amplitude. In the minimal model of the transformation this fact is 
described by the effective one-dimensional order parameter η. The model is then reduced to the 
coupling between the fully-symmetric order parameter responsible for the capsid volume change 
and the one-dimensional order parameter responsible for the shell faceting. It admits third-order 
term in η in the free energy, thus making the morphological transformation discontinuous. The 
sign of the third-order term discriminates between the icosahedral and the dodecahedral shapes 
of the faceted capsid. The calculated phase diagram shows two qualitatively different paths of 
the transformation in a function of the main external thermodynamic parameters of the in vitro 
and in vivo experiments and the possibility of simultaneous variation of these parameters. The 
ensemble of the results obtained describes the experimentally observed physical phenomena 
which accompany the maturation process in the HK97 bacteriophage and similar viruses. 
 

APPENDIX: DISPLACEMENT FIELDS WITH THE ICOSAHEDRAL 
SYMMETRY ON A SPHERICAL SURFACE 

The analysis performed in terms of the invariant theory makes it possible to construct an 
arbitrary function with the icosahedral symmetry. It provides a justification for selection rules (3) 
which determine the possible wave numbers l associated with the order parameter of the faceting 
transition. This order parameter is responsible for the procapsid shape symmetry breaking from 
O(3) to Ih.  

We start with the properties of an arbitrary scalar function defined on a spherical surface 
(e.g. a function of radial displacements of the capsid shell material points) and invariant with 
respect to the symmetry group Ih, which contains all symmetry operations of an icosahedron. Let 
us fix the point group orientation with respect to the coordinate frame and choose Cartesian axes 
x, y and z along the two-fold symmetry axes of the icosahedron. This choice allows us to express 
the invariants of the full icosahedral group in a simple way. Another property of the group helps 
us to construct the so-called integrity basis constituted by the generators of the ring of invariant 
polynomials. Any function with the icosahedral symmetry can then be expanded in series of the 
finite number of invariant polynomials constituting the integrity basis. The point group Ih 
belongs to the class of simple mathematical objects called groups generated by reflections. For 
the groups of this type the number of invariants in the integrity basis is equal to the dimension of 
its vector representation (i.e. to the dimension of the space in the considered case) and the 
product of degrees of basis invariants is equal to the number of the group elements |G|. 
Consequently, the integrity basis of the Ih group contains only three following invariant 
polynomials with the degrees 2, 6 and 10, respectively: 
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herе >=< zyx ,,r  ; vectors iq and ip  are parallel to the 5-fold and 3-fold icosahedral axes, 
respectively. From the geometric point of view each term in the products in the expressions for 
the invariant polynomials 1J and 2J  is equivalent to the equation of a plane perpendicular to the 
5-fold and 3-fold axes.  
 According to the well-known presentation of spherical harmonics as homogeneous 
polynomial functions, any icosahedral function lf (given by Eq. (5)) with the fixed wave number 
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l can be expressed as a homogeneous polynomial in >=< zyx ,,r  of the degree l. Taking unit 
radius-vector length we express r in spherical coordinates as:  

ϕθ cossin=x , ϕθ sinsin=y , θcos=z . 
On the unit sphere the invariant 0J  acquires constant value 0J =1.  Then, any function on 

a spherical surface invariant with respect to the icosahedral symmetry group Ih can be presented 
in the form:  

 ...),( 2
26
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The degree l of the lf function (as a function of the radius-vector components) is equal to the 
degree of the last terms in expansion (12). The number of terms of the degree l in (12) is the 
number of possible integer linear combinations of numbers 6 and 10 equal to l. Consequently, for 
any homogeneous function of the degree l invariant with respect to the Ih group, the number l 
satisfies to the condition l=6i+10j, where i and j are non-negative integers.  

Due to the function irreducibility, the coefficients Ai multiplying the terms with the 
degrees smaller than l in (12) are univocally defined by the orthogonality of function (12) to the 
basic functions of other irreducible representations with the wave numbers l’<l. The following 
orthogonality relations hold for a given irreducible function F: 

 
,0sin),( ' =∫∫ θφθφθ ddYF ml for all l’ < l  (13) 

In practice, the number of equations in system (13) is much higher than the number of unknown 
coefficients in function (12). However, the additional equations are either linearly equivalent or 
become identities. 
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