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The naming game has become an archetype for linguistic evolution and mathematical social
behavioral analysis. In the model presented here, there are N individuals and K words. Our
contribution is developing a robust method that handles the case when K = O(N). The initial
condition plays a crucial role in the ordering of the system. We find that the system with high
Shannon entropy has a higher consensus time and a lower critical fraction of zealots compared to
low entropy states. We also show that the critical number of committed agents decreases with the
number of opinions, and grows with the community size for each word. These results complement
earlier published conclusions that diversity of opinion is essential for evolution; without it, the
system stagnates in the status quo. In contrast, our results suggest that committed minorities can
more easily conquer highly diverse systems, showing them to be inherently unstable.

I. INTRODUCTION

The study of sociology and political science by means
of mathematical and physical principles have been in-
creasingly popular recently [1–3]. One of the fundamen-
tal problems in this area is the spread of opinion via social
influence often represented by the voter model, in which
individuals adopt the states of their neighbors [1, 4–7].
Other related models of social influence include social
impact theory [1, 8], threshold models [9], and the nam-
ing game [10–16]. Here, we use the naming game as the
archetype for social influence, and investigate the role of
high opinion diversity on social systems [13, 15, 17–19].

We chose the naming game because, unlike other mod-
els, it can account for several historical precedents in
which the majority opinion was overtaken by a commit-
ted minority (e.g., the suffragette movement in the early
20th century, and the adoption of the American civil-
rights in 1960’s [13]). Such processes are known in soci-
ology under the term minority influence [20]. When the
committed minority fraction of the population is small,
their opinion will still be suppressed by an existing ma-
jority opinion [21]. Yet, when this fraction exceeds a
modest tipping point value [13, 22], the minority opinion
will spread rapidly.

Here we aim to establish that the naming game model
can also account for dynamics of opinion spread in ex-
treme initial conditions. Our motivating historical prece-
dents are the dynamics of post-revolution opinion strug-
gle. Often before revolution happens, the government
identifies and suppresses the leading opposition minori-
ties which are on the verge of achieving tipping fraction of
support (e.g., Islamists before Iranian revolution of 1979
or Muslim Brothers before Egyptian revolution of 2011),
so the revolution is conducted by a motley of opposition
movements with different ideologies united only by oppo-
sition to the government. After the revolution, the win-
ners remove suppression of such minorities allowing them
to quickly win the majority of the population in agree-
ment with the naming game model. However the case

of the Russian revolution of February 1917 was differ-
ent. The revolt was spontaneous, disorganized, and after
they won, no dominant minority exceeding tipping point
fraction of the population emerged as in the previous ex-
amples. Yet, in the midst of the disorder and dissent,
a small Bolshevik party grasped the power and support
of uncommitted individuals by November 1917, because
their leader Lenin correctly diagnosed that the power laid
on the streets. Here we study the case resembling such
situations in the context of naming game, when there are
committed minorities of multiple opinions. In [15], au-
thors show that in such a case, a stalemate of opinion
can more easily occur, in which no decision is reached.
Similar transitions may occur without committed agents
by modifying the strategies of individuals with multi-
ple opinions, which leads to additional equilibrium states
[23, 24]. In contrast, we identify the new set of conditions
for this case under which the loss of stability of a social
system occurs. Under these conditions, instead of stag-
nation with no decision, a rapid change occurs in which
a small minority quickly spreads their opinion to the un-
committed subpopulation. In addition, we show that in
the presence of committed minorities, as opinion diversity
of the uncommitted subpopulation increases, the size of
the committed minority needed to the turn the uncom-
mitted to the minority opinion decreases. In extreme
cases, this critical committed minority is invariant of the
system size. This suggests that too much dissent between
individuals makes them susceptible to even a few zealots.
To gain these insights into the dynamics of social sys-

tems, we solve the critical problem of complexity for the
naming game. For K opinions, the system of ODEs that
describe relative population sizes has 2K − 1 equations,
which is numerically and analytically difficult to study
[15]. Furthermore, if the number of opinions also be-
comes infinite with N , then these ODE methods fail.
By applying more robust methods of analysis, we solve
the problem of exponential complexity, and by doing so,
demonstrate the potential of solving other highly com-
plex systems by these means.
The format of the article is as follows. Section II de-
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scribes the details of the naming game model. The solu-
tions that we provide are given in terms of the dominant
eigenvalues of the system, which are found in Sec. III.
Once we know the long time behavior of the model, we
calculate the time to eliminate a word from the system,
the expected number of words over time, and the time
to reach consensus in Sec. IV. Then we introduce com-
mitted minorities in the system (defined in Sec. II), and
analyze the tipping points in Sec. V.

II. CHARACTERISTICS OF THE K-WORD
LISTENER-ONLY NAMING GAME

Here we will describe the naming game model in detail
together with the notation that we will use throughout
this manuscript. We use the listener only naming game
given in Ref. [25], which is a slight variation of the model
in Ref. [11]. In the model there are K words (opinions),
which we call A1, A2, . . . , AK . In social contexts, the
words in the naming game are associated with opinions,
beliefs, or political allegiances. There are N individuals,
each with a word list, which is a set of words. The indi-
viduals update their word lists as they change their opin-
ions in response to messages from others. We also assume
that any individual may speak to any other individual.
This means that the social network is a complete graph,
which is a common assumption [10–13, 15, 16, 26], al-
though other networks have also been considered [27, 28].
It has been observed that dynamics of the naming

game on real world networks are qualitatively similar to
complete graph results [15, 29]. In Ref. [30], it has been
shown with agreement with numerical simulations that
the naming game behavior is consistent over Erdös-Rényi
networks with varying average degree. This consistency
between ER networks and the complete graph is also true
for the voter model [31]. However, when the network ex-
hibits a strong community structure, additional equilib-
rium states can emerge with different communities hold
different opinions [27].
Time is discretized so that one interaction of individ-

uals takes place within a time step. In one step, an indi-
vidual is chosen uniformly at random to be the speaker
and another is chosen uniformly at random as the lis-
tener. Let Ws and Wl be the word lists of the speaker
and the listener respectively. The speaker chooses a ran-
dom word, As, in its word list to transmit to the listener.
If none of the two is committed, they update their word
lists according to the following rules:

1. If As 6∈ Wl, then Wl → Wl ∪ {As}.

2. If As ∈ Wl, then Wl → {As}, {As} [25].

In brief, if the listener does not have the spoken word
in its list, then it adds it to its list. If the listener has the
spoken word in its list, the listener reduces its list to the
spoken word. Only the listener changes its word list as
a result of an interaction, which is a slight modification

of the original naming game. It has been shown in Ref.
[25] that the naming game and the listener-only variant
have qualitatively similar behavior in the complete graph
case.

In addition to these rules, we also may include com-
mitted agents (aka zealots) in the system. A zealot never
changes their word list, and adopts only a single opinion.
We consider two cases when these committed minorities
are present. We first consider the case when there are
n′ zealots of one word. Then, we consider the case when
there are n′ zealots for each word. We show that there
are similar rates of convergence for both cases in Sec. III.
The critical fraction of committed agents is the value of
n′/N that yields a phase transition in the system. When
this fraction of zealots is below this critical value, the
opinion of the committed minorities will be suppressed
by the majority. When the committed fraction is above
the critical value, the minority opinion overcomes the
majority. We are also interested in the time until all in-
dividuals have the same opinion, which we define as the
consensus time. This is discussed in detail in Sec. V.

We initialize the system by assigning a word list to
each individual. For simplicity, we assign one of the K
words to an individual. That is, no individual initially
has a mixed word list. However, the system will quickly
saturate itself with word lists with length 2 or more [12,
25]. Also, in our mathematical analysis, we assume that
there is equal representation for each word. In Sec. II A,
we use the Shannon Entropy to numerically consider the
case in which there is unequal representation in the initial
distribution of words.

A. Shannon entropy

Entropy in the naming game is a measurement of the
amount of disagreement and conflict in the system. The
Shannon entropy in particular measures the uncertainty
of a random variable, such as a message [32]. In the nam-
ing game, there clearly are messages that are transmitted
from person to person and the entropy of these messages
also has a clear social meaning. If the system has high
Shannon entropy, then a listener has a significant prob-
ability of hearing a diverse range of opinions. This also
means that there greater competition among the opin-
ions for dominance in the system. There is more dissent,
disorder, and disagreement in high entropy systems. In a
low entropy system, the listener is more likely to hear the
same message consistently. Low entropy systems have
more consistency in the messages that are transmitted,
so there is more agreement within the population. These
systems are predictable, ordered, and united.

In one step of the naming game, a single opinion is
spoken to the listener. This spoken word is a random
variable that takes values in A1, . . . , AK with probabil-
ity distribution that depends on the macrostate of the
system. Let the probability of speaking As be Ps. By
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definition, the Shannon entropy of the system is given by

H = −

K
∑

s=1

Ps lnPs. (1)

We take the natural logarithm in Eq. (1) for convenience.
To find the probability, Ps, of speaking each word, we
let |Wj | be the length of the word list corresponding to
individual j for j ∈ {1, . . . , N}. With this, Ps can be
expressed as

Ps =
1

N

N
∑

j=1

1Wj
(As)

|Wj |
(2)

where 1Wj
is the indicator function defined by,

1Wl
(As) =

{

1 As ∈ Wl

0 As 6∈ Wl.
(3)

So, given the word lists of every node in the network, we
use Eqs. (2) and (1) to calculate the entropy of the sys-
tem. With this definition, we aim to demonstrate numer-
ically and analytically the following entropy principle:

1. The consensus time is expected to increase as H
increases.

2. The critical fraction of committed agents is ex-
pected to decrease as H decreases.

Intuitively, the first item of the principle means that
if there is more uncertainty and disagreement in the sys-
tem, the more time it takes to reach agreement. In the
case of the voter model with two opinions, the consensus
time on the complete graph is exactly equal to this mea-
sure of entropy scaled by N [33, 34]. The posititve corre-
lation between entropy and consensus time in the naming
game is demonstrated in Fig. 1. The second item of the
entropy principle suggests that if there is greater dissent
in a population, then it is easier for a minority of zealots
to dominate the system. This reinforces the if divided

then conquered maxim since it is easier to dominate the
system in the presence of greater internal conflict. Fig-
ure 1 demonstrates the effect of the entropy of the initial
condition on the critical number of zealots.

III. RATE OF CONVERGENCE

Our analysis of the naming game is based on the rate
of convergence of the system. The rate of convergence is
given by the dominant eigenvalues of the transition ma-
trix for the probability distribution of the system. Know-
ing the rate of convergence, we can estimate the time
until a word is eliminated (collapse time) as well as the
consensus time. For the case with committed minorities,
we can also use this analysis to estimate the number of
zealots required until a drastic qualitative change occurs
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FIG. 1. Plots of the consensus time (top) and the critical
number of zealots (bottom) against the Shannon entropy of
various initial conditions. A committed minority of word A1

is introduced only in the bottom figure. Data are shown for
N = 200, K = 20 (◦) and N = 400, K = 40 (△).

in the system. This is because, the dominant eigenval-
ues of the transition matrix depend on the number of
zealots. When the fraction of committed minorities is
high enough, these eigenvalues no longer dominate the
ordering of the system. This means that different eigen-
vectors determine the overall shape of the probability dis-
tribution over time, and there is a significant change in
qualitative behavior. Once we have the dominant eigen-
values, these solutions become easy to find.
To find the convergence rate, we first express the tran-

sition matrix component-wise. Let the nW (m) be the
total number of individuals with word list W at discrete
time m, and let the vector n take components nW . Also
let

a(m)
α

= Pr{n(m) = α}. (4)
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We seek to express a
(m+1)
α in terms of a

(m)
α . To do this, we

must account for all possible transitions that the model
allows. Although this is a complicated task for the gen-
eral K word naming game, we follow a simplified model
to ameliorate this issue while keeping the original quali-
tative properties intact. In the simplified model, only the
listener updates their word list in response to a message
from the speaker, as in [21]. This we call the listener only
naming game. In every simulation, we apply the origi-
nal naming game rules, which shows that there is still
agreement under this modification.
Since we assume that only one individual changes their

word list in a given time step, an individual with word list
W may transition to having word list W ′ or vice versa.
To account for all transitions in the stochastic matrix, we
must consider all pairs of word lists (W1,W2) along with
their respective transition probabilities. Let D be the set
of all pairs of word lists. Also let LI [·] be the operator
acting on the current macrostate that accounts for the
possible transitions involving word pair I = (W1,W2).
We then write

a(m+1)
α

− a(m)
α

=
∑

I∈D

LI

[

a(m)
α

]

. (5)

We estimate the rate of convergence of the model by
the spectral properties of each LI . Summing all of them

together gives the relative magnitude of a
(m+1)
α − a

(m)
α ,

which is the change in probability over a single time step.
We wish to find the smallest change in probability pos-
sible that retains K words in the system. Since each LI

corresponds to pairs of word lists that transition to each
other, we exhaust each case of pairs of word lists and
find the smallest eigenvalues, many of which are zero.
The meaning of each case is that we only allow the given
pair of word lists, (W1,W2) to change their word lists in
a given step.

A. Case 1: |W1|, |W2| ≥ 2

These cases tend to a stationary distribution that is not
the consensus state. If we only allow a pair of word lists
that contain multiple words, then it is impossible to up-
date the system in such a way that a word is eliminated.
The only way for a word to be eliminated is if a listener is
the only holder of it and hears and then adopts a familiar
word. Since neither W1 nor W2 fit this criterion, we take
the change to be 0 without loss of generality. Note also
that this conclusion applies to the vast majority of cases
for large K.
If the system does not converge to consensus, then it

converges to the stationary distribution acquired from
these cases. It is valuable to understand the behavior of
the second largest eigenvalues in these cases, especially
when considering zealots. The rate of convergence to the
stationary distribution yields the criteria for the phase

transition as different sets of eigenvectors starts govern-
ing the shape of the system. The stationary distribution
in this case is related to the metastable distribution when
the number of zealots is small. So, we seek to find the size
of the rate of convergence to this stationary distribution.
The only possible means of transition in this case oc-

curs when W1 and W2 differ by a single word. Otherwise
it is impossible forW1 andW2 to transition to each other.
Let W2 = W1 ∪ {Ap} and let Sp be the set of word lists
that contain Ap. Note that there are K different choices
for Ap. Let pi be the probability of transition from W1

to W2 given that nW1
= i, which is given by

pi =





∑

W∈Sp

nW

N |W |





i

N − 1
. (6)

Since it is impossible to transition from W2 to W1 in
the naming game, this constitutes a triangular transition
matrix, whose spectrum is λk = −pk. Let

µp =
∑

W∈Sp

nW

N |W |
, (7)

which depends on the macrostate of the system and the
particular word pair. The total change in probability
comes from the sum of the relative changes for each word.
That is, we sum Eq. (6) for p = 1 . . .K. In doing so, we
find that the sum of µp is at most O(1) if the sum of
nW achieves its maximum value of O(N). This yields a
total rate of change being proportional to 1/N to leading
order.
We are also interested in a second term in total change

in probability, as it is significant for the naming game
with zealots. This is attained by supposing that the sum
over µp does not achieve its maximum value. If each
nW is only O(1), then the sum of µp is O(K/N2). This
matches the leading term for K = O(N), but is smaller
for K = O(1). These considerations are utilized when
calculating the total rate of convergence.

B. Case 2: W1 = {Ak}, |W2| > 2, Ak ∈ W2

Here we only consider transitions in a word list that
contains a single word and a word list that have 3 or
more words. The size of the eigenvalues are easy to find
in this case since it is only possible for W2 to become
W1. This is because it is impossible for an individual
with only a single word to adopt 3 or more words in a
single step. Mathematically, this case corresponds to a
triangular transition matrix, whose eigenvalues are the
diagonal elements. Let pi be the probability that an in-
dividual with word W2 hears word Ak and thus transi-
tions to W1 given that there are i individuals with W1.
Since all other individuals with all other word lists are
considered fixed, let

µ1 =
∑

W∈Sk\{W1∪W2}

nW

|W |
, (8)
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which is considered constant. Now, we express the tran-
sition probability as

pi =
(i+ n′)(N ′ − i)

N(N − 1)
+

1

|W2|

N ′ − i

N

N ′ − i− 1

N − 1

+ µ1
(N ′ − i)

N(N − 1)
(9)

where N ′ = nW1
+nW2

, which is conserved here. Also, n′

is the number of zealots corresponding to the word Ak.
The eigenvalues for this case are −pi, and the smallest
eigenvalue that does not correspond to consensus is

λ ∼ −
N ′ + µ1 + n′

N2
(10)

This can be seen by taking i = N ′− 1. Note that µ1 and
N ′ captures the dependence on the state of the system
on the relative change in probability.

C. Case 3: W1 = {Ak},W2 = {Ak, Al}

Here W1 has only one word and W2 has two words,
one of which is Ak for some k. This is the most dynamic
of the cases because W1 can transition to W2 and vice
versa. Because of the listener only assumption, this con-
stitutes a tridiagonal transition matrix. Let pi and qi be
the probability nW1

increases and decreases respectively,
given that nW1

= i. Let

µ2 =
∑

W∈Sl\{W2}

nW

|W |
(11)

and recall the definition of µ1 from Eq. (8). The transi-
tion probabilities are then expressed as

pi =
(i+ n′)(N ′ − i)

N(N − 1)
+

(N ′ − i)(N ′ − i− 1)

2N(N − 1)
(12)

+ µ1
N ′ − i

N(N − 1)
,

qi =
i(N ′ − i)

2N(N − 1)
+ µ2

i

N(N − 1)
. (13)

To find the rate of convergence for this step, we wish to
solve the following eigenvalue problem

λci = pi−1ci−1 + (−pi − qi)ci + qi+1ci+1 (14)

In order to solve for all eigenvalues of this problem,
we apply the generating function method of Ref. [35],
which exactly diagonalized the voter model. We begin
by expressing Eq. (14) in terms of a generating function
G(x, y), which we define as

G(x, y) =

N ′

∑

i=0

cix
iyN

′−i (15)

Using shift and differentiation properties of G, we rewrite
Eq. (14) as

N(N−1)λG = (x−
1

2
y)(x−y)Gxy+(n′+µ1)(x−y)Gy

+
1

2
y(x− y)Gyy − µ2(x− y)Gx (16)

We solve this by the change of variables u = x − y and
G(x, y) = H(u, y). Here, we have

H(u, y) =

N ′

∑

i=0

biu
iyN

′−i. (17)

Making this change gives the equivalent equation for H :

N(N − 1)λH =

(

u2 −
1

2
uy

)

Huy − u2Huu +
1

2
uyHyy

+ (n′ + µ1)uHy − (n′ + µ1 + µ2)uHu. (18)

The above written as a difference equation for the coeffi-
cients of H gives

N(N − 1)λbi =

−

[

1

2
i(N ′ − i) + i(i− 1) + i(n′ + µ1 + µ2)

]

bi

+ (N ′ − i+ 1)

[

1

2
N ′ +

1

2
i− 1 + n′ + µ1

]

bi−1. (19)

This constitutes a lower triangular matrix problem for
bi. If there is not a singularity in bi for some i between
0 and N ′, then all bi = 0, which is trivial. So, assuming
that there exists a singularity at some i = k, we require
the bi to vanish. This yields the following result for the
eigenvalues of this case:

λk = −
k(k − 1) + 1

2k(N
′ − k) + (n′ + µ1 + µ2)k

N(N − 1)
. (20)

Note that this result depends on the number of commit-
ted agents, n′. Each bi can be found explicitly by Eq.
(19) by taking bk = 1 and bi = 0 for i < k. We then
find the coefficient of G(x, y) by calculating H(x− y, y).
Doing so gives

G(x, y) =

N ′

∑

i=0





N ′

∑

j=i

(

j

i

)

(−1)j−ibj



 xiyN
′−i. (21)

The value of ci in terms of bj is given in the bracket of
Eq. (21). To find the dominant eigenvalue of this case,
take k = 1 in Eq. (20), which yields

λ = −
1
2N

′ + n′ + µ1 + µ2

N2
. (22)

Similar to Eq. (10), the change in probability depends
on the state of the system.
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D. Total rate of convergence

Now that we have results for each case, we put them
together to obtain the convergence rate of the naming
game. We will make some assumptions about the state
of the system. First, we assume that initially there is
symmetry in the representation of words. That is, no
word initially dominates the other words in accordance
to the applications given here. Second, we assume that
for each word, there are individuals with only this word
in their lists. The system quickly orders itself this way as
long word lists are replaced by lists of length 1. This sec-
ond assumption allows us to utilize Cases 2 and 3 above
when determining the rate of convergence.
The rate of convergence is estimated by the smallest

non-zero change given by the above cases for LI . So, the
rate of change of the probability distribution for a single

word, Ak, is

1− λk = O

(

θ + n′

N2

)

, (23)

where θ = N ′ + µ1 + µ2, which describes the macrostate
of the system. If we take this to be the total change in
probability, then we have implicitly assumed that there
are only two words in the system, and all others have been
eliminated. So, we require that all K words are present
in the system and sum the smallest change in probability
given by Eq. (23) for each word. By symmetry, the total
change in probability is K multiplied by the right hand
side of (23). Therefore, the total rate of convergence is
given by

1− λ = O

[

K(θ + n′)

N2

]

. (24)

We make use of Eq. (24) extensively to determine the col-
lapse time, consensus time, and the location of a phase
transition over the number of zealots. We need to care-
fully account for the macrostate of the system when ap-
plying Eq. (24) due to the presence of θ. We expect
the macrostate of the system to significantly affect the
solution for the consensus time and phase transition.
Now we wish to find the rate of convergence to the

metastable state in the presence of committed minori-
ties. These are given by Case 1 above. The largest of
these was found to be O(1/N) and the next largest was
O(K/N2). Since the rate of convergence is given by the
sum of these cases, we find that the rate of convergence
to the metastable state is

1− λ ∼
a

N
+

bK

N2
. (25)

Here a and b are constants. When the convergence rate
to the metastable state exceeds the convergence rate to
consensus, the system is trapped in the metastable state.
Otherwise, the system rapidly moves to consensus. This
gives the criterion for the phase transition over n′.

IV. NAMING GAME WITHOUT ZEALOTS

We start with the simple case when the system does
not have committed minorities. That is, we take n′

k = 0
for every word. Also, we assume that each word has
near equal representation in the initial condition. That
is, we do not assume that any given word significantly
dominates any other word in the population. We also
assume that none of the individuals have mixed word
lists initially. Now, θ can be as large as O(N) since there
can be O(N) individuals with words lists of length 2 or
more. Even though θ = O(1) initially, the system quickly
saturates itself with individuals that have longer word
lists. Assuming that this is the case, we take θ = O(N)
in Eq. (24) and have

λ ∼ 1−O

(

K

N

)

(26)

as the rate of convergence. We apply this to calculate the
amount of time until an opinion is eliminated from the
system entirely, which allows us to estimate the number
of states over time as well as the consensus time.

A. Collapse time

We define the collapse time as the amount of scaled
time until a word is eliminated from the system. Scaled
time is the number of discrete time steps divided by the
number of nodes in the network. That is, the scaled
time t is defined by t = m/N . Now, we wish to find the
amount of time until the system is expected to transition
from having k words to at most k − 1 words.
If the system is not near consensus, then it is not dom-

inated by the diffusion terms in the random walk. That
is, the entire probability distribution cannot be estimated
above by the dominant eigenvalue when away from con-
sensus. When this is the case, we take the survival prob-
ability, which is the probability that there are k words in
the system at time t, and set it to 1/N . When this is the
case, it is expected that less than one individual will have
one of the K words. Given that there are k ≤ K words
in the system at scaled time t, the survival probability is
λtN . So, using this criterion, we have that

λτkN =
1

N
(27)

which implies that

τ
(outer)
k = O

(

lnN

k

)

. (28)

We use the notation τ
(outer)
k to designate that this holds

when the system is not near consensus. When the system
is near consensus, the system is diffusion-like, we use the
infinite series to calculate the expected value. That is,



7

the collapse time near consensus, τ
(inner)
k , is given by

τ
(inner)
k =

∞
∑

m=0

sm
m

N
(29)

where sm is the probability of collapse. The probability of
collapse is the change in the survival probabilities: sm =
λm−1 − λm. Making this substitution into the infinite

series for τ
(inner)
k gives

τ
(inner)
k = O

(

1

k

)

. (30)

The collapse time from the outer region differs from the
collapse time from the inner region by a factor of lnN . As
the system approaches consensus, this lnN tends to O(1)
as the system transitions from one region to another. We
make use of these observations, as well as the collapse
times in the following section.

B. Opinions over time and Consensus time

Here we estimate the number of words in the system
over time as well as the time to consensus. To estimate
the number of words over time, we sum the collapse times
for their respective regions to find these quantities. Start-
ing with the outer region, we estimate the time it takes
to achieve S words by

t =

K
∑

k=S

O

(

lnN

k

)

(31)

= O

(

lnN ln
K

S

)

. (32)

Solving for S gives

Souter(t) ≤ K exp

(

−
αt

lnN

)

. (33)

This shows an exponential convergence in S on a loga-
rithmic scale for t. Repeating this process for the inner
region shows the time to reach S words is

t = O

(

ln
K

S

)

, (34)

Solving for S gives

Sinner(t) ≤ K exp(−αt). (35)

The inner region converges on a faster time scale than the
outer region. The convergence of the outer region will,
however, accelerate as the system approaches consensus.
These results are shown numerically in Fig. 2.
Now we will estimate the consensus time, which is de-

fined as the total amount of scaled time until the en-
tire system adopts a single word. For the naming game

0 5 10 15 20 25 30

1
2

5
10

20
50

10
0

Time

W
or

ds

Outer

Inner

FIG. 2. Semi-log plot of the number of words in the system
as a function of scaled time t. Notice that it takes longer for
words to be eliminated when the system is in the outer region.
Also shown is a line of best fit for the inner region, which
confirms that the states over time tends to an exponential in
t. The naming game is averaged over 100 runs with N = K =
100.

with two words, A and B, the consensus time is O(lnN)
[11, 12, 36]. However, this may vary when the number of
words is large. Also of importance is the fact that each
word is equally represented to acquire an upper bound
on the consensus time. This is due to the observation
that the consensus time increases with entropy.
To find the consensus time, we estimate the time spent

in the outer and inner regions. Once this is known, the
time to consensus is given by the sum of these two. To
do this, we make use of Eqs. (32) and (34). Since we
do not know exactly which value of S is the transition
point when the system is near consensus, we take S = 1
to yield an upper bound for the consensus time. With
these assumptions, we have

touter = O(lnN lnK) (36)

tinner = O(lnK) (37)

Therefore, the expected time to consensus is

E[τ ] ∼ c1 lnN lnK + c2 lnK (38)

where c1 and c2 are constants. This is consistent with
known information regarding the case when K = 2, for
Eq. (38) is O(lnN) for K = 2. It also accounts for
cases when K takes extreme values. For K = O(N), the
consensus time increases to O(ln2 N). An example of an
extreme K case is given in Fig. 3.
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FIG. 3. Plot of the consensus time averaged over 50 runs of
the naming game for various N with K = N . Also plotted is
the estimate given in Eq. (38) fitted to the data. The best fit
yields c1 = 1.18 and c2 = 2.84 in the context of Eq. (38). The
figure shows good agreement with the theory of Sec. IVB.

V. NAMING GAME WITH ZEALOTS

Here we consider the case in which there are zealots in
the system. If a zealot hears an unfamiliar word, then
the new word is not added to the zealot’s word list. We
will use the above theory on the rates of convergence to
analyze the properties of the naming game when zealots
are included. We consider two cases. The first case is
when the zealots all have the same word. The second
case is when there are an equal number of zealots with
each word.

A. Zealots of one word

This system assumes that all zealots share the same
word. Without loss in generality, let us say that there
are n′ zealots with word A1. We do not assume here that
there are any zealots with words A2, . . . , AK . In the case
where K = 2, a bifurcation occurs over the number of
zealots. It has been shown that when n′/N ≈ 10%, there
are enough zealots to quickly turn an entire population.
If the fraction of zealots is below this value, then the
system is trapped in a metastable state, and it takes an
exponential time for the population to adopt the zealots’
opinion [13, 15].
We seek to extend this to cases when K is arbitrary.

Particularly, we consider cases when K is large and the

spectral method is required to analyze the system. This
problem was briefly discussed in Waagen et al. [15] and
their conclusion was that the same 10% critical fraction
holds for all K and initial conditions to guarantee the
zealots dominate the system. Their approach is to con-
sider the worst case initial conditions and show it reduced
to the K = 2 case. The worst case initial condition min-
imizes entropy, and according the the entropy principle
above, this maximizes the number of zealots required.
We take the analysis of Waagen et al. [15] a step further
by assuming the opposite scenario for the initial condi-
tion: each uncommitted community is initially of equal
size, which maximizes entropy.
Let C be the number of individuals initially with word

Ak, where Ak is not the zealots’ opinion. For the case
when there are only zealots of a single type, we have
N = (K−1)C+n′. For fixed N , this gives a dependence
on C in terms of K, given by

N = (K − 1)C + n′. (39)

Of particular interest is the dependence of the critical
number of zealots, n′

c, on K, N , and C. By Eq. (39), if
we keep N fixed, then the dependence on C can be found
from the dependence on K by substitution.
To find the phase transition over n′, the criterion we

use is simple. This occurs when Eq. (24) is dominated
by a different class of eigenvalues that describe a sta-
tionary distribution. This stationary distribution is the
metastable state, and the system will converge to it if the
rate is higher than the consensus rate. The rate to the
metastable state is given in Eq. (25). Setting Eq. (24)
equal to Eq. (25) gives

1− λ =
a

N
+

bK

N2
. (40)

where a and b are constants. We take θ = O(1) in 1− λ
since the system is initially dominated by uncommitted
words. Taking Eq. (40) and solving for n′ gives

n′
c =

aN

K
+ b. (41)

Here, a, b = O(1). This tells us that we expect the num-
ber of zealots required to turn a population decays as
1/K to a constant. We express this in terms of C by
substitution. This produces a nonlinearity in n′

c, which
we approximate to provide the following fit:

n′
c =

aNC

N + dC
+ b, (42)

where d is another constant. A comparison of this against
simulation data is given in Fig 4. This result shows that
as the relative sizes of the community grows larger, it
takes more zealots to turn the population.

B. Zealots of every word

The case where each opinion has zealots follows by a
similar argument. If n′ < n′

c, then one opinion eventu-
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FIG. 4. Critical fraction of committed agents plotted against
C/N for N = 1000 (◦,△) and N = 500 (+,×). Data for a
committed minority of a single word is shown (◦,+) and the
best fit of Eq. (42) in blue. Also shown is the case when there
are committed minorities of every word (△,×) with the fit of
Eq. (43) in red.

ally will suppress all others. When n′ > n′
c, a stalemate

develops and no opinion gains dominance. We still apply
criterion of Eq. (40) along with Eq. (24) for the phase
transition. This means that the dependence of the crit-
ical number of zealots as a function of K has the same
form as Eq. (41). However, now we have N = K(C+n′).
When substituting K for C, we obtain

n′
c = a′C + b′. (43)

We use a′ and b′ to denote different constants from the
previous case that are also both O(1). Fig. 4 depicts this
relationship in practice.

VI. DISCUSSION

The first contribution presented here is technical. We
introduce an innovative approach to deal with large num-

ber K of opinions, that require analyzing O(2K) equa-
tions in the traditional ODE based approach. Another
contribution is advancing our understanding of Naming
Game dynamic by considering its dependence on the ini-
tial condition. We demonstrate that the consensus time
and the critical number of zealots have distinct correla-
tions with the entropy of the state. This reinforces the
rule “divide and conquer”, and also suggest that social
systems with great dissent can foster many committed
minority groups that may block each other from reach-
ing a tipping point, which is high in case of the uncom-
mitted groups sharing a few opinions only. Our results
suggest that high opinion diversity among uncommitted
individuals changes the dynamics. In such situations, the
tipping point can be reached with the number of com-
mitted minority members being small, or even indepen-
dent of the system size, making the system unstable and
quickly transferring to the state in which uncommitted
individuals adopt one of the minority opinions.

ACKNOWLEDGMENTS

This work was supported in part by the Army Research
Office Grants No. W911NF-09-1-0254 and W911NF-12-
1-467 0546, the Army Research Laboratory under Coop-
erative Agreement Number W911NF-09-2-0053, by the
Office of Naval Research (ONR) grant no. N00014-15-1-
2640, by the European Commission under the 7th Frame-
work Programme, Grant Agreement No. 316097 [EN-
GINE], and by the National Science Centre, Poland, De-
cision No. DEC-2013/09/B/ST6/02317. We also thank
G. Korniss for our beneficial discussions. The views and
conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any
copyright notation here on.

[1] P. Sen and B. K. Chakrabarti, Sociophysics, An Intro-

duction (Oxford University Press, Oxford, 2013).
[2] S. Galam, Physica A 274, 132 (1999).
[3] S. Galam, Internat. J. Mod. Phys. C 19, 409 (2008).
[4] T. Liggett, Stochastic Interacting Systems: Contact,

Voter, and Exclusion Processes (Springer-Verlag, New
York, 1999).

[5] T. M. Liggett, Interacting Particle Systems (Springer,
2005).

[6] P. Clifford and A. Sudbury, Biometrika 60 (3), 581C588
(1973).

[7] C. Castellano, S. Fortunato, and V. Loreto, Rev. of Mod.
Phys. 81, 591 (2009).

[8] A. Nowak, J. Szamrej, and B. Latané, Psych. Rev. 97,
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