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Sports are spontaneous generators of stories. Through skill and chance, the script of each game
is dynamically written in real time by players acting out possible trajectories allowed by a sport’s
rules. By properly characterizing a given sport’s ecology of ‘game stories’, we are able to capture the
sport’s capacity for unfolding interesting narratives, in part by contrasting them with random walks.
Here, we explore the game story space afforded by a data set of 1,310 Australian Football League
(AFL) score lines. We find that AFL games exhibit a continuous spectrum of stories rather than
distinct clusters. We show how coarse-graining reveals identifiable motifs ranging from last minute
comeback wins to one-sided blowouts. Through an extensive comparison with biased random walks,
we show that real AFL games deliver a broader array of motifs than null models, and we provide
consequent insights into the narrative appeal of real games.

PACS numbers: 89.65.-s, 89.20.-a, 05.40.Jc, 02.50.Ey

I. INTRODUCTION

While sports are often analogized to a wide array of
other arenas of human activity—particularly war—well
known story lines and elements of sports are conversely
invoked to describe other spheres. Each game generates
a probablistic, rule-based story [I], and the stories of
games provide a range of motifs which map onto nar-
ratives found across the human experience: dominant,
one-sided performances; back-and-forth struggles; under-
dog upsets; and improbable comebacks. As fans, people
enjoy watching suspenseful sporting events—unscripted
stories—and following the fortunes of their favorite play-
ers and teams [2H4].

Despite the inherent story-telling nature of sporting
contests—and notwithstanding the vast statistical anal-
yses surrounding professional sports including the many
observations of and departures from randomness [5HIT]—
the ecology of game stories remains a largely unexplored,
data-rich area [I2]. We are interested in a number of ba-
sic questions such as whether the game stories of a sport
form a spectrum or a set of relatively isolated clusters,
how well models such as random walks fare in reproduc-
ing the specific shapes of real game stories, whether or
not these stories are compelling to fans, and how differ-
ent sports compare in the stories afforded by their various
rule sets.

Here, we focus on Australian Rules Football, a high
skills game originating in the mid 1800s. We describe
Australian Rules Football in brief and then move on to
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extracting and evaluating the sport’s possible game sto-
ries. Early on, the game evolved into a winter sport
quite distinct from other codes such as soccer or rugby
while bearing some similarity to Gaelic football. Played
as state-level competitions for most of the 1900s with
the Victorian Football League (VFL) being most promi-
nent, a national competition emerged in the 1980s with
the Australian Football League (AFL) becoming a for-
mal entity in 1990. The AFL is currently constituted by
18 teams located in five of Australia’s states.

Games run over four quarters, each lasting around 30
minutes (including stoppage time), and teams are each
comprised of 18 on-field players. Games (or matches) are
played on large ovals typically used for cricket in the sum-
mer and of variable size (generally 135 to 185 meters in
length). The ball is oblong and may be kicked or hand-
balled (an action where the ball is punched off one hand
with the closed fist of the other) but not thrown. Mark-
ing (cleanly catching a kicked ball) is a central feature
of the game, and the AFL is well known for producing
many spectacular marks and kicks for goals [13].

The object of the sport is to kick goals, with the cus-
tomary standard of highest score wins (ties are relatively
rare but possible). Scores may be 6 points or 1 point as
follows, some minor details aside. Each end of the ground
has four tall posts. Kicking the ball (untouched) through
the central two posts results in a ‘goal’ or 6 points. If the
ball is touched or goes through either of the outer two
sets of posts, then the score is a ‘behind’ or 1 point. Final
scores are thus a combination of goals (6) and behinds
(1) and on average tally around 100 per team. Poor con-
ditions or poor play may lead to scores below 50, while
scores above 200 are achievable in the case of a ‘thrash-
ing’ (the record high and low scores are 239 and 1). Wins
are worth 4 points, ties 2 points, and losses 0.

Of interest to us here is that the AFL provides
an excellent test case for extracting and describing
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Figure 1. Representative ‘game story’ (or score differential
‘worm’) for an example AFL contest held between Geelong
and Hawthorn on Monday April 21, 2014. Individual scores
are either goals (6 points) or behinds (1 point). Geelong won
by 19 with a final score line of 106 (15 goals, 16 behinds) to
87 (12 goals, 15 behinds).

the game story space of a professional sport. We
downloaded 1,310 AFL game scoring progressions from
http://afltables.com (ranging from the 2008 season to
midway through the 2014 season) [I4]. We extracted
the scoring dynamics of each game down to second level
resolution, with the possible events at each second being
(1) a goal for either team, (2) a behind for either team,
or (3) no score [15]. Each game thus affords a ‘worm’
tracking the score differential between two teams. We
will call these worms ‘game stories’ and we provide an
example in Fig. [ The game story shows that Geelong
pulled away from Hawthorn—their great rival over the
preceding decade—towards the end of a close, back and
forth game.

Each game story provides a rich representation of a
game’s flow, and, at a glance, quickly indicates key as-
pects such as largest lead, number of lead changes, mo-
mentum swings, and one-sidedness. And game stories
evidently allow for a straightforward quantitative com-
parison between any pair of matches.

For the game story ecology we study here, an impor-
tant aspect of the AFL is that rankings (referred to as
the ladder), depend first on number of wins (and ties),
and then percentage of ‘points for’ versus ‘points against’.
Teams are therefore generally motivated to score as heav-
ily as possible while still factoring in increased potential
for injury.

We order the paper as follows. In Sec. [I] we first
present a series of basic observations about the statis-
tics of AFL games. We include an analysis of condi-
tional probabilities for winning as a function of lead size.
We show through a general comparison to random walks
that AFL games are collectively more diffusive than sim-
ple random walks leading to a biased random walk null
model based on skill differential between teams. We then
introduce an ensemble of 100 sets of 1,310 biased random
walk game stories which we use throughout the remain-
der of the paper. In Secs. [[V] and [V] we demonstrate
that game stories form a spectrum rather than distinct

clusters, and we apply coarse-graining to elucidate game
story motifs at two levels of resolution. We then pro-
vide a detailed comparison between real game motifs and
the smaller taxonomy of motifs generated by our biased
random walk null model. We explore the possibility of
predicting final game margins in Sec. [VII We offer clos-
ing thoughts and propose further avenues of analysis in

Sec. [VIIl

II. BASIC GAME FEATURES
A. Game length

While every AFL game is officially comprised of four
20 minute quarters of playing time, the inclusion of stop-
page time means there is no set quarter or game length,
resulting in some minor complications for our analysis.
We see an approximate Gaussian distribution of game
lengths with the average game lasting a little over two
hours at 122 minutes, and 96% of games run for around
112 to 132 minutes (0 ~ 4.8 minutes). In comparing
AFL games, we must therefore accommodate different
game lengths. A range of possible approaches include di-
lation, truncation, and extension (by holding a final score
constant), and we will explain and argue for the latter in

Sec. [Vl

B. Scoring across quarters

In post-game discussions, commentators will often fo-
cus on the natural chapters of a given sport. For quarter-
based games, matches will sometimes be described as ‘a
game of quarters’ or ‘a tale of two halves.” For the AFL,
we find that scoring does not, on average, vary greatly as
the game progresses from quarter to quarter (we will how-
ever observe interesting quarter-scale motifs later on).
For our game database, we find there is slightly more
scoring done in the second half of the game (46.96 versus
44.91), where teams score one more point, on average, in
the fourth quarter versus the first quarter (23.48 versus
22.22). This minor increase may be due to a heightened
sense of the importance of each point as game time be-
gins to run out, the fatiguing of defensive players, or as
a consequence of having ‘learned an opponent’ [12, [16].

C. Probability of next score as a function of lead
size

In Fig. 2] we show that, as for a number of other sports,
the probability of scoring next (either a goal or behind)
at any point in a game increases linearly as a function of
the current lead size (the National Basketball Association
is a clear exception) [IOHIZ, [I7]. This reflects a kind of
momentum gain within games, and could be captured by
a simple biased model with scoring probability linearly
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Figure 2. Conditional probability of scoring the next goal
or behind given a particular lead size. Bins are in six point
blocks with the extreme leads collapsed: < -72,-71to-66, ...,
-6 to -1, 1 to 6, 7 to 12, ..., > 72. As for most sports, the
probability of scoring next increases approximately linearly
as a function of current lead size.

tied to the current lead. Other studies have proposed
this linearity to be the result of a heterogeneous skill
model [12], and, as we describe in the following section,
we use a modification of such an approach.

D. Conditional probabilities for winning

We next examine the conditional probability of win-
ning given a lead of size ¢ at a time point ¢ in a game,
P,(Winning | £). We consider four example time points—
the end of each of the first three quarters and with 10
minutes left in game time—and plot the results in Fig.
We fit a sigmoid curve (see caption) to each conditional
probability. As expected, we immediately see an increase
in winning probability for a fixed lead as the game pro-
gresses.

These curves could be referenced to give a rough indi-
cation of an unfolding game’s likely outcome and may be
used to generate a range of statistics. As an example, we
define likely victory as P(Winning |£) > 0.90 and find ¢
= 32, 27, 20, and 11 are the approximate corresponding
lead sizes at the four time points. Losing games after
holding any of these leads might be viewed as ‘snatching
defeat from the jaws of victory.’

Similarly, if we define close games as those with
P(Winning|¢) < 0.60, we find the corresponding ap-
proximate lead sizes to be £ ~ 6, 5, 4, and 2. These
leads could function in the same way as the save statistic
in baseball is used, i.e., to acknowledge when a pitcher
performs well enough in a close game to help ensure their
team’s victory. Expanding beyond the AFL, such prob-
ability thresholds for likely victory or uncertain outcome
may be modified to apply to any sport, and could be
greatly refined using detailed information such as recent
performances, stage of a season, and weather conditions.
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Figure 3. Conditional probability of winning given a lead of
size £ at the end of the first three quarters (A—C) and with
10 minutes to go in the game (D). Bins are comprised of the
aggregate of every 6 points as in Fig.[2] The dark blue curve is
a sigmoid function of the form [1 4+ e~ **=)]~1 where k and
lo are fit parameters determined via standard optimization
using the Python function scipy.optimize.curve_fit (Note that
£o should be 0 by construction.) As a game progresses, the
threshold for likely victory (winning probability 0.90, upper
red lines) decreases as expected, as does a threshold for a close
game (probability of 0.60, lower red line). The slope of the
sigmoid curve increases as the game time progresses showing
the evident greater impact of each point. We note that the
missing data in panel A is a real feature of the specific 1,310
games in our data set.

III. RANDOM WALK NULL MODELS

A natural null model for a game story is the classic,
possibly biased, random walk [I0] [I8]. We consider an
ensemble of modified random walks, with each walk (1)
composed of steps of + 6 and + 1, (2) dictated by a
randomly drawn bias, (3) running for a variable total
number of events, and (4) with variable gaps between
events, all informed by real AFL game data. For the
purpose of exploring motifs later on, we will create 100
sets of 1,310 games.

An important and subtle aspect of the null model is
the scoring bias, which we will denote by p. We take
the bias for each game simulation to be a proxy for the
skill differential between two opposing teams, as in [12],
though our approach involves an important adjustment.

In [12], a symmetric skill bias distribution is generated
by taking the relative number of scoring events made by
one team in each game. For example, given a match
between two teams 77 and 75, we find the number of
scoring events generated by T, n1, and the same for 15,
ns. We then estimate a posteriori the skill bias between
the two teams as:

n
n1 + no

(1)

p:
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Figure 4. Skill bias p represents a team’s relative ability to
score against another team and is estimated a posteriori by
the fraction of scoring events made by each team Eq. . A
and B: Kolmogorov-Smirnov test D statistic and associated
p-value comparing the observed output skill bias distribution
produced by a presumed input skill distribution f with that
observed for all AFL games in our data set, where f is Gaus-
sian with mean 0.5 and its standard deviation o is the vari-
able of interest. For each value of o, we created 1,000 biased
random walks with the bias p drawn from the correspond-
ing normal distribution. Each game’s number of events was
drawn from a distribution of the number of events in real AFL
games (see text). Plot B is an expanded version of the shaded
region in A with finer sampling. We estimated the best fit
to be o ~ 0.088, and we compare the resulting observed bias
distribution with that of [12] in Fig.

In constructing the distribution of p, f(p), we discard in-
formation regarding how specific teams perform against
each other over seasons and years, and we are thus only
able to assign skill bias in a random, memoryless fashion
for our simulations. We also note that for games with
more than one value of points available for different scor-
ing events (as in 6 and 1 for Australian Rules Football),
the winning team may register less scoring events than
the losing one.

In [12], random walk game stories were then generated
directly using f(p). However, for small time scales this is
immediately problematic and requires a correction. Con-
sider using such an approach on pure random walks. We
of course have that f(p) = d(p—1/2) by construction, but
our estimate of f(p) will be a Gaussian of width ~ ¢=1/2,
where we have normalized displacement by time ¢. And
while as ¢ — oo, our estimate of f(p) approaches the
correct distribution §(p — 1/2), we are here dealing with
relatively short random walks. Indeed, we observe that

if we start with pure random walks, run them for, say,
100 steps, estimate the bias distribution, run a new set of
random walks with these biases, and keep repeating this
process, we obtain an increasingly flat bias distribution.

To account for this overestimate of the spread of skill
bias, we propose the tuning of an input Gaussian dis-
tribution of skill biases so as to produce biased random
walks whose outcomes best match the observed event bi-
ases for real games. We assume that f should be centered
at p = 0.50. We then draw from an appropriate distribu-
tion of number of events per game, and tune the standard
deviation of f, o, to minimize the Kolmogorov-Smirnov
(KS) D statistic and maximize the p-value produced from
a two-tailed KS test between the resulting distribution of
event biases and the underlying, observed distribution for
our AFL data set.

We show the variation of D and the p-value as a func-
tion of o in Fig.[dl We then demonstrate in Fig. [f] that
the o-corrected distribution produces an observably bet-
ter approximation of outcomes than if we used the ob-
served biases approach of [I2]. Because the fit for our
method in Fig. [5] is not exact, a further improvement
(unnecessary here) would be to allow f to be arbitrary
rather than assuming a Gaussian.

With a reasonable estimate of f in hand, we create 100
ensembles of 1,310 null games where each game is gener-
ated with (1) one team scoring with probability p drawn
from the o-corrected distribution described above; (2)
individual scores being a goal or behind with probabili-
ties based on the AFL data set (approximately 0.53 and
0.47); and (3) a variable number of events per simulation
based on: (a) game duration drawn from the approxi-
mated normal distribution described in Sec. [II} and (b)
time between events drawn from a Chi-squared distribu-
tion fit to the inter-event times of real games.

For a secondary test on the validity of our null model’s
game stories, we compute the variance o? of the mar-
gin at each event number n for both AFL games and
modified random walks (for the AFL games, we orient
each walk according to home and away status, the de-
fault ordering in the data set). As we show in Fig. @
we find that both AFL games and biased random walks
produce game stories with g2 ~ n123940:009 anq 52 ~
n1-236£0.012 pegpectively. Collectively, AFL games thus
have a tendency toward runaway score differentials, and
while superdiffusive-like, this superlinear scaling of the
variance can be almost entirely accounted for by our in-
corporation of the skill bias distribution f.

IV. MEASURING DISTANCES BETWEEN
GAMES

Before moving on to our main focus, the ecology of
game stories, we define a straightforward measure of the
distance between any pair of games. For any sport, we
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Figure 6. Variance in the instantaneous margin as a function
of event number for real AFL games (solid red curve) and bi-
ased random walks as described in Sec. (solid blue curve).
We perform fits in logarithmic space using standard least
squares regression (solid black curve for real games, dashed
black for the null model). The biased random walks satis-
factorily reproduce the observed scaling of variance. It thus
appears that AFL games stories do not exhibit inherently
superdiffusive behavior but rather result from imbalances be-
tween opposing teams.

define a distance measure between two games ¢ and j as

T
D(gi,g;) =T loi(t) = g5(t)] (2)
t=1

where T is the length of the game in seconds, and g;(t)
is the score differential between the competing teams in
game ¢ at second t. We orient game stories so that the
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the shorter game of each pair, horizontal solid blue lines show
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games.



team whose score is oriented upwards on the vertical axis
wins or ties [i.e., ¢;(T) > 0]. By construction, pairs of
games which have a relatively small distance between
them will have similar game stories. The normalization
factor 1/T means the distance remains in the units of
points and can be thought of as the average difference be-
tween point differentials over the course of the two games.

In the case of the AFL, due to the fact that games do
not run for a standardized time T, we extend the game
story of the shorter of the pair to match the length of the
longer game by holding the final score constant. While
not ideal, we observe that the metric performs well in
identifying games that are closely related. We investi-
gated several alternatives such as linearly dilating the
shorter game, and found no compelling benefits. Dila-
tion may be useful in other settings but the distortion of
real time is problematic for sports.

In Fig. [, we present the ten most similar pairs of
games in terms of their stories. These close pairs show the
metric performs as it should and that, moreover, proxi-
mal games are not dominated by a certain type. Figs.[7A
and [7B demonstrate a team overcoming an early stum-
ble, Figs. [[E and [7F showcase the victor repelling an at-
tempted comeback, Figs. [7Q and [7R exemplify a see-saw
battle with many lead changes, and Fig. [7S and [qT cap-
ture blowouts—one team taking control early and con-
tinuing to dominate the contest.

V. GAME STORY ECOLOGY

Having described and implemented a suitable metric
for comparing games and their root story, we seek to
group games together with the objective of revealing
large scale characteristic motifs. To what extent are well-
known game narratives—from blowouts to nail-biters to
improbable comebacks—and potentially less well known
story lines featured in our collection of games? And
how does the distribution of real game stories compare
with those of our biased random walk null model? (We
note that in an earlier version of the present paper,
we considered pure, unbiased random walks for the null
model [19].)

A. AFL games constitute a single spectrum

We first compute the pairwise distance between all
games in our data set. We then apply a shuffling algo-
rithm to order games on a discretized ring so that similar
games are as close to each other as possible. Specifically,
we minimize the cost

C= > d} D(gg)" (3)
i JEN,i]

where d;; is the shortest distance between i and j on the
ring. At each step of our minimization procedure, we
randomly choose a game and determine which swap with
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Figure 8. Heat maps for (A) the pairwise distances between
games unsorted on a ring; (B) the same distances after games
have been reordered on the ring so as to minimize the cost
function given in Eq. (B)); (C) the same as (B) but with game
indices cycled to make the continuous spectrum of games ev-
ident. We include only every 20th game for clarity and note
that such shuffling is usually performed for entities on a line
rather than a ring. The games at the end of the spectrum
are most dissimilar and correspond to runaway victories and
comebacks (see also Fig. [9).

another game most reduces C'. We use dfj by choice and
other powers give similar results.

In Fig. we show three heat maps for distance D
with: (A) games unsorted; (B) games sorted according
to the above minimization procedure; and (C) indices of
sorted games cycled to reveal that AFL games broadly
constitute a continuous spectrum. As we show below, at
the ends of the spectrum are the most extreme blow outs,
and the strongest comebacks—i.e., one team dominates
for the first half and then the tables are flipped in the
second half.

B. Coarse-grained motifs

While little modularity is apparent—there are no evi-
dent distinct classes of games—we may nevertheless per-
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Figure 9. Heat matrix for the pairwise distances between
games, subsampled by a factor of 20 as per Fig.[8l A notice-
able split is visible between the blowout games (first six clus-
ters) and the comeback victories (last three clusters). We plot
dendrograms along both the top and left edges of the matrix,
and as explained in Sec. m the boxed numbers reference
the 18 motifs found when the average intra-cluster distance
is set to 11 points. These 18 motifs are variously displayed in

Figs. and

form a kind of coarse-graining via hierarchical clustering
to extract a dendrogram of increasingly resolved game
motifs.

Even though we have just shown that the game story
ecology forms a continuum, it is important that we stress
that the motifs we find should not be interpreted as well
separated clusters. Adjacent motifs will have similar
game stories at their connecting borders. A physical ex-
ample might be the landscape roughness of equal area re-
gions dividing up a country—two connected areas would
typically be locally similar along their borders. Having
identified a continuum, we are simply now addressing the
variation within that continuum using a range of scales.

We employ a principled approach to identifying mean-
ingful levels of coarse-graining, leading to families of mo-
tifs. As points are the smallest scoring unit in AFL
games, we use them to mark resolution scales as follows.
First, we define p;, the average distance between games
within a given cluster 7 as

pi:m(nj_l)i S Dl ()

J=1 k=1,k#j

Here j and k are games placed in cluster i, n; is the
number of games in cluster ¢, and D is the game distance
defined in Eq. (2). At a given depth d of the dendrogram,
we compute p;(d) for each of the N(d) clusters found,
and then average over all clusters to obtain an average
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Figure 10. Average intra-cluster distance (p) as a function
of cluster number N. Red lines mark the first occurrence in
which the average of the intra cluster distance of the N motif
clusters had a value below 12, 11, 10, 9, and 8 (red text beside
each line) points respectively. The next cut for 7 points gives
343 motifs.

intra-cluster distance:
{p(d)) = N p(d). (5)

We use Ward’s method of variance to construct a den-
drogram [20], as shown in Fig. El Ward’s method aims
to minimize the within cluster variance at each level of
the hierarchy. At each step, the pairing which results in
the minimum increase in the variance is chosen. These
increases are measured as a weighted squared distance
between cluster centers. We chose Ward’s method over
other linkage techniques based on its tendency to produce
clusters of comparable size at each level of the hierarchy.

At the most coarse resolution of two categories, we see
in Fig. [0 that one sided contests are distinguished from
games that remain closer, and repeated analysis using k-
means clustering suggests the same presence of two major
clusters.

As we are interested in creating a taxonomy of more
particular, interpretable game shapes, we opt to make
cuts as (p(d)) first falls below an integer number of points,
as shown in Fig. [10] (we acknowledge that (p(d)) does not
perfectly decrease monotonically). As indicated by the
red vertical lines, average intra-cluster point differences
of 12, 11, 10, 9, and 8 correspond to 9, 18, 30, 71, and 157
distinct clusters. Our choice, which is tied to a natural
game score, has a useful outcome of making the number
of clusters approximately double with every single point
in average score differential.
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by 100 ensembles of 1,310 games using the random walk null
model, and evaluating at 11 and 9 point cutoffs (A and B)
as described in Sec. [VB] For real games, we obtain by com-
parison 18 and 71 motifs (vertical red lines in A and B),
which exceeds all 100 motif numbers in both cases and indi-
cates AFL game stories are more diverse than our null model
would suggest.

C. Taxonomy of 18 motifs for real AFL games

In the remainder of section [V} we show and explore in
some depth the taxonomies provided by 18 and 71 motifs
at the 11 and 9 point cutoff scales.

We first show that for both cutoffs, the number of mo-
tifs produced by the biased random walk null model is
typically well below the number observed for the real
game. In Fig. we show histograms of the number of
motifs found in the 100 ensembles of 1,310 null model
games with the real game motif numbers of 18 and 71
marked by vertical red lines. The number of random
walk motifs is variable with both distributions exhibiting
reasonable spread, and also in both cases, the maximum
number of motifs is below the real game’s number of mo-
tifs. These observations strongly suggest that AFL gen-
erates a more diverse set of game story shapes than our
random walk null model.

We now consider the 18 motif characterization which
we display in Fig. by plotting all individual game
stories in each cluster (light gray curves) and overlay-
ing the average motif game story (blue/gray/red curves,
explained below).

All game stories are oriented so that the winning team
aligns with the positive vertical axis, i.e., g;(T) > 0 (in
the rare case of a tie, we orient the game story randomly).
and motifs are ordered by their final margin (descending).
In all presentations of motifs that follow, we standard-
ize final margin as the principle index of ordering. We
display the final margin index in the top center of each
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Figure 12. Eighteen game motifs as determined by per-
forming hierarchical clustering analysis and finding when the
average intra-cluster game distance (p) first drops below 11
points. In each panel, the main curves are the motifs—the
average of all game stories (shown as light gray curves in
background) within each cluster, and we arrange clusters in
order of the motif winning margin. All motifs are shown with
the same axis limits. Numbers of games within each cluster
are indicated in the bottom right corner of each panel along
with the average number of the nearest biased random walk
games (normalized per 1,310). Motif colors correspond to rel-
ative abundance of real versus random game ratio R as red:
R > 1.1; gray: 0.9 < R < 1.1; and blue: R < 0.9. See Fig. [I3|
for the same motifs reordered by real game to random ratio.

motif panel to ease comparisons when motifs are ordered
in other ways (e.g., by prevalence in the null model). We
can now also connect back to the heat map of Fig. [9]
where we use the same indices to mark the 18 motifs.



In the bottom right corner of each motif panel, we
record two counts: (1) the number of real games belong-
ing to the motif’s cluster; and (2) the average number of
our ensemble of 100 x 1,310 biased random walk games
(see Sec. which are closest to the motif according
to Eq. . For each motif, we compute the ratio of real
to random adjacent game stories, R, and, as a guide, we
color the motifs as

e red if R > 1.1 (real game stories are more abun-
dant);

e gray if 0.9 < R < 1.1 (counts of real and random
game stories are close); and

e blue if R < 0.9 (random game stories are more
abundant).

We immediately observe that the number of games
falling within each cluster is highly variable, with
only 3 in the most extreme blowout motif (#1,
Fig. /Fig. 13lA) and 169 in a gradual-pulling-away
motif (#8, Fig. [[2H/Fig. [13B).

The average motif game stories in Fig. provide us
with the essence of each cluster, and, though they do not
represent any one real game, they are helpful for the eye
in distinguishing clusters. Naturally, by applying further
coarse-graining as we do below, we will uncover a richer
array of more specialized motifs.

Looking at Figs. [12] and we now clearly see a con-
tinuum of game shapes ranging from extreme blowouts
(motif #1) to extreme comebacks, both successful (motif
#17) and failed (motif #18). We observe that while some
motifs have qualitatively similar story lines, a game mo-
tif that has a monotonically increasing score differential
that ends with a margin of 200 (#1) is certainly different
from one with a final margin of 50 (#6).

In considering this induced taxonomy of 18 game mo-
tifs, we may interpret the following groupings:

o #1-#6, #8: One-sided, runaway matches;

e #9: Losing early on, coming back, and then pulling
away;

e #7 and #10: Initially even contests with one side
eventually breaking away;

e #11 and #12: One team taking an early lead and
then holding on for the rest of the game;

e #13, #14, and #16: Variations on tight contests;
e #15 and #17: Successful comebacks;
e #18: Failed comebacks.

We note that the game stories attached to each motif
might not fit these descriptions—we are only categoriz-
ing motifs. As we move to finer grain taxonomies, the
neighborhood around motifs diminishes and the connec-
tion between the shapes of motifs will become increas-
ingly congruent with its constituent games.
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Figure 13. Real game motifs for an 11 point cut off as per
Fig.[I2]but reordered according to decreasing ratio of adjacent
real to biased random games, R, and with closest biased ran-
dom walk rather than real game stories plotted underneath
in light gray. See the caption for Fig. [12| for more details.

The extreme blowout motif for real games has
relatively fewer adjacent random walk game stories
(Fig. [13]A), as do the two successful comeback motifs
(Fig. and Fig. ), and games with a lead devel-
oped by half time that then remains stable (Fig. )
A total of 5 motifs show a relatively even balance be-
tween real and random (i.e., within 10%) including two
of the six motifs with the tightest finishes (Figs. and
). Biased random walks most overproduce games in
which an early loss is turned around strongly (Fig. [13(Q)
or an early lead is maintained (Fig. [I3R). In terms of
game numbers behind motifs, we find a reasonable bal-
ance with 603 (46.0%) having R > 1.1 (7 motifs), 430
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(32.8%) with 0.9 < R < 1.1 (5 motifs), and 277 (21.1%)
with R < 0.9 (6 motifs).

Depending on the point of view of the fan and again
at this level of 18 motifs, we could argue that certain real
AFL games that feature more often that our null model
would suggest are more or less ‘interesting’. For example,
we see some dominating wins are relatively more abun-
dant in the real game (#1, #2, and #4). While such
games are presumably gratifying for fans of the team
handing out the ‘pasting’, they are likely deflating for
the supporters of the losing team. And a neutral ob-
server may or may not enjoy the spectacle of a superior
team displaying their prowess. Real games do exhibit
relatively more of the two major comeback motifs (#15
and #17)—certainly exciting in nature—though less of
the failed comebacks (#18).

D. Taxonomy of 71 motifs for real AFL games

Increasing our level of resolution corresponding to an
average intra-cluster game distance of (p) = 9, we now
resolve the AFL game story ecology into 71 clusters. We
present all 71 motifs in Figs.[14 and [15] ordering by final
margin and real-to-random game story ratio R respec-
tively (we will refer to motif number and Fig. [15]so read-
ers may easily connect to the orderings in both figures).
With a greater number of categories, we naturally see a
more even distribution of game stories across motifs with
a minimum of 1 (Motif #1, Fig. C) and a maximum
of 48 (Motif #43, Fig. [[5AH).

As for the coarser 18 motif taxonomy, we again observe
a mismatch between real and biased random walk games.
For example, motif #14 (Fig. F) is an average of 25
real game stories compared with on average 15.13 adja-
cent biased random walks while motif #20 (Fig. [L5CS)
has R=10/22.67. Using our 10% criterion, we see 25 mo-
tifs have R > 1.1 (representing 553 games or 42.2%), 23
have 0.9 < R < 1.1 (420 games, 32.0%), and the remain-
ing 23 have R < 0.9 (337 games, 25.7%). Generally, we
again see blowouts are more likely in real games. How-
ever, we also find some kinds of comeback motifs are
also more prevalent (R > 1.1) though not strongly in
absolute numbers; these include the failed comebacks in
motifs #67 (Fig. [[5AD) and #71 (Fig. [[FAE), and the
major comeback in motif #64 (Fig. B).

In Fig. we give summary plots for the 18 and 71
motif taxonomies with motif final margin as a function
of the of the real-to-random ratio R. The larger final
margins of the blowout games feature on the right of
these plots (R > 1.1), and, in moving to the left, we see
a gradual tightening of games as shapes become more
favorably produced by the random null model (R < 0.9).
The continuum of game stories is also reflected in the
basic similarity of the two plots in Fig. made as they
are for two different levels of coarse-graining.

Returning to Figs. [14] and we highlight ten exam-
ples in both reinforcements and refinements of motifs seen

at the 18 motif level. We frame them as follows (in order
of decreasing R and referencing Fig. :

e Fig. B, #64 (R = 11/5.71): The late, great
comeback;

e Fig. [[5AE, #71 (R = 7/4.00): The massive come-
back that just falls short;

e Fig.[THAJ, #52 (R = 29/19.80): comeback over the
first half connecting into a blowout in the second
(the winning team may be said to have ‘Turned the
corner’);

e Fig. [[5AM, Motif #13 (R = 32/23.33): an exem-
plar blowout (and variously a shellacking, thrash-
ing, or hiding);

e Fig. [I5AX, #55 (R = 26/23.16): Rope-a-dope
(taking steady losses and then surging late);

e Fig. [[5BZ, #68 (R = 7/8.05): Hold-slide-hold-
surge;

e Fig. [I5CD, #56 (R = 12/14.69): See-saw battle;

e Fig. [[ACK, #62 (R = 19/26.26):
fought nail-biter (or heart stopper);

The tightly

e Fig.[I5ICP, #50 (R = 15/28.25): Burn-and-hold (or
the game-manager, or the always dangerous playing
not-to-lose);

e Fig. [I5CQ, #36 (R =9/17.19): Surge-slide-surge.

These motifs may also be grouped according to the num-
ber of ‘acts’ in the game. Motif #53 (Fig. O), for ex-
ample, is a three-act story while motifs #56 (Fig. D)
and #68 (Fig. [[5BZ) exhibit four acts. We invite the
reader to explore the rest of the motifs in Fig.

VI. PREDICTING GAMES USING SHAPES OF
STORIES

Can we improve our ability to predict the outcome of
a game in progress by knowing how games with similar
stories played out in the past? Does the full history of a
game help us gain any predictive power over much sim-
pler game state descriptions such as the current time and
score differential? In this last section, we explore predic-
tion as informed by game stories, a natural application.

Suppose we are in the midst of viewing a new game.
We know the game story gops from the start of the game
until the current game time ¢ < Tps, Wwhere Tops is the
eventual length of game (and is another variable which we
could potentially predict). In part to help with presenta-
tion and analysis, we will use minute resolution (mean-
ing t = 60n for n = 0,1,2,...). Our goal is to use our
database of completed games—for which of course we
know the eventual outcomes—to predict the final margin
of our new game, gobs(Tobs)-
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Figure 14. Seventy-one distinct game motifs as determined by hierarchical clustering analysis with a threshold of nine points,
the fourth cutoff shown in Fig. [I0] and described in Sec. [V] Motifs are ordered by their final margin, highest to lowest, and
real game stories are shown in the background of each motif. Cutoffs for motif colors red, gray, and blue correspond to real-
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Figure 16. Final margin of motifs as a function of real-to-
random ratio R for real AFL games at the 18 and 71 motif
levels, panels A and B respectively, with linear fits. On the
right of each plot, extreme blowout motifs ending in high mar-
gins have no or relatively few adjacent random walks. (red,
R > 1.1). On the left, game stories are more well represented
by random walks (blue, R < 0.9). There is considerable vari-
ation however, particularly in the 71 motif case, and we cer-
tainly see some close finishes with R > 1 (e.g., the massive
comeback, motif #71, Fig. [15AE).

We create a prediction model with two parameters: (1)
N: the desired number of analog games closest to our
present game; and (2) M: the number of minutes going
back from the current time for which we will measure
the distance between games. For a predictor, we simply
average the final margins of the N closest analog games
t0 gobs Over the interval [t — 60M,¢t]. That is, at time ¢,
we predict the final margin of gons, F', using M minutes
of memory and N analog games as:

F(gobsat/607M7 N) = % Z gi(,‘ri)’ (6)

1€Q(gobs,t/60,M,N)

where Q(gobs, t/60, M, N) is the set of indices for the N
games closest to the current game over the time span
[t —60M,t], and T; is the final second of game i.

For an example demonstration, in Fig. we attempt
to predict the outcome of an example game story given
knowledge of its first 60 minutes (red curve) and by find-
ing the average final margin of the N = 50 closest games
over the interval 45 to 60 minutes (M = 15, shaded gray
region). Most broadly, we see that our predictor here
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Figure 17.  Illustration of our prediction method given in
Eq. @ We start with a game story gons (red curve) for which
we know up until, for this example, 60 minutes (¢ = 3600).
We find the N = 50 closest game stories based on matching
over the time period 45 to 60 minutes (memory M = 15), and
show these as gray curves. We indicate the average final score
F(gobs, t/60, M, N) for these analog games with the horizontal
blue curve.

would correctly call the winning team. At a more de-
tailed level, the average final margin of the analog games
slightly underestimates the final margin of the game of in-
terest, and the range of outcomes for the 50 analog games
is broad with the final margin spanning from around -40
to 90 points.

Having defined our prediction method, we now system-
atically test its performance after 30, 60, and 90 minutes
have elapsed in a game currently under way. In aiming to
find the best combination of memory and analog number,
M and N, we use Eq. @ to predict the eventual winner of
all 1,310 AFL games in our data set at these time points.
First, as should be expected, the further a game has pro-
gressed, the better our prediction. More interestingly, in
Fig. [I§ we see that for all three time points, increasing
N elevates the prediction accuracy, while increasing M
has little and sometimes the opposite effect, especially
for small N. The current score differential serves as a
stronger indicator of the final outcome than the whole
game story shape unfolded so far. The recent change
in scores—momentum—is also informative, but to a far
lesser extent than the simple difference in scores at time
t.

Based on Fig. we proceed with N = 50 analogs
and two examples of low memory: M =1 and M = 10.
We compare with the naive model that, at any time £,
predicts the winner as being the current leader.

We see in Fig. that there is essentially no differ-
ence in prediction performance between the two methods.
Thus, memory does not appear to play a necessary role
in prediction for AFL games. Of interest going forward
will be the extent to which other sports show the same
behavior. For predicting the final score, we also observe
that simple linear extrapolation performs well on the en-
tire set of the AFL games (not shown).

Nevertheless, we have thus far found no compelling ev-
idence for using game stories in prediction, nuanced anal-
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yses incorporating game stories for AFL and other pro-
fessional sports may nevertheless yield substantive im-
provements over these simple predictive models [21].

VII. CONCLUDING REMARKS

Overall, we find that the sport of Australian Rules
Football presents a continuum of game types ranging
from dominant blowouts to last minute, major come-
backs. Consequently, and rather than uncovering an op-
timal number of game motifs, we instead apply coarse-
graining to find a varying number of motifs depending on
the degree of resolution desired.

We further find that (1) A biased random walk af-
fords a reasonable null model for AFL game stories; (2)
The scoring bias distribution may be numerically deter-
mined so that the null model produces a distribution of
final margins which suitably matches that of real games;
(3) Blowout and major comeback motifs are much more
strongly represented in the real game whereas tighter
games are generally (but not entirely) more favorably

produced by a random model; and (4) AFL game mo-
tifs are overall more diverse than those of the random
version.

Our analysis of an entire sport through its game story
ecology could naturally be applied to other major sports
such as American football, Association football (soccer),
basketball, and baseball. A cross-sport comparison for
any of the above analysis would likely be interesting and
informative. And at a macro scale, we could also ex-
plore the shapes of win-loss progressions of franchises
over years [22].

It is important to reinforce that a priori, we were un-
clear as to whether there would be distinct clusters of
games or a single spectrum, and one might imagine rough
theoretical justifications for both. Our finding of a spec-
trum conditions our expectations for other sports, and
also provides a stringent, nuanced test for more advanced
explanatory mechanisms beyond biased random walks,
although we are wary of the potential difficulty involved
in establishing a more sophisticated and still defensible
mechanism.

Finally, a potentially valuable future project would be
an investigation of the aesthetic quality of both individ-
ual games and motifs as rated by fans and neutral indi-
viduals [23]. Possible sources of data would be (1) social
media posts tagged as being relevant to a specific game,
and (2) information on game-related betting. Would true
fans rather see a boring blowout with their team on top
than witness a close game [3,[24]? Is the final margin the
main criterion for an interesting game? To what extent
do large momentum swings engage an audience? Such
a study could assist in the implementation of new rules
and policies within professional sports.
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