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We consider the problem of distinguishing between different rates of percolation under noise. A
statistical model of percolation is constructed allowing for the birth and death of edges as well
as the presence of noise in the observations. This graph-valued stochastic process is composed of
a latent and an observed non-stationary process, where the observed graph process is corrupted
by Type I and Type II errors. This produces a hidden Markov graph model. We show that
for certain choices of parameters controlling the noise, the classical (ER) percolation is visually
indistinguishable from a more rapid form of percolation. In this setting, we compare two different
criteria for discriminating between these two percolation models, based on the interquartile range
(IQR) of the first component’s size, and on the maximal size of the second-largest component
(SLC). We show through data simulations that this second criterion outperforms the IQR of the
first component’s size, in terms of discriminatory power. The maximal size of the second component
therefore provides a useful statistic for distinguishing between different rates of percolation, under
physically motivated conditions for the birth and death of edges, and under noise. The potential
application of the proposed criteria for the detection of clinically-relevant percolation in the context
of applied neuroscience is also discussed.

I. INTRODUCTION

Understanding the emergence of organized structure in
dynamic networks remains an active research area [1, 2].
In the study of random networks, percolation –the sud-
den emergence of a giant connected component (GCC)–
is of critical importance from a theoretical, applied and
statistical perspective. Percolation in the Erdős-Rényi
(ER) model constitutes one of the first examples of a
fully characterized mathematical phase transition [3, 4].
While the ER model of percolation is an example of a
(second order) continuous phase transition, recent efforts
have focused on identifying the conditions under which a
random network process can yield a (first order) discon-
tinuous percolation [5].

One of the most popular attempts to model discontin-
uous percolation has been the Achlioptas’ process and
its variants [6]. The Achlioptas’ product rule (PR) slows
down the growth of the GCC by favoring the creation of
edges between small connected components. Although
this particular percolation model has been shown to be,
in fact, continuous and therefore of second order [5, 7, 8];
it nonetheless provides an interesting alternative to the
ER model [9]. Achlioptas’ processes have indeed gener-
ated a substantial amount of theoretical work, whereby
authors have explored related strategies for producing
explosive percolation in random networks [10–12]. In ad-
dition, Riordan and Warnke [5] have shown that genuine
first order phase transitions can be realized by system-
atically adding, at every step of the process, the edge
that joins the two smallest components in the entire net-
work. In this manuscript, we use the phrase “explosive
percolation” to refer to the sudden emergence of a large
connected component in the Achlioptas process. How-
ever, we note that explosive percolation in this context

is rapid, but continuous.

Interest in network percolation has been fueled by its
relevance to several application domains. In clinical neu-
roscience, for instance, epileptic seizures have been as-
sociated with the sudden emergence of coupled activity
across the brain [13–18]. The resulting functional net-
works –in which edges indicate strong enough coupling
between brain regions [19]– are consistent with the no-
tion of percolation. A better understanding of the type
of phase transitions undergone at different stages of the
seizure, may aid in the development of novel strategies
for the treatment of epilepsy [20]. In this paper, we have
therefore concentrated our attention on relatively small
networks, with sizes ranging between 100 and 1,000 ver-
tices. Such a number of vertices is comparable to the size
of the networks often studied in neuroscience [17, 21–25].
However, note that percolation on such small networks
can suffer from finite-size effects [26].

The rich theory on percolation, and its application to
real world data, motivates the following question: How
can we distinguish between different percolation regimes
in practice? Previous theoretical work has concentrated
on noise-free percolation, which constitutes an idealized
perspective on percolation processes. In practice, how-
ever, the sampling of real-world networks is likely to be
corrupted by measurement errors. Moreover, network
growth has generally been conceived as a monotonic pro-
cess, whereby only edge creations are allowed. However,
this assumption may be too restrictive, since in real-world
networks, the number of edges may increase and decrease
over time, in a stochastic manner (see example in figure
1). Finally, to the best of our knowledge, there does not
currently exist a statistical framework for distinguishing
between different types of percolation regimes in the pres-
ence of edge birth and edge death, as well as noise.
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FIG. 1. Proportion of nodes in the largest component as a
function of time for a functional network deduced from the
electrocorticogram of a single patient with epilepsy during a
seizure [see 27, for details]. The weighted functional networks
have been binarized by conducting independent hypothesis
tests on the maximum absolute values of the cross-correlations
over 0.5s windows with 50% overlap and after correcting for
multiple comparisons. The black trace is a smoothed version
of this process. Seizure onset was clinically estimated to occur
at the vertical dotted line.

In this paper, we propose a framework to distinguish
between different percolation regimes in practice. To
do so, we formulate the problem of recognizing a per-
colation regime from noisy observations as a question
of statistical inference. Under this framework, we com-
pare the discriminatory power of two potential perco-
lation features deduced from the evolution of the first
and second component of an observed dynamic network.
We test this framework in simulation by constructing a
hidden Markov graph model, which encompasses both a
non-stationary latent process characterized by birth and
death of edges, and an observed graph process that in-
troduces both Type I and Type II errors. We show that
edge death and noise renders the statistic deduced from
the first component ineffective in distinguishing between
the standard ER second-order percolation and Achliop-
tas’ explosive percolation. However, a different detection
criterion –based on the size of the second component–
successfully discriminates between the two percolation
regimes in the presence of edge death and noise. These
results provide a framework for distinguishing percola-
tion regimes in practice.

II. PERCOLATION MODELS

A. Birth and Death Erdős-Rényi (ER) Process

We first construct a graph-valued stochastic process
that exhibits the Markov property. This provides a re-
alistic model for generating noisy percolation processes,
while maintaining a sufficient level of computational
tractability. We will denote a sequence of graph-valued

random variables on n vertices by{
Gt = (V,Et) : t = 0, . . . , T

}
, (1)

where V denotes the vertex set of Gt, whereas Et rep-
resents the edge set of G at time t. Observe that the
vertex set does not vary with time. At each time step,
a single edge is either added or deleted. Such a se-
quence will be said to be Markov if its edge sets are con-
trolled by a Markov chain. We impose this dependence
through the use of a binary random variable, denoted
{Yt : t = 0, . . . , T}, whose state space is {0, 1}. This
Markov chain is characterized by the following transition
probability matrix P , for some choices of the birth and
death rates, denoted respectively by p and q, and taking
values in [0, 1].

Yt+1 = 0 Yt+1 = 1

Yt = 0 1− p p

Yt = 1 q 1− q

Following customary notation, the entries of P will be de-
noted by P[Yt+1 = j|Yt = i], with rows summing to one.
The graph-valued Markov chain, Gt, is then obtained by
associating Yt with the addition or deletion of an edge in
each edge set, Et. Thus, provided that p, q 6= 0, it follows
that the state space of this graph-valued Markov chain is
the space of all simple graphs on n vertices, since every
graph is reachable with positive probability.

In general, p and q are not required to sum to one.
It will be of interest to let p > q in order to study the
large-scale behavior of the Gt’s as the graph process ac-
cumulates edges. Moreover, observe that Yt is a (time)
homogeneous Markov chain, since P[Yt+1 = ω|Yt = ω′] =
P[Y1 = ω|Y0 = ω′], for any ω, ω′ ∈ {0, 1} and every t.

Now, suppose that there exist mt := |Et| edges at time
t in Gt and let Xt(e) denotes the ‘status’ of edge e at
time t, such that Xt(e) = 1, if that edge is present; and
Xt(e) = 0, otherwise. Note that we have here two differ-
ent sources of dependence. On one hand, the edges are
dependent on each other, since no more than one edge
can be added or deleted at every time step. On the other
hand, the edges are also dependent over time, since the
status of an edge at time t+ 1 depends on the status of
that same edge at time t.

In the sequel, we will concentrate on a special case of
this birth and death process, where we will set p = 1− q.
This leads to simplified marginal distributions for the
edges. Additional details of this birth and death model
are provided in appendix A.

B. Birth and Death Product Rule (PR) Process

We extend the standard Achlioptas’ framework of PR
percolation to a birth and death process, by devising
death steps. This model is analogous to the aforemen-
tioned ER birth and death model, except for the choice of
the probability distribution of the latent Xt(e)’s. As for
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FIG. 2. Birth and death steps for the product rule (PR) in
the Achlioptas’ model of percolation. In this example, edge e2
was born before edge e1, since |C11||C12| > |C21||C22|. There-
fore, when e1 and e2 are selected during a death step, e2 is
discarded after e1. This death step specification ensures that
births and deaths constitute genuine reverse PR operations.

the ER birth and death model, a binary random variable,
Yt, controls the addition or deletion of edges in each Gt.
However, in the case of the PR model, the choice of the
edge to be added or to be deleted is not uniform over the
Et’s. Here, this choice depends on the modular structure
of the graph at time t. Therefore, as for the ER model,
we obtain a non-stationary stochastic process.

Assuming that Yt = 1, the addition of a new edge
is conducted by uniformly choosing two candidate ver-
tex pairs among all the edges in EC

t , the complement of
the edge set, Et. These two candidate edge pairs are
denoted by e1 := (v11, v12) and e2 := (v21, v22), and
satisfy Xt(e1) = 0 and Xt(e2) = 0, since e1, e2 ∈ EC

t ,
as in figure 2. We then evaluate the size of the con-
nected components to which v11, v12, v21 and v22 be-
long. These four connected components are denoted by
C11, C12, C21, and C22, respectively. Then, following
Achlioptas et al. [6], we apply the following product rule:
If |C11||C12| < |C21||C22|, then Xt+1(e1) = 1; otherwise,
Xt+1(e2) = 1.

Conversely, the death or deletion of an edge is handled
in a symmetric manner. When Yt = 0, we uniformly se-
lect two candidate edges from Et. These vertex pairs are
denoted e1 := (v11, v12) and e2 := (v21, v22) and satisfy
Xt(e1) = 1 and Xt(e2) = 1, since e1, e2 ∈ Et. Next,
we set Xt(e1) = 0 and Xt(e2) = 0, in order to compute
the size of the connected components to which v11, v12,
v21 and v22 would belong to, if these edges were absent.
This is done in order to ensure that the deletion of an
edge exactly corresponds to the reverse operation of the
addition of an edge under PR. Next, after having deleted
these edges and computed the sizes of C11, C12, C21, and
C22; we decide which edge should re-enter Gt, in order to
produce Gt+1. Such a decision is also based on the PR,
such that if |C11||C12| < |C21||C22|, then Xt+1(e2) = 0;

G∗
t−1 G∗

t G∗
t+1

Gt−1 Gt Gt+1

FIG. 3. Directed Acyclic Graph (DAG) representation of the
hidden Markov process combining a latent stochastic graph
process in the first row denoted by Gt, with an observed
stochastic graph process contaminated by noise in the second
row, denoted by G∗

t . Directed arrows indicate probabilistic
dependence, such that the distribution of the observed G∗

t

depends on the value taken by the latent graph, Gt.

otherwise, Xt+1(e1) = 0.
This choice of specification for the death step ensures

that the ordering of the creation and deletion of edges
are symmetrical. Given a sequence of two edges {e1, e2}
successively born during two time steps of Gt, if we en-
counter a death step, where both e1 and e2 are selected,
we would then delete these edges in the reverse order, by
eliminating e2 before e1. This order-preserving property
is illustrated in figure 2. This constraint ensures that
births and deaths are genuine reverse PR operations. In
addition, observe that, as for the ER percolation pro-
cess, this chain is irreducible, in the sense that there is
positive probability of transitioning from any given edge
configuration to any other in the space of the edge sets
of G.

C. Hidden Markov Graph Model

Next, we assume that there exists a time-independent
error process, which produces at each time point an ob-
served edge status X∗t (e). This stochastic process is gov-
erned by two additional parameters α and β, whose be-
havior can be described using a traditional ‘confusion
matrix’, such that for any α, β ∈ [0, 1], we have

X∗t (e) = 0 X∗t (e) = 1

Xt(e) = 0 1− α α

Xt(e) = 1 β 1− β

The Xt(e)’s and X∗t (e)’s are here treated as latent and
observed stochastic processes, respectively, and α and β
can therefore be interpreted as the Type I (false positive)
and Type II (false negative) error probabilities. Com-
bining the graph-valued Markov latent process with this
time-independent error process, we obtain a graph-valued
hidden Markov process, as described in figure 3. From
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FIG. 4. Percentage of vertices in the giant connected compo-
nent (GCC) in the main window, and the corresponding sizes
of the second-largest component (SLC) in inset, for a birth
rate of p = 1 and death rate of q = 0, for the ER (black) and
PR (gray) percolation models, for Nv = 100; in which the
x-axis denotes the number of steps in the process divided by
Nv. In bold, these results are reported for a noise-free model,
whereas the thin lines represent noisy simulations with Type
I/II error rates of α = .0075, β = 0. The details of the alge-
braic relationship between the Type I/II error rates and the
graph process is described in appendix A, for the case of the
ER model. Observe that the ER and PR models are nearly
indistinguishable once a small amount of noise is added to
these percolation processes.

this schematic representation, one can immediately see
that the observed graphs denoted G∗t−1, G∗t and G∗t+1 are
conditionally independent, given the latent graph pro-
cess, Gt.

For the ER model, under the assumption that p = 1−q,
these two stochastic graph processes can be combined by
taking into account the time-dependence of the X∗t (e)’s.
In this case, the corresponding transition matrix linking
the observed and latent processes is available in closed-
form. Details of these derivations are provided in ap-
pendix A.

III. DETECTING EXPLOSIVE PERCOLATION

Explosive percolation is expected to produce a sharper
phase transition than a typical ER percolation. When
considering noisy observations, however, detecting such
differences through visual inspection only, is hard. Fig-
ure 4 illustrates this problem, by comparing noisy and
noise-free graph sequences for both explosive and ER
models. Beyond visual inspection, the problem of dis-
criminating between these two models of percolation can
be formulated as a hypothesis-testing problem: The null
hypothesis, denoted H0, states that the observed process
corresponds to an ER percolation, whereas the alterna-

tive hypothesis, H1, is that the observed process does not
correspond to this type of percolation model.

To proceed with this hypothesis-testing problem in
practice, we specify a population parameter summariz-
ing the percolation process, say θER and θ, for the ER
and target models, respectively. This leads to a hypoth-
esis test of the form,

H0 : θER = θ, and H1 : θER 6= θ.

Several population parameters could be used for the pur-
pose of discriminating between these two models of per-
colation. A natural candidate for such parameters would
be a measure of the sharpness of the transition of the first
component’s size. The main panel of figure 4, however,
suggests that this population parameter will not have
sufficient discriminatory power, when confronted with a
substantial amount of observational noise.

Therefore, as a second candidate population parame-
ter, we consider the following natural extension: The size
of the second-largest component (SLC). This provides a
more sensitive marker of the sharp phase transition ex-
hibited by explosive percolation models [28]. Several au-
thors have considered the size of the second largest com-
ponent as a useful marker. Margolina et al. [28] have
investigated the ratio of the sizes of the first and second
component in cubic and triangular lattices. They have
shown that the number of nodes in the second largest
component reaches a maximum at the percolation thresh-
old. More recently, and also in the context of cubic
and hypercubic lattices, da Silva et al. [29] have studied
the scale invariance of the ratio of the sizes of the first
and second components. The size of the second largest
component has also been used in neuroimaging, in or-
der to identify the percolation threshold [30], as well as
in an effort to detect and prevent epileptic seizures [31].
However, to the best of our knowledge, it has not been
previously used in a statistical context for the purpose
of discriminating between different types of percolation
regimes. In what follows, we will show that the use of the
size of the SLC as a statistical marker to distinguish the
two percolation regimes exhibits greater discriminatory
power, than a statistic solely based on the first compo-
nent.

The differences between the candidate percolation
models are therefore quantified using two criteria: (i) the
interquartile range (IQR) of the distribution of the size of
the GCC, and (ii) the maximal size of the SLC over the
entire time period. These two criteria are formally de-
fined as follows. Given the graph process, Gt = (V,Et),
and denoting the vertex subset of the largest component
in Gt by S1,t, we define the cumulative edge function as
the cardinality of S1,t, normalized by the maximal num-
ber of edges in the graph, such that

F (t) :=
|S1,t|(

n
2

) .
Although this function is not a cumulative distribution
function (CDF), one can nonetheless uniquely define



5

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

D
en

si
ty

ER
PR

0.0 0.2 0.4 0.6
0

4
8

D
en

si
ty

Steps / Nv

Steps / Nv

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
D

en
si

ty

ER
PR

0.0 0.2 0.4 0.6

0
10

20
D

en
si

ty

Steps / Nv

Steps / Nv

FIG. 5. Densities of the IQR of the GCC in the main windows,
and densities of the maximal size of the SLC in the insets, are
reported for networks of sizes 100 and 1, 000 vertices in panels
(a) and (b), respectively; for the ER (black) and PR (gray)
percolation models, and based on 1,000 realizations from the
distributions of these two (noise-free) models, specifying a
birth rate of p = 1 and death rate of q = 0; in which the
x-axis denotes the number of steps in the process divided by
Nv. The IQR criterion has been described in equation (2).
Note that the difference in scales of the density values of the
y-axes in these two figures is due to the difference in scales
of the x-axes, which represent the number of steps scaled by
networks’ sizes, t/Nv.

quantiles using the standard definition of quantiles for
the CDFs of discrete random variables; such that for any
x ∈ [0, 1], we have

Q(x) := min
t=1,...,T

{t : F (t) ≥ x} ,

where T is the maximal number of time steps in the graph
process. In this paper, we are especially interested in the

classical interquartile range,

IQR := Q(0.75)−Q(0.25). (2)

This parameter quantifies the steepness of the phase tran-
sition: the larger the IQR criterion, the longer the tran-
sition to a fully connected graph.

As a second criterion to distinguish the two percolation
regimes, we consider the maximal size attained by the
SLC over the entire time period of the dynamic network
observation. If one defines the vertex set of the SLC at
time t by S2,t, this second criterion can be expressed as

θSLC = max {|S2,t| : t = 1, . . . , T} .

This quantity is known to constitute a good marker of
the steepness of the phase transition, since it reflects the
extent of separation of the graph process into large con-
nected subgraphs [28, 31]. Indeed, a direct consequence
of the Achlioptas’ construction rule is that by inhibiting
the growth of a single large component, we necessarily
increase the production of several subcomponents.

Statistical inference on these two criteria is then drawn
using a Monte Carlo hypothesis test. Letting the param-
eter θ := θIQR, and selecting the candidate percolation to
be drawn from a PR process, we consider the following
null and alternative hypotheses,

H0 : θER = θPR, and H1 : θER > θPR,

respectively. The direction of this test is justified by the
fact that we expect explosive percolation to occur rapidly,
and thus to exhibit a smaller amount of variability in the
size of its GCC, when transitioning to a fully connected
graph. Our second criterion, by contrast, is tested in the
opposite direction, since we naturally anticipate the PR
process to be characterized by a larger maximal SLC.
Thus, for θ := θSLC, the alternative hypothesis becomes
H1 : θER < θPR.

In the results reported in this paper, the distributions
of the ER and PR graph processes are known. It there-
fore suffices to simulate from these densities in order to
construct the distribution of the two test statistics at
hand. This procedure is illustrated in figure 5. We are
especially interested in the discriminatory powers of these
statistics, and we will therefore compare their respective
merits, using the true positive and false positive rates,
within a receiver operating characteristic (ROC) frame-
work. The ROC curve illustrates the performance of a
binary classifier by plotting the false positive rate against
the true positive rate, as the discriminating threshold
varies. For presentational convenience, the distributions
of interest were smoothed using a normal density kernel,
before computing the ROC curves and corresponding ar-
eas under the curves (AUCs). The computation of the
AUCs allows us to summarize the differences between the
models over the entire time period. (See figures 9 to 13.)
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FIG. 6. Percentage of vertices in giant connected component
(GCC), and in second largest component (SLC), in panels (a)
and (b), respectively; with respect to scaled time (t/Nv), with
Nv = 100; in which the x-axis denotes the number of steps in
the process divided by Nv. These results are reported both
the ER and PR models, in black and gray, respectively; for
different choices of birth rates, p. Each curve represents the
mean of 1,000 independent simulations.

IV. RESULTS

A. Birth and Death Processes

The ER and PR percolation models were simulated
on graphs with n = 100 and n = 1, 000 vertices. We
first explored the effect of varying the birth and death
rates (i.e. p) on the behavior of the two statistical criteria

of interest, under the ER and PR models. The results
of these Monte Carlo simulations are reported in figure
6, where each curve is the mean of 1,000 independent
synthetic data sets. In these simulations, the death rate
is set to q = 1 − p, and therefore the value of p controls
both the birth and death rates.

The main effect of a change in p is to delay percolation,
and to diminish the steepness of the phase transition.
Observe that as p decreases, percolation tends to occur
at a later time step in both the ER and PR models (see
figure 6). In particular, for the lowest birth rate that we
investigated (p = 0.7), the ER model did not produce
a fully connected graph within the number of iterations
considered, as can be seen from figure 6(a). When p was
set to values equal to or less than 0.5, no phase transition
could be observed, and these results are not reported.

The size of the second component was similarly af-
fected by changes in p. Decreasing the birth rate delayed
the time at which the size of the SLC attained its highest
value. Moreover, lower values of p also yielded SLCs with
smaller maximal sizes, under both the ER and PR mod-
els. Interestingly, we note that the time points at which
the SLC reaches a maximal size tended to coincide in
both models. Thus, it would be difficult to distinguish
between these two percolation models on the sole basis
of the timing of the occurrence of the maximal size of the
SLCs. By contrast, the relative maximal size of the SLCs
in the ER and PR models differ by approximately one or-
der of magnitude, thereby providing a natural criterion
for discriminating between these two types of percola-
tion, as can be observed by comparing figures 6(a) and
6(b).

We formally quantified these differences in discrimina-
tory powers by studying the ROC curves of these two
criteria under different choices of p (see figure 11). The
maximal size of the SLC substantially outperforms the
relative size of the first component, for all values of p.
The stark difference between these discriminatory cri-
teria can be understood by considering the amount of
overlap of the distributions of these two criteria in fig-
ure 5. Whereas the distributions of the IQR of the
size of the GCC under the two models exhibit a large
amount of overlap; the distributions of the maximal sizes
of the SLC, by contrast, share very little common sup-
port. These differences in support account for the sub-
stantive gains in discriminatory power by the maximal
size of the second component, as reported in figure 13.

In addition, we note that the IQR of the size of the
first component was more sensitive to choices of p than
the maximal size of the SLC. As p diminishes, it becomes
increasingly more difficult to discriminate between the
ER and PR percolation models, using the IQR of the size
of the first component. This suggests that this criterion is
more sensitive to a non-zero death rate, than the maximal
size of the SLC, which provides further support for the
use of this latter criterion, in practice.
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FIG. 7. Percentage of vertices in giant connected component
(GCC), and in second largest component (SLC), in panels (a)
and (b), respectively; with respect to scaled time (t/Nv), for
Nv = 100; in which the x-axis denotes the number of steps in
the process divided by Nv. These results are reported for both
the ER and PR models, in black and gray, respectively; and
for different choices of the error rate, α. Each curve represents
the mean of 1,000 independent simulations.

B. Percolation under Noise

Secondly, we considered the effect of introducing noise
in these models. The results reported in figure 8 were pro-
duced using our proposed hidden Markov graph model,
and were averaged over 1,000 simulations. We were espe-
cially interested in the effect of Type I and Type II errors
on our ability to discriminate between classical and ex-
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FIG. 8. Area under the Curve (AUC) surface plot for the
Receiver Operating Characteristic (ROC) curves of the IQR
of the GCC, and of the maximal size of the SLC, for different
choices of the error rates α and β, and with p = 1 and q = 0;
under the simulation settings of figure 7, and with Nv = 100.

plosive percolation, using the two criteria under scrutiny.
Both the Type I and Type II error rates were made to
vary between 0 and .01.

From figure 8, one can observe that the two types of
errors had markedly different effects on the AUCs of the
two discriminatory criteria. Introducing Type I errors led
to a substantial diminution of the AUCs for both the IQR
of the size of the first component in 8(a), and the maximal
size of the SLC in 8(b). In particular, note that the two
criteria reached equivalent levels of discriminatory power
for α = 0.01. Thus, although the maximal size of the
SLC remains a more useful criterion for distinguishing
between the ER and PR models than the IQR of the
size of the first component, these two criteria exhibited
comparable performance, under a moderate amount of
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FIG. 9. Percentage of vertices in the giant connected compo-
nent (GCC) in the main window, and the corresponding sizes
of the second-largest component (SLC) in inset, for a birth
rate of p = 1 and death rate of q = 0, for the ER (black) and
the PR (gray) percolation models, forNv = 1000; in which the
x-axis denotes the number of steps in the process divided by
Nv. In bold, these results are reported for a noise-free model,
whereas the thin lines represent noisy simulations with Type
I/II error rates of α = .0075, β = 0. Observe that the ER and
PR models are nearly indistinguishable once noise is added to
these percolation processes.

Type I error.
The impact of increasing the Type II error rate on

the behavior of these two criteria was negligible. Intro-
ducing false negatives in the ER and PR models slightly
increased the AUCs of both the IQR of the first compo-
nent’s size, and the maximal size of the second compo-
nent. Thus, large Type II error rates may be marginally
advantageous for discriminating between these two mod-
els of percolation, under the scenarios studied.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have extended existing models of per-
colation by allowing for edge deletion steps and noisy ob-
servations. These modeling extensions have been articu-
lated within a hidden Markov graph process, which builds
links with the existing literature on the statistical prop-
erties of this family of models [32–34]. Moreover, we have
compared different summary statistics for distinguishing
between the ER and PR percolation models. Overall, for
different birth and death rates, and for a range of noise
levels, the maximal size of the SLC was found to have
greater discriminatory power than the IQR of the size of
the GCC.

Several methodological challenges remain before such
models can be directly used for percolation detection on
real-world data. Throughout this paper, we have consid-
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FIG. 10. Percentage of vertices in giant connected component
(GCC), and in second largest component (SLC), in panels (a)
and (b), respectively; with respect to scaled time (t/Nv), for
Nv = 1000; in which the x-axis denotes the number of steps in
the process divided by Nv. These results are reported for both
the ER and PR models, in black and gray, respectively; and
for different choices of the birth rate, p. Each curve represents
the mean of 1,000 independent simulations.

ered the IQR of the size of the first component, using a
particular choice of quantiles for this discriminatory cri-
terion. In practice, an optimal choice of quantiles for
quantifying the steepness of such phase transitions may
be motivated by different factors, including (i) the range
of the observations, and (ii) the need for early detection.
We discuss these two practical aspects, in turn.

Firstly, note that when considering real-world appli-
cations, we rarely observe fully connected networks. In
the data reported in figure 1, for instance, the size of
the GCC encompasses at most 90% of the edges in the
saturated network. The choice of the quantile interval
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FIG. 11. Receiver Operating Characteristic (ROC) curves for
tests based on the IQR and SLC statistics for networks of size
Nv = 100 and Nv = 1000, in panels (a) and (b), respectively;
for different choices of birth rate, p.

of interest for the first component will be therefore au-
tomatically constrained by the range of the observations
in the data at hand. Therefore, as in sequential detec-
tion analysis, the statistical objective is to detect the
outcome, on the basis of as little data as possible. Such
constraints would naturally lead to a relatively narrow
quantile range.

Secondly, in the context of clinical neuroscience and
with particular emphasis on the prevention of a seizure;
the detection of a percolation regime may be linked with
patients’ health and survival. In such cases, early de-
tection will usually be favored, as this is likely to be
associated with desirable clinical outcomes. Explosive
percolation, such as the Achlioptas’ PR process studied
in this paper, is consistent with the sudden manifestation
of a seizure as a highly synchronized event. Classifying
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FIG. 12. Percentage of vertices in giant connected component
(GCC), and in second largest component (SLC), in panels (a)
and (b), respectively; with respect to scaled time (t/Nv), for
Nv = 1000; in which the x-axis denotes the number of steps
in the process divided by Nv. These results are reported for
both the ER and PR models, in black and gray, respectively;
and for different choices of the error rate, α. Each curve
represents the mean of 1,000 independent simulations.

models of percolation may then be utilized to deepen our
understanding of seizures, and to gain a greater under-
standing of the mechanisms underlying epilepsy.

Further work in this area could be focused on estimat-
ing a percolation model from a given sequence of observed
networks. In this sense, this work also contributes to
the growing literature on time-indexed graph processes
[35]. In such cases, the birth and death rates will need
to be estimated, as well as the Type I and Type II er-
ror probabilities. These different parameters may not
be fully identifiable from the data, and further assump-
tions are likely to be necessary, in order to discriminate
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FIG. 13. Receiver Operating Characteristic (ROC) curves for
tests based on the IQR and SLC statistics for networks of size
Nv = 100 and Nv = 1000, in panels (a) and (b), respectively;
for different choices of error rate, α.

between the two percolation models considered in this
paper. Such estimation, however, may be amenable to a
Bayesian formulation, as commonly implemented for hid-
den Markov models [36]. Note also that this work may
be extended to some of the recently proposed generalized
versions of the Achlioptas model [37–39].

Appendix A: Details of Birth and Death ER Process

Here, we describe the closed-form formulas of the prob-
abilities of edge inclusion and edge deletion in the ob-
served graph processes under the ER model. These ana-
lytic results are obtained by assuming that the birth and
death probabilities are straightforwardly related, such
that p = 1− q. Such derivations may be useful for other

authors, who may want to replicate these results, or ex-
tend the applications of the noisy model of percolation.

In this birth and death graph process, each edge is
treated separately by integrating out the dependence of
all other edges in the graph, and considering the marginal
distribution of every Xt(e). As before, we will here re-
fer to Xt(e) as the latent edge status, and mt := |Et|
will indicate the number of edges in the graph at time
t. Given the Markov random variable Yt, the conditional
transition matrix for every Xt+1(e), given some value of
Yt takes the following form,

Xt+1(e) = 0 Xt+1(e) = 1

Xt(e) = 0
(n
2)−mt−I{Yt=1}

(n
2)−mt

I{Yt=1}
(n
2)−mt

Xt(e) = 1 I{Yt=0}
mt

mt−I{Yt=0}
mt

where
(
n
2

)
denotes the number of edges in a saturated

graph of size n, and where I{f(x)} is the indicator func-
tion, which takes a value of 1 if f(x) is true and 0, oth-
erwise.

In this paper, we have concentrated on a special case of
this birth and death process, where we have set p = 1−q.
This choice of p and q leads to the following characteri-
zation of the Yt process,

P [Yt+1 = 1] = P [Yt+1 = 1|Yt = 0]

= P [Yt+1 = 1|Yt = 1] = p,
(A1)

and similarly, P [Yt+1 = 0] = 1−p. Under this simplifying
assumption, the preceding conditional transition matrix
becomes

Xt+1(e) = 0 Xt+1(e) = 1

Xt(e) = 0
(n
2)−mt−p
(n
2)−mt

p

(n
2)−mt

Xt(e) = 1 1−p
mt

mt−1+p
mt

Each entry is obtained by taking the expectation with
respect to Yt. That is, P[Xt+1(e) = ω|Xt(e) = ω′] =
E[P[Xt+1(e) = ω|Xt(e) = ω′, Yt]], for every ω, ω′ ∈
{0, 1}, and where the marginal distribution of Yt is known
from equation (A1).

One can then combine the noise process described in
section II C, with the birth and death stochastic pro-
cess in order to link the latent and observed parts of the
Markov hidden model. This gives the following table,

X∗t+1(e) = 0 X∗t+1(e) = 1

Xt(e) = 0 (1− α)

(
(n
2)−mt−p
(n
2)−mt

)
α

(
p

(n
2)−mt

)
Xt(e) = 1 β

(
1−p
mt

)
(1− β)

(
mt−1+p

mt

)
Since this transition matrix links the latent and ob-
served stochastic processes, one can immediately derive
the marginal probabilities of the X∗t (e)’s, such that

P[X∗t+1(e) = 0] = (1− α)

((
n
2

)
−mt − p(
n
2

)
−mt

)
+ β

(
1− p
mt

)
,
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and similarly for P[X∗t (e) = 1]. Observe that the re-
sulting Xt process is non-stationary. Moreover, non-
stationarity also holds when considering the case p =
1− q. Indeed, since the probability of adding a new edge

at time t + 1 is dependent on the number of existing
edges, mt := |Et|, at time t; it follows that the resulting
joint distribution of any subset of the Xt’s depends on
the choice of t.
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