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Time reversal methods are widely used to achieve wave focusing in acoustics and electromagnetics.
Past time reversal experiments typically require that a transmitter be initially present at the target
focusing point, which limits the application of this technique. In this paper, we propose a method
to focus waves at an arbitary location inside a complex enclosure using a numerically calculated
wave excitation signal. We use a semi-classical ray algorithm to calculate the signal that would
be received at a transceiver port resulting from the injection of a short pulse at the desired target
location. The time-reversed version of this signal is then injected into the transceiver port and an
approximate reconstruction of the short pulse is created at the target. The quaility of the pulse
reconstruction is quantified in three different ways, and the values of these metrics are shown to
be predicted by the statistics of the scattering-parameter |S21|2 between the transceiver and target
points in the enclosure over the bandwidth of the pulse. We experimentally demonstrate the method
using a flat microwave billiard and quantify the reconstruction quality as a function of enclosure
loss, port coupling and other considerations.

I. INTRODUCTION

Wave focusing through a strongly scattering medium
is an intriguing research topic in the fields of optics,
acoustics and electromagnetics [1–3]. Its potential ap-
plications include medical imaging, ultrasound therapy,
communications, and nondestructive testing. In op-
tics, wavefront-shaping has been used to spatially focus
light both through and inside strongly scattering media
[1, 4, 5]. One can also achieve focusing in the temporal
domain using a time-reversal mirror (TRM). The time
reversal technique was first developed in acoustics [6–
12]. Much work has been done to study the underlying
theory and possible applications in target identification,
detection and imaging [13–20]. A TRM can work both in
open systems with a strongly scattering medium placed
between the target and transceiver ports [21, 22], or in
closed reflecting walled systems (‘billiards’) supporting
ballistic propagation of waves in which the wavelength is
much smaller than the billiard size [23–26]. In fact, a rel-
atively simple single-channel TRM can be efficiently im-
plemented in ray-chaotic billiard systems [23], and the ex-
periments discussed here are performed in such billiards.

Previous time reversal experiments typically employ
two steps [21, 23–25]. First, in the time-forward step,
one injects a short pulse at the target port and collects
the resulting long-duration transmitted signal (called
the “sona”) at the transceiver port. In the time back-
ward step, one time-inverts the previously collected and
recorded sona signal and sends it back into the system
through the transceiver port, hopefully resulting in a
time reversed short pulse at the target port. Since an
active source must be present at the target location to
create the initial signal, and because the sona is unique
to that location, this process must be repeated for any lo-
cation upon which one desires to focus waves. As shown

in previous work [27–29], one can relax this constraint
to some extent by placing a passive nonlinear object at
the desired target location and using its higher harmonic
nonlinear response as a unique “beacon” for later time-
reversal. In acoustics, several methods [30, 31] have been
developed to shift the location of the reconstruction, but
these are either limited to small shifts (10% range shift of
the focal spot) or to the special geometric case of acoustic
waveguides. In both of these cases one must still have a
source located at a representitive target location to pro-
duce a baseline sona signal.

One concern about the time-reversal process is the re-
liability of a time-reversed sona signal to create a re-
construction as the scattering environment evolves and
changes over time. For example the reconstruction qual-
ity of electromagnetic waves in a three-dimensional bil-
liard was shown to be quite sensitive to the dielectric
constant of the gas filling the enclosure [32]. In fact, this
extreme sensitivity of the reconstruction to details in the
scattering environment has been exploited as a new sen-
sor technology [33, 34]. In this paper we wish to create
robust reconstructions at arbitrary locations that are less
sensitive to details. This is one of the motivations to rely
on the presence of stable geometrical properties of the
billiard that give rise to robust“short orbits” that con-
nect the wave-entry and wave-focusing points [26, 33].

Here we present a synthetic sona method for focusing
electromagnetic waves at an arbitrary location in a ray-
chaotic billiard using an extension of the time reversal
technique. We choose a ray-chaotic system because its
ergodicity ensures that all rays launched into the system
will visit all points on the billiard boundary. It is also
the most challenging situation for our wave focusing tech-
nique because small errors in the initial ray trajectory will
accumulate exponentially in time. Our method is suc-
cessful, but has limitations due to wave propagation loss,
port coupling mismatch, finite mode density of the bil-
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liard, and the existence of chaos in the ray limit. We dis-
cuss the effects of these factors by presenting experimen-
tal results on both high-loss and low-loss billiards, differ-
ent antennas and frequency ranges (to modify coupling),
and modifications of the cavity that vary the boundaries
and modal structure. In general, we find that the syn-
thetic sona method can produce good time-reversal focus-
ing at an arbitrary location in lossy ray-chaotic billiard
experiments with well-coupled antennas.

The synthetic sona method requires numerically cal-
culating the sona collected at a receiving port that is
generated by a source at the target port. Here we uti-
lize semiclassical methods to do this. Compared with
other numerical methods, such as finite-difference time-
domain (FDTD) computation of billiard scattering prop-
erties, the semiclassical method is more efficient when the
wavelength is much smaller than the system size. When
going to smaller wavelengths, most numerical methods
require a finer grid which significantly increases the com-
putational cost. In contrast, the semiclassical method
has the same computation complexity in all frequency
ranges.

In the following, we first describe our experimental
setup and procedures, including the calculation of a syn-
thetic sona signal, performing a time-reversal experiment
in the time domain and also in the frequency domain.
Then we introduce several metrics to measure the recon-
struction quality, and we discuss factors that limit the
reconstruction quality, such as loss and mismatched port
coupling.

II. EXPERIMENT

A. Calculation of Synthetic Sona

The construction of the synthetic sona starts with a
calculation of ray orbits [26] in the billiard. Specifi-
cally, limiting consideration to ray paths below a specified
length limit, a ray tracing code is used to obtain the tra-
jectories of rays that start from the target point, bounce
off of the walls, propagate ballistically between bounces,
and arrive at the transceiver port. Each bounce on the
billiard wall follows the law of specular reflection, and we
do not consider scattering from the ports. Then, for each
trajectory i, the orbit length Li, number of bounces ni,
and ray bundle divergence factor Di [26, 35, 36], are used
to calculate a scaled and time-delayed version of the in-
put signal, g(t), which is usually a short (on the order of
the typical ballistic propagation time between bounces in
the billiard) Gaussian pulse. Summing up contributions
from all N trajectories of length less than the upper limit
gives the synthetic sona signal ssyn(t). In practice the
calculation is performed in the frequency domain first,

S(ω) =
∑N
i=1G(ω)e−jωLi/c(−1)ni

√
Di, where S(ω) and

G(ω) are the Fourier transforms of ssyn(t) and g(t) re-
spectively. Then an inverse Fourier transform of S(ω)
into the time domain gives ssyn(t). Figure 1 shows an

FIG. 1. Calculation of a brief synthetic sona from four simple
orbits in a representitive 2D 1/4-bow-tie billiard. We first
calculate a scaled and time-delayed version of the input signal,
which is a Gaussian pulse modulation of a 7 GHz carrier signal
in this example. These waveforms are summed to obtain the
synthetic sona shown at the bottom. The two ports are 17.5
cm apart.

example of a calculated synthetic sona from four simple
orbits linking the target port and transceiver port in a
2D billiard. The above calculation does not include prop-
agation loss. If we assume that the loss is uniform and
results in an amplitude decay of e−t/τ with amplitude
decay time τ , and also assume that τ is approximately
frequency-independent, then we can apply an exponen-
tial window function to the synthetic sona to simulate
the effect of propagation loss [37].

B. Experimental Setup

For our microwave time reversal experiments [25, 38],
the billiard is a quasi-2D, ray-chaotic cavity. That is, it
is thin in one dimension (z) so that, at the frequencies
of interest, the modes of the cavity have electric fields
E = Ez(x, y)ẑ [39]. One of the cavity shapes that we
employ is depicted in the lower right inset of Figure 1
and is refered to as a symmetry-reduced ‘bowtie’ shape
[40–42]. We also utilize a superconducting Pb-coated cut-
circle shape [43–48] at 7.01 K to create a billiard with
minimal loss.

For comparison, we also employ a method based on
the technique used in previously published time-reversal
experiments. We generate a short Gaussian modulation
pulse of a given carrier frequency, g(t), inject it into the
billiard through the target port, and a signal s(t), called
the sona signal, is measured at the transceiver port (see
Fig.1 inset and Fig.2(a)). This sona signal is recorded
and then time reversed. The time reversed waveform is
then regenerated as a signal which is sent back into the
billiard through the transceiver port. The signal r(t) is
then measured at the target port and, as desired, is found
to approximately reconstruct the original Gaussian short
pulse. The antennas used for the broadcast and receiving
port have two-dimensionally isotropic radiation patterns,
and are short metal pins extending from the center con-
ductor of the end of coaxial transmission lines at port
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holes in the upper plate of the two-dimensional cavity
[42]. The antenna has a 3dB bandwidth from 6.7 GHz to
11.9 GHz. Due to the variation in eigenmode amplitude
at the transceiver and target points [47, 48] and propaga-
tion loss, r(t) not only contains a time reversed Gaussian
pulse replica, but also has temporal sidelobes (see Fig-
ure 2b) which are symmetric about the reconstruction,
to good approximation.

The envelope of g(t) is a Gaussian of width σt ≈ 0.5
ns modulating a carrier of frequency 7 GHz, which,
due to the modulation, corresponds to a spectral width
σf = 1/(2πσt) ≈ 0.32 GHz in the frequency domain.
The areas of the cavities used in the experiment are
A = 0.115m2 and 0.04m2 for the bowtie and cut-circle
cavity, respectively. The corresponding typical ballistic
flight times are about 1.3 ns and 0.7 ns. The Gaussian
pulse was truncated to a total duration of about 6σt = 3
ns. To accumulate many runs of this basic process, we
periodically broadcast g(t) with a period T = 500 ns
� σt. The background noise level is about 2mV, and we
set the input power to its maximum such that the sona
signal s(t) has a typical peak voltage of 150mV, much
higher than the noise floor. s(t) decays to the noise level
within about 100 ns for the case of the bowtie cavity, be-
cause of ohmic loss in the upper and lower cavity plates
and leakage through the ports.

We carry out the synthetic sona calculation procedure
for all orbits with orbit length less than 10

√
A, where

A is the billiard area, a total of 1.2 × 105 orbits for the
bowtie billiard. We inject the time reversed synthetic
sona (Fig.2(c)) into the microwave billiard to obtain the
result at the target port shown in Fig.2(d). Figure 2
(a) and (b) are the sona and the time-reversed recon-
struction in the measured time-reversal scheme. The
reconstruction signal shows a peak, which is the recon-
structed Gaussian pulse, and symmetric sidelobes around
the peak. Figure 2 (c) and (d) are the calculated syn-
thetic sona (corresponding to orbits up to four meters
long, or 15 ns) and its reconstruction at the target port
in the microwave billiard. There is a significant peak
in the reconstruction, but the sidelobes are now unbal-
anced. Nevertheless, this result demonstrates focusing
at the target port in the experimental microwave billiard
using a purely synthetic sona.

C. Frequency Domain Experiment

The time domain experiment setup described above
takes at least 30 seconds to complete one time-reversal
process with completely automated instrument control,
and this imposes a constraint when we wish to system-
atically vary the carrier frequency of the input pulse. A
sweep of carrier frequency from 1 GHz to 20 GHz takes
hours, during which the cavity state may change due to
temperature fluctuations or other time-dependant per-
turbations [32–34, 49]. This problem can be addressed
by switching to frequency domain measurements where

FIG. 2. (a) Physically measured sona, and (c) synthetic

sona signal calculated from orbits less than 4 m (= 10
√
A)

in length, and their time reversal reconstruction signals, (b)
and (d), respectively. Only the upper half of the signals are
plotted since they are essentially symmetric about the time-
axis. The upper inset shows closeups of the initial Gaussian
pulse (left, blue), the measured sona reconstruction (middle,
green) and the synthetic sona reconstruction (right, red). The
bottom inset plots some of the orbits used to calculate the
synthetic sona. The horizontal and vertical straight walls of
the billiard have lengths of 43.18 cm and 21.59 cm, and the
two ports are 17.5 cm apart.

the scattering parameter (S-matrix) of the system is mea-
sured only once and is then used to calculate the time-
domain responses. The systems are linear and recip-
rocal, thus S21(ω) = S12(ω) and S(ω) = G(ω)S21(ω),
R(ω) = STR(ω)S21(ω) where S(ω), G(ω), R(ω) and
STR(ω) are the frequency spectrum of s(t), g(t), r(t)
and s(−t) respectively. The time domain sona and re-
construction signal can be obtained by calculating the
inverse Fourier transform of S(ω) and R(ω). The output
signal obtained in this way is the same as the one mea-
sured in the time domain experiment, albeit with much
less noise. The signal-to-noise ratio of a S21(ω) measure-
ment is more than 30 dB while the time domain mea-
surement (which measures s(t) and r(t) directly) has a
constant background noise of about 2mV when the max-
imum peak voltage for s(t) is 150mV. Later we will use
this frequency domain version to explore the dependence
of synthetic sona reconstructions on the center frequency
of the Gaussian g(t).

III. ANALYSIS

A. Reconstruction Quality

It has been shown by Derode, Tourin and Fink [12, 24]
that the reconstruction peak-to-noise ratio in a one-
channel time reversal experiment scales as

√
∆f/δf
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where ∆f is the effective bandwidth and δf is the corre-
lation frequency of the reverberated field. In our bowtie
cavity experiment, for example, the bandwidth is about
2
√

2 ln 2σf = 0.75 GHz and the correlation frequency
is governed by the Heisenberg time (the inverse of the
mean spacing between eigenmodes), which is about 14.5
ns at 7 GHz. Hence the peak-to-noise ratio should be√

0.75× 14.5 = 3.3, and the value observed in experi-
ment is 2.78 in Fig 2(b), comparable with expectations.

Reference [48] demonstrates that the reconstruction
peak-to-noise ratio scales linearly with ∆T , the length
of sona used for time-reversal, when ∆T is small, and it
saturates for larger ∆T . In our case the loss is signifi-
cant. The sona signal decays to noise level in about 100
ns while the recording time is 500 ns, thus we are already
in the saturation region. Recording for a longer time only
adds more background noise.

Here we discuss other factors that also influence the
quality of a synthetic sona time-reversal reconstruction,
for example, the propagation loss and port coupling mis-
match. In order to examine the effect of these factors
and compare reconstructions under different conditions,
we first quantify the reconstruction quality using the fol-
lowing three metrics:

• The peak-to-peak voltage Vpp of the reconstructed
Gaussian pulse.

• The focus ratio is the average power of the recon-
structed short Gaussian pulse divided by the aver-
age power of the entire reconstructed signal. The
focus ratio measures how the reconstructed pulse
stands out from the sidelobes and noise. For the
case of perfect reconstruction, i.e., no sidelobes and
noise, this quantity is equal to (E/6σt)/(E/T ) =
T/6σt in the experiment described above, where E
is the energy of the signal.

• The transfer ratio is the energy in the entire wave-
form that is received at the target port divided by
the energy in the injected time-reversed sona sig-
nal. This metric quantifies how efficiently energy
is being transfered from the transceiver port to the
target port.

B. Effects of Loss and Mismatched Port Coupling

Here we discuss two main factors that affect recon-
struction quality: propagation loss and port coupling
mismatch. Intuitively, a system with higher loss should
lose more information during the transmission between
the two ports, hence the reconstruction should be of lower
quality. However, we have also observed that the time-
reversal reconstruction in the superconducting cavity can
be worse than that in a similar cavity in the normal state,
mainly because of antenna coupling issues. Hence prop-
agation loss and port coupling mismatch both affect re-
construction quality, and we now discuss them.

1. Effect of Loss on Reconstruction

We find that to a good approximation the sona signal
envelope decays exponentially in time as e−t/τ , where τ
is the (assumed frequency-independent) sona amplitude
decay time. In particular, for the normal and super-
conducting cases Snormal(t) ≈ Snormal(t)e

−t/τnormal and
Ssc(t) ≈ Ssc(t)e−t/τsc , where S(t) is the exponentially
decaying sona signal and S(t) is the sona signal with an
infinite decay time. Furthermore Ssc(t) and Snormal(t) are
experimentally found to be approximately the same, with
a cross-correlation coefficient of 0.92. Based on these re-
sults, in the case of the measured sona method, higher
loss will result in a scaled down sona signal with faster
decay rate, and, as we will next show, a scaled down
reconstruction signal with smaller sidelobes; the recon-
struction will thus have a smaller Vpp and transfer ratio,
but a higher focus ratio.

Let h(t) = h′(t)e−t/τ be the impulse response between
the transceiver port and target port of the enclosure. In
the case considered here the cavity is air-filled and waves
travel nondispersively with velocity approximately c =
1/
√
µ0ε0; thus h′(t) =

∑
j Ajδ(t− tj), t ∈ (0,∞), where

Aj and tj > 0 are the amplitude and the travel time
along ray orbit j connecting the transceiver port and the
target port (with the convention tj+1 > tj). The sona
signal is s(t) = g(t)∗h(t), where “∗” denotes convolution,
and the reconstruction signal is r(t) = s(−t) ∗ h(t) =
g(−t) ∗h(−t) ∗h(t), where g(t) is the initial input signal.
Thus,

r(t) =

∫
g(−t′)f(t− t′)dt′,

where f(t) = h(−t) ∗ h(t) =
∑
j,j′ AjAj′e

−(tj+tj′ )/τδ(t+

tj − tj′) is an array of Delta functions symmetric around
t = 0, which explains the balanced sidelobes around the
peak in Fig.2(b). Thus

r(t) =
∑
j,j′

AjAj′g(tj′ − tj − t)e−(tj+tj′ )/τ ,

and lower loss (larger τ) leads to stronger reconstruction
with larger Vpp, as expected. Also a larger τ leads to
slower decay on both sides of the peak, making the focus
ratio smaller.

To better demonstrate the effect of loss on sonas and
reconstructions, we compare the sona and the reconstruc-
tion measured in the cut-circle cavity in the normal and
superconducting states, as shown in Fig.3. It is clear that
the superconducting state sona, with τsc = 153 ns, has a
much longer duration than the normal state sona, with
τnormal = 50 ns. The superconducting state reconstruc-
tion has a higher Vpp but the focus ratio drops from 305
in the normal state to 158 in the superconducting state.

For synthetic sona reconstruction, we replace the mea-
sured h(t) from the time forward step with h(s)(t) =∑
j A

(s)
j δ(t− t(s)j ), where t

(s)
j and A

(s)
j are the calculated
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FIG. 3. Measured signals in cut-circle cavity in the measured
sona time-reversal process. The sona signal in the cavity
normal (green, shorter in time) and superconducting (blue,
longer in time) states, and time-reversal reconstruction in the
cavity normal (cyan, lower amplitude) and superconducting
(red, higher amplitude) states. The sonas are generated by
injection of a Gaussian pulse with 6σt = 3ns, modulating a 7
GHz carrier signal. Data is taken at 6.4 K (superconducting
state) and room temparature (normal state).

time delay and amplitude for the jth short orbit, respec-
tively. Then, similar to f(t) = h(−t) ∗ h(t), we have

f (s)(t) = h(s)(−t)∗h(t) =
∑
j,j′ A

(s)
j Aj′e

−(t(s)j +tj′ )/τδ(t+

t
(s)
j − tj′). Since the synthetic sona has a finite duration

of Ts, t
(s)
j must be in the range of (0, Ts). So the prior-

in-time sidelobe (t < 0) can only extend to t = −Ts.
Hence, the sidelobes in the synthetic sona reconstruction
are unbalanced, consistent with the result shown in Fig.2
(d). If the synthetic sona duration is much shorter than
the decay time Ts � τ then the left sidelobe, with length
of Ts, will appear to be much shorter than the right side-
lobe, which has decay time τ , and thus leads to very poor
reconstruction. Unbalanced sidelobes may also be seen
in other situations, for example in one-bit time reversal
[50] where only the sign of the sona signal is recorded.

To summarize, higher loss (smaller τ) results in a
scaled down reconstruction signal with smaller sidelobes;
the reconstruction will have a smaller Vpp and transfer
ratio, but a higher focus ratio. The synthetic sona recon-
struction has unbalanced temporal sidelobes due to finite
synthetic sona duration.

2. Mismatched Port Coupling

Port coupling can be varied by using a different an-
tenna or using different carrier frequencies for a given
antenna. The former modifies the radiation impedance
of the port entirely, and the latter uses the fact that
radiation impedance is a function of frequency [42, 51].

Both effects lead to a different billiard transfer func-
tion S21(ω), which is the ratio of the complex trans-
mitted wave amplitude to the incident wave amplitude
between the transceiver port (1) and the target port
(2). Define the mean transmission µ ≡ 〈|S21|2〉avg av-
eraged over a 6σf = 2 GHz frequency range surround-
ing the center frequency of the Gaussian pulse, and
σn ≡ σ(|S21|2)/µ where σ(|S21|2) is the standard devia-
tion of |S21|2 in the same frequency range as µ. µ and
σn measure the amplitude and fluctuations of the trans-
mission spectrum |S21|2, respectively. We expect µ to
have a linear relationship with Vpp because Vpp = r(0),
r(t) = g(−t)∗h(−t)∗h(t) =

∫
G(−ω)e−iωt|S21|2dω, thus

setting t = 0 leads to Vpp ≈ cµ where c is a voltage
scaling factor.

Figures 4(a) and (b) plot µ and σn as a function of
pulse center frequency, together with the normalized Vpp,
and the focus ratio for a series of measured reconstruc-
tions performed at the corresponding center frequencies.
Figure 4 (a) is for the measured sona, and Fig.4 (b) for
the synthetic sona reconstructions. We find that µ and σn
predict the trend of Vpp and focus ratio, respectively, in
the physically measured sona method. The mean trans-
mission µ has a peak around 7 GHz because the antenna
is most efficient in that frequency range. For the syn-
thetic sonas µ has a high correlation with Vpp, although
Vpp has stronger fluctuations compared to the case of a
physically measured sona.

Since this sweep over center frequency is done in the
frequency domain as discussed in section II C, the calcu-
lated s(t), r(t) is almost noise-free. To see the influence
of noise on the reconstruction quality, we add Gaussian
random noise with 2 mV standard deviation, the typical
background noise in our time-domain experiment, to the
synthetic sonas and the reconstruction signals calculated
using the measured S21(ω). Fig.4 (c) and (d) show that
when noise is added, Vpp and focus ratio follow µ in both
the measured sona and synthetic sona cases. This is be-
cause the average power in the reconstruction signal is
mostly determined by the noise power, which is set to a
constant, and the focus ratio is now proportional to av-
erage power in the reconstructed Gaussian pulse, which
is proportional to Vpp. Hence µ becomes the only con-
trolling factor in this case.

In summary, knowledge of the mean value of trans-
mission between the transceiver and target ports is an
excellent predictor of reconstruction quality for both the
physically measured sona and the synthetic sona meth-
ods. The higher the mean of |S21|2 in the given band-
width of the pulse, the higher the quality of the recon-
struction.

C. Synthetic Sona Duration Constraint

The synthetic sona duration is limited first by the com-
putation cost and accumulation of error in the short orbit
calculation. Since the number of orbits increases expo-
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FIG. 4. Reconstruction quality (Vpp and focus ratio) and
|S21|2 statistics (µ and σn) measured in the 1/4-bowtie bil-
liard as a function of carrier frequency: (a) (b) when no noise
is added; (c) (d) when 2mV Gaussian random noise is added
to the sonas and reconstructions. (a) (c) use the physically
measured sona method, while (b) (d) use the synthetic sona
method. All quantities are plotted normalized to their maxi-
mum values.

nentially with orbit length, while the influence of each
orbit decreases exponentially due to loss, it is more effi-
cient to only calculate synthetic sonas with orbits within
a length limit, depending on the computational budget.
The ray-chaotic property of the billiard ensures that no
ray is trapped inside the cavity without eventually reach-
ing a port, but it also makes errors accumulate expo-
nentially, at a rate determined by the largest Lyapunov
exponent for the nonlinear map describing the ray tra-
jectories. Hence the later part of the synthetic sona may
contain more error than the earlier part.

To see the effects of accumulating errors, we create
variations of the bowtie cavity by adding inserts to alter
the scattering geometry of some of the walls. The dif-
ferences between the geometry information of the actual
inserts and the one assumed in the synthetic sona cal-
culation are larger than that of the empty bowtie case.
To determine the appropriate duration of the synthetic
sona, we apply a windowing function to the full synthetic
and measured sonas and plot the reconstruction quality
(normalized to its saturation value) versus the sona du-
ration in Fig.5. The windowing function has a 1.5 ns
Gaussian-shaped rise and fall, to avoid introducing higher
frequency components. For the measured sona method,
both Vpp and the focus ratio increase monotonically and
eventually saturate when a longer sona duration is uti-
lized. The saturation occurs when most of the sona signal
with significant amplitude is used for time-reversal. The
application of the windowing function is equivalent to
changing ∆T as discussed in section III A and this be-
havior agrees with the findings in Ref [48]. But for the
synthetic sona method, the focus ratio is highest when
the synthetic sona duration is around 4

√
A/c(=4.5 ns)

for the bowtie with inserts, where c is the speed of light.
This is because the shape of the inserts is known with less

certainty than that of the empty bowtie, so the accumu-
lation of error is more rapid. The later part of the syn-
thetic sona contributes more to the sidelobes rather than
to the reconstruction peak. The Vpp of synthetic sona re-
construction also saturates eventually when all synthetic
sona duration is utilized.

The synthetic sona duration is limited, but in order to
have a good reconstruction the synthetic sona should be
close to the 1/e amplitude decay time, τ . We have shown
in section III B that the duration of the earlier-in-time
sidelobe (prior to the reconstruction peak) is determined
by the synthetic sona duration, and the decay time of the
later-in-time sidelobe (after the peak) is determined by τ .
If the synthetic sona is significantly shorter than τ , then
the reconstruction will have a small focus ratio with large
sidelobes on the later side of the reconstruction, but very
little sidelobe on the earlier side, causing it to look more
like a sona signal rather than a reconstruction. For the
bowtie billiard, the synthetic sona length is 15 ns which
is close to τ = 14 ns, so it works well. But if we change
to a less well-coupled antenna or decrease the propaga-
tion loss such that the decay time τ is much longer, the
reconstruction quality drops significantly. This is con-
firmed with time-reversal experimental results from the
superconducting cut-circle cavity which has a very long
decay time τsc ≈ 153 ns in the superconducting state
and τnormal ≈ 50 ns in the normal state. The synthetic
sona reconstruction in the superconducting state resem-
bles a typical sona signal with a prominent sidelobe after
the peak, while in the normal state it has balanced side-
lobes, and thus better focus ratio. The focus ratio is 758
in the normal state with well-coupled antenna, 308 when
changed to a less well-coupled antenna, and 123 when it is
in the superconducting state with a less well-coupled an-
tenna. For comparison, the focus ratio of an ideal recon-
struction without sidelobe and noise in this experimental
setup, as defined in section III A, is T/6σt =3333.

IV. CONCLUSION

In this paper we have shown that focusing of elec-
tromagnetic waves at an arbitary location inside a ray-
chaotic billiard can be achieved by using time-reversed
synthetic sonas, calculated from the cavity geometry and
location of the wave input and focusing points. The fo-
cusing quality is quantified and is influenced by cavity
loss and port coupling. To achieve a high quality syn-
thetic sona reconstruction with the optimal focus ratio,
the billiard should be fairly lossy, and the synthetic sona
duration should be close to the 1/e sona amplitude decay
time, although it is limited by the computation cost and
accumulation of error. In many practical applications,
the systems are lossy (less reverberating), allowing for
the synthetic sona to potentially work well. If the recon-
struction amplitude or energy transfer is of more concern,
then lower loss and better-coupled antennas (large mean
transmission µ) are required.
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FIG. 5. Normalized reconstruction quality (normalized to its
saturation value) for the physically measured and synthetic
sona methods when a windowing function is applied to the
sona before being time reversed, so that only the beginning
part of the sona is used for the time backward step. The
peak-to-peak voltage of the reconstruction is shown in (a)
while the focus ratio is shown in (b). “MEA” and “SYN”
refer to the physically measured and synthetic sona methods,
respectively. “insert1” and “insert2” are two variations of the
bowtie cavity geometry when inserts are added, as shown in
the inset.
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