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The difference ∆F between free energies has applications in biology, chemistry, and pharmacology.
The value of ∆F can be estimated from experiments or simulations, via fluctuation theorems devel-
oped in statistical mechanics. Calculating the error in a (∆F )-estimate is difficult. Worse, atypical
trials dominate estimates. How many trials one should perform was estimated roughly in [Jarzyn-
ski, Phys. Rev. E 73, 046105 (2006)]. We enhance the approximation with information-theoretic
strategies: We quantify “dominance” with a tolerance parameter chosen by the experimenter or
simulator. We bound the number of trials one should expect to perform, using the order-∞ Rényi
entropy. The bound can be estimated if one implements the “good practice” of bidirectionality,
known to improve estimates of ∆F . Estimating ∆F from this number of trials leads to an error
that we bound approximately. Numerical experiments on a weakly interacting dilute classical gas
support our analytical calculations.

PACS numbers: 05.70.Ln, 05.40.-a, 05.70.Ce, 89.70.Cf

The numerical estimation of free-energy differences is
an active area of research, having applications to chem-
istry, microbiology, pharmacology, and other fields. Fluc-
tuation relations can be used to estimate equilibrium
free-energy differences ∆F from nonequilibrium exper-
imental and simulation data. One repeatedly measures
the amount W of work extracted from, or performed on,
a system during an experiment or simulation. Fluctua-
tion relations express the value of ∆F in terms of aver-
ages over infinitely many trials. Finitely many trials are
performed in practice, introducing errors into estimates
of ∆F . Efforts to quantify these errors, and to promote
“good practices” in estimating ∆F , have been initiated
(e.g., [1–12]).

How many trials should one perform to estimate ∆F
reliably? The work W extracted from a system is a ran-
dom variable that assumes different values in different
trials. Typical trials involve W -values that contribute
little to the averages being estimated. Dominant W -
values, which largely determine the averages, characterize
few trials [13]. Until observing a dominant W -value, one
cannot estimate ∆F with reasonable accuracy. The prob-
ability that some trial will involve a dominant W -value
determines the number N of trials one should expect to
perform.

A rough estimate of N was provided in [13]. In this
paper, we enhance the estimate’s precision. First, we
introduce fluctuation relations and one-shot information
theory, a mathematical toolkit for quantifying efficiencies
at small scales. Next, we quantify dominance in terms
of a tolerance parameter wδ. We bound the number Nδ
of trials expected to be required to observe a dominant
work value. This bound depends on the thermal order-∞
Rényi entropy Hβ

∞, a quantity inspired by one-shot infor-
mation theory [14]. The bound can be estimated during
an implementation of the “bidirectionality good practice”
recommended in [1]. Finally, we approximately bound

the error in a (∆F )-estimate inferred from Nδ trials. A
weakly interacting dilute classical gas [15] illustrates our
analytical results.

Technical introduction—Let us introduce nonequi-
librium fluctuation relations and the thermal order-∞
Rényi entropy Hβ

∞.
Nonequilibrium fluctuation relations—Nonequilibrium

fluctuation relations govern statistical mechanical sys-
tems arbitrarily far from equilibrium. Consider a sys-
tem in thermal equilibrium with a heat bath at inverse
temperature β ≡ 1

kBT
, wherein kB denotes Boltzmann’s

constant. We focus on classical systems for simplicity,
though fluctuation relations have been extended to quan-
tum systems [16]. Suppose that a time-dependent exter-
nal parameter λt determines the system’s Hamiltonian:
H = H(λt, z), wherein z denotes a phase-space point. If
the system consists of an ideal gas in a box, λt may denote
the height of the piston that caps the gas. Suppose that,
at time t = −τ , the system begins with the equilibrium
phase-space density e−βH(λ−τ ,z)/Z−τ , wherein the par-
tition function Z−τ normalizes the state. The external
parameter is then varied according to a predetermined
schedule λt, from t = −τ to t = τ . The system evolves
away from equilibrium if τ is finite. In the gas example,
the piston is lowered, compressing the gas. We call this
process the forward protocol.

The reverse protocol begins with the system at equi-
librium relative to H(λτ , z). The external parameter is
changed to λ−τ along the time-reverse of the path fol-
lowed during the forward protocol. In the gas example,
the piston is raised, and the gas expands.

Changing the external parameter requires or outputs
some amount of work. We use the following sign conven-
tion: The forward process tends to require an investment
of a positive amount W > 0 of work, and the reverse
process tends to output W > 0. The value of W varies
from trial to trial. After performing many trials, one
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can estimate the probability Pfwd(W ) that any particu-
lar forward trial will cost an amount W of work and the
probability Prev(−W ) that any particular reverse trial
will output an amount W .

These probabilities satisfy Crooks’ Theorem [17],

Pfwd(W )

Prev(−W )
= eβ(W−∆F ). (1)

Here, ∆F := Fτ − F−τ denotes the difference between
the free energy Fτ = −β−1 log(Zτ ) of the Gibbs distri-
bution e−βH(λτ ,z)/Zτ corresponding to the final Hamil-
tonian and the free energy F−τ = −β−1 log(Z−τ ) of the
Gibbs distribution corresponding to H(λ−τ , z). Multi-
plying each side of Crooks’ Theorem by Prev(−W )eβ∆F ,
then integrating over W , yields a version of the nonequi-
librium work relation [18]:

eβ∆F = 〈eβW 〉rev (2)

:=

∫ ∞
−∞

dW eβWPrev(−W ). (3)

The angle brackets denote an average over infinitely
many trials. To calculate ∆F , one performs many tri-
als, estimates the average, and substitutes into Eq. (2).

Thermal order-∞ Rényi entropy (Hβ
∞)—Entropies

quantify uncertainties in statistical mechanics and in in-
formation theory. Let P := {pi} denote a probability
distribution over a discrete random variable X. The
Shannon entropy HS(P ) := −

∑
i pi log(pi) quantifies an

average, over infinitely many trials, of the information
one gains upon learning the value assumed by X in one
trial [19].
HS has been generalized to a family of Rényi entropies

Hα. The parameter α ∈ [0,∞) is called the order. The
Hα’s quantify uncertainties related to finitely many tri-
als. In the limit as α→∞, Hα approaches

H∞(P ) = − log(pmax), (4)

wherein pmax denotes the greatest pi. This maximal en-
tropy has applications to randomness extraction: The ef-
ficiency with which finitely many copies of P can be con-

verted into a uniformly random distribution (
1

d
, . . . ,

1

d︸ ︷︷ ︸
d

)

is quantified with H∞(P ) [20].
The distributions Pfwd and Prev in Crooks’ Theorem

are continuous. Hence we need a continuous analog of
H∞. The definition

Hβ
∞(P ) := − log(pmax/β) (5)

has been shown to be useful in contexts that involve heat
baths [14]. pmax denotes the greatest value of the prob-
ability density P . pmax can diverge, e.g., if P represents
a Dirac delta function. But delta functions character-
ize the work distributions of quasistatic protocols, whose
work W = ∆F in every trial. We focus on more-realistic,

quick protocols. Pfwd and Prev are short and broad, so
pmax is finite.

The density pmax has dimensions of inverse energy,
which are canceled by the β in Eq. (5). Hence the loga-
rithm’s argument is dimensionless. For further discussion
about Hβ

∞, see [14].
Quantification of dominance—Let us return to the

nonequilibrium work relation (3). The exponential en-
larges already-high W -values, which dominate the in-
tegral. To estimate the integral accurately, one must
perform trials that output large amounts of work. Few
trials do; dominant W -values are atypical [13]. How
many trials should one expect to need to perform, to
achieve reasonable convergence of the exponential aver-
age in Eq. (3)?

An approximate answer was provided in [13]:

N ∼ eβ(〈W 〉fwd−∆F ), (6)

wherein 〈.〉fwd denotes an average with respect to
Pfwd(W ). The average dissipated work 〈W 〉fwd−∆F rep-
resents the mean amount of work wasted as heat. Switch-
ing λt quasistatically (infinitely slowly) would cost an
amount ∆F of work. Switching at a finite speed costs
more: Work is dissipated into the bath as heat when the
system is driven away from equilibrium. The dissipated
work W −∆F signifies the extra work paid to switch λt
in a finite amount of time.

How large must a W -value be to qualify as dominant?
This question remained open in [13]. We propose a defini-
tion inspired by information-theoretic protocols in which
an agent specifies an error tolerance. The experimenter
who switches λt, or the programmer who simulates trials,
chooses a threshold value of wδ used to lower-bound the
W -values considered large.

Definition 1. A work value W extracted from a reverse-
protocol trial is called wδ-dominant if W ≥ wδ for the
fixed value wδ chosen by the agent.

A similar quantity is defined in [3]. Lu and Kofke as-
sess the accuracy of free-energy-perturbation (FEP) cal-
culations. FEP is used to estimate free-energy differ-
ences ∆F . FEP results from a limit of nonequilibrium-
fluctuation theory [18]. In [3], a fixed-length simulation
is assumed to be performed. A difference u between po-
tential energies is measured. u, in FEP, plays the role of
W in nonequilibrium fluctuation relations. Lu and Kofke
denote by p(u) the probability that a fixed-length sim-
ulation yields the potential-energy difference u. Limit
energies u1 and u2 are defined as the extreme realizable
u-values.

Lu and Kofke fix the simulation length, then calculate
the most likely limit energy, u∗. In contrast, the agent
in the present work fixes a tolerance wδ. The number
Nδ of required trials (similar to the simulation length) is
then bounded. Lu and Kofke also use the mode of W ∗

to calculate the error in ∆F . The neglected-tail model
of [3] was extended from FEP to nonequilibrium fluctu-
ation relations in [6]. When calculating the error in ∆F ,
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Wu and Kofke average over possible values of the limit
energy W ∗. The framework in [3, 6] accommodates arbi-
trary W ∗-values. Yet statistical properties, such as the
mean and mode, are emphasized. That emphasis is com-
plemented by the present paper’s information-theory-
inspired choice of wδ by the agent. Additionally, the
choice wδ = 〈W 〉fwd −∆F of the dissipated work is ana-
lyzed below.

Definition 1 enables us to bound the number Nδ of
trials expected to be performed before one trial outputs
a wδ-dominant amount of work.

Bound on expected number Nδ of trials
required—Imagine implementing reverse trials until ex-
tracting a wδ-dominant amount of work from one trial.
One might have luck and extract W ≥ wδ on the first try.
But one would not expect to. One would expect the num-
ber of trials to equal the inverse 1/

∫∞
wδ
dWPrev(W ) of the

probability that any particular reverse trial will output
W ≥ wδ. In the notation of [14],

∫∞
wδ
dW Prev(W ) = 1−δ

(see Fig. 1):

Nδ =
1

1− δ
. (7)

Let us clarify what “expect to perform Nδ trials”
means. Imagine performing M sets of reverse trials. In
each set, one performs trials until extracting W ≥ wδ

from one trial. Let N i
δ denote the number of trials per-

formed during the ith set. Consider averaging N i
δ over

the M sets of trials: 1
M

∑M
i=1N

i
δ. As the number of sets

grows large, the average of the number of required trials
in a set approaches the “expected” value Nδ:

lim
M→∞

1

M

M∑
i=1

N i
δ = Nδ. (8)

This interpretation will facilitate our bounding of Nδ.

Theorem 1 (Bound on expected number of trials). The
number Nδ of reverse trials expected to be performed be-
fore one trial outputs a wδ-dominant amount W ≥ wδ of
work is bounded as

Nδ ≥ eβ(wδ−∆F )+Hβ∞(Pfwd). (9)

Proof. The inequality

wδ ≤ ∆F − 1

β
[Hβ
∞(Pfwd) + log(1− δ)] (10)

was derived in [14]. The derivation relies on the defini-
tions of 1− δ and Hβ

∞, on Crooks’ Theorem, and on the
bound Pfwd(W ) ≤ pmax ∀W . Solving for 1 − δ, then
inverting the probability [Eq. (7)], yields Ineq. (9).

Inequality (9) implies that the bound on Nδ increases
with wδ, which makes sense. As we raise the threshold
wδ, fewer work values qualify as wδ-dominant. Hence

FIG. 1: Dominant values of work extractable from
reverse-protocol trials: Large values W of work
contribute the most to the integral in the nonequilibrium
fluctuation relation (2). An amount W of extracted work is
called wδ-dominant if it is at least as great as the threshold
wδ specified by the experimenter: W ≥ wδ. The probability
that any particular reverse trial will output a wδ-dominant
amount of work is

∫∞
wδ
dW Prev(−W ) = 1− δ. This

probability equals the area of the region under the
distribution’s right-hand tail.

more trials are expected to be required before a wδ-
dominant work value is observed.

Improvement over Relation (6)—Inequality (9) resem-
bles its inspiration, Relation (6), which states that the
number N of trials required to achieve convergence of
the average in Eq. (3) increases exponentially with the
average dissipated work 〈W 〉fwd − ∆F . Similarly, the
bound on Nδ increases exponentially with the “one-shot
dissipated work” wδ−∆F . This wδ−∆F represents the
work sacrificed for time in a forward trial that costs an
amount wδ of work.

Moreover, Nδ is defined in terms of the reverse process.
Yet the bound on Nδ given by Ineq. (9) depends on the
forward work distribution, via Hβ

∞(Pfwd). Similarly, in
Relation (6), the number N of repetitions of the reverse
process required for the convergence of Eq. (3) depends
on the forward work distribution Pfwd(W ), via 〈W 〉fwd.

Despite its similarity to Relation (6), Ineq. (9) offers
three advantages. First, Ineq. (9) quantifies dominance
with δ, reflecting the agent’s accuracy tolerance. Next,
Relation (6) is a rough estimate. Inequality (9) is a strict
bound on the number of trials expected to be performed
before a wδ-dominant amount of work is extracted. Fi-
nally, Ineq. (9) contains an entropy that has no analog in
Relation (6). The entropy tightens the bound when

pmax < β. (11)

This inequality is satisfied, for instance, in RNA-hairpin
experiments used to test fluctuation theorems [21].

To appreciate these advantages over Relation (6), we
can define wδ-dominant work values by choosing wδ =
〈W 〉fwd, as in [13]. The bound becomes

Nδ ≥ eβ(〈W 〉fwd−∆F )+Hβ∞(Pfwd). (12)
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When pmax < β (such that Hβ
∞ > 1), the number of trials

required for Eq. (3) to converge exceeds the prediction in
Relation (6).

We can gain further insight by rewriting Ineq. (9) as

Nδ ≥
β

pmax
eβ(〈W 〉fwd−∆F ), (13)

using the definition of Hβ
∞ [Eq. (5)]. The fraction

β/pmax represents approximately the number of forward
trials performed before one trial’s W -value falls within a
width-(kBT ) window about the most probable work value
Wmax: W ∈ [Wmax − kBT

2 ,Wmax + kBT
2 ]. The value of

β/pmax generically increases with the width of the dis-
tribution Pfwd(W ). Hence the bound on Nδ, as written
in Ineq. (13), is a product of two factors. The first de-
pends on the forward work distribution’s width; and the
second, on its mean. In contrast, Relation (6) depends
only on the mean.

The area under distributions’ tails is evoked also in [6].
Wu and Kofke use their neglected tail model to estimate
the bias in ∆F .

Classical vs. quantum applications—Classical mechan-
ics describes most experiments and numerical simulations
for which Nδ needs calculating. Nonetheless, quantum
experiments merit consideration.

We have assumed that the work distributions Pfwd(W )
and Prev(−W ) are continuous. Classical systems have
continuous work distributions: A classical system’s pos-
sible energies form a continuous set. So do the differ-
ences between possible energy values—the possible work
values. Continuousness leads to Ineq. (10), from which
Theorem 1 is derived. How to extend Ineq. (10) to dis-
crete sets of possible work values is unclear.

Quasiclassical systems can have continuous work dis-
tributions. By quasiclassical, we mean systems whose
energies form a discrete set but whose states (density
operators) commute with the Hamiltonian. Consider a
quasiclassical system that exchanges heat with a bath
throughout the work extraction. The system always oc-
cupies an energy eigenstate if the energy is measured
frequently [14, 22]. The work performance lowers the
system’s energy levels. Suppose that two levels fall at
different rates. The system can hop from level to level
at any time. Hopping at time t can output infinitesi-
mally more work than hopping at time t+ dt [14]. Such
quasiclassical systems obey Theorem 1.

Discrete work distributions characterize quantum sys-
tems that undergo the two-time-measurement proto-
col [23, 24]. A quantum system undergoes an energy
measurement, is isolated from the bath, performs work
unitarily, and suffers another energy measurement. The
differences between the possible measurement outcomes
form a discrete set. Extending Theorem 1 to such proto-
cols could merit investigation. One might incorporate
the bin width of the histograms used to approximate
Pfwd(W ) and Prev(−W ). On the other hand, bin widths
are artificial approximation tools, chosen by the experi-
menter. One might prefer a theory independent of such

an approximation [14]. Extensions may be galvanized by
the evolution of quantum experiments to a point that
requires Nδ estimations.

Fail safety—Fail safety is a property of certain esti-
mates calculated from incomplete data. The bound on
Nδ depends on the free-energy difference ∆F . ∆F is es-
timated from forward-trial data. Finitely many forward
trials are performed. Hence the ∆F estimate is biased.
This bias skews one’s estimate of the Nδ bound. Sup-
pose that the estimate lay above the true value of Nδ.
The Nδ-bound estimate would lead the agent to perform
enough trials to estimate ∆F with reasonable accuracy.
The Nδ-bound estimate would be fail-safe [8, 9]. Fail
safety is often desirable. Surprisingly, a lack of fail safety
benefits Theorem 1, because Ineq. (9) lower-bounds Nδ.

The bias in the ∆F estimate lowers estimates of the
Nδ bound below the bound’s true value: The nonequilib-
rium fluctuation relation can be expressed as e−β∆F =
〈e−βW 〉fwd [18]. Solving for ∆F yields

∆F = − 1

β
log〈e−βW 〉fwd. (14)

Forward trials tend to cost large amounts of work: Typi-
cal W -values are high. High W -values lower the estimate
of 〈e−βW 〉fwd below the average’s true value. This low es-
timate raises the ∆F estimate above the true ∆F value,
by Eq. (14). This overestimate of ∆F lowers the esti-
mate of the Nδ bound below the bound’s true value, by
Ineq. (9).

In summary, Ineq. (9) lower-bounds Nδ. Estimat-
ing this lower-bound with biased data generates an even
lower bound on Nδ:

Nδ ≥ (True lower bound) ≥ (Estimated lower bound).
(15)

This second lower-bounding renders Theorem 1 robust
against the bias in the ∆F estimate.

This robustness precludes fail-safety. Suppose that the
protocol were fail-safe. The estimate of the Nδ bound
would lie above the true bound:

Nδ ≥ (True lower bound) ≤ (Estimated lower bound).
(16)

One’s estimate of the lower bound on Nδ would not nec-
essarily lower-bound Nδ. An experimentalist could not
use Theorem 1. The theorem benefits, unusually, from a
lack of fail-safety.

Evaluating the Nδ bound—Not only does Ineq. (9)
have a theoretically satisfying form, but it can also be
estimated in practice. We will discuss how to estimate
the Hβ

∞(Pfwd) and the ∆F in the bound. The bound can
be estimated reasonably, we argue, from not too many
trials.

The experimental set-up determines β, and the agent
chooses wδ. Hβ

∞(Pfwd) and ∆F can be estimated if one
implements the “good practice” of bidirectionality. To
mitigate errors in (∆F )-estimates, one should perform



5

FIG. 2: Dominant values of work invested in
forward-protocol trials: Small values W of work
dominate the nonequilibrium work relation (17). An amount
W of invested work is called W ε-dominant if it lies below or
on the threshold W ε chosen by the experimenter: W ≤W ε.
The probability that any particular forward trial will require
a W ε-dominant amount of work is
1− ε =

∫Wε

−∞ dW Pfwd(W ). This probability equals the area
under the distribution’s left-hand tail.

forward trials, perform reverse trials, and combine all the
data [1]. Upon performing several forward trials, one can
estimate Hβ

∞(Pfwd) and ∆F . One can estimate the Nδ
bound, then perform (probably at least Nδ) reverse trials
until observing a wδ-dominant work value, and improve
the (∆F )-estimate.1

Hβ
∞ depends on pmax, the greatest probability (per unit

energy) of any possible forward-trial outcome. This out-
come will likely appear in many trials. Hence one expects
to estimate Hβ

∞ well from finitely many forward trials.
Forward-protocol bound—Trials or computations

performed in one direction can cost more time than trials
or computations performed in the opposite direction [3].
We have bounded a number Nδ of reverse trials. Simi-
larly, we should bound the number Nε of forward trials
expected to be performed before a W ε-dominant amount
of work is invested. The analysis is analogous to that of
Nδ.

The nonequilibrium work relation for the forward pro-
cess is

〈e−βW 〉fwd = e−β∆F . (17)

The forward trials that dominate the average in Eq. (17)
cost unusually small amounts of work. In the notation

1 Nδ can be estimated from reverse trials alone, less reliably. One
could perform a few reverse trials, estimate Prev(−W ), and es-
timate ∆F . From these estimates and from Crooks’ Theorem,
one could estimate Pfwd(W ). From Pfwd(W ), one could estimate

Hβ
∞(Pfwd), then estimate the Nδ bound. One could repeat this

process, improving one’s estimate of the bound, until observing
a wδ-dominant work value. But the estimate of ∆F is expected
to jump repeatedly [13]. This sawtooth behavior, as well as the
piling of estimate upon estimate, may taint the estimates of the
bound.

of [14], W ε-dominant work values satisfy W ≤W ε, for a
tolerance W ε chosen by the agent. Each forward trial has
a probability 1− ε of costing a W ε-dominant amount of
work (see Fig. 2). Theorem 4 of [14] bounds W ε in terms
of 1 − ε. Solving for 1 − ε, then inverting, bounds the
number Nε = 1/(1 − ε) of forward trials expected to be
performed before any trial costs a W ε-dominant amount
of work:

Nε ≥ e−β(W ε−∆F )+Hβ∞(Prev). (18)

Error estimate: Calculating the error in a (∆F )-
estimate is crucial but difficult. Whenever one infers a
value from data, the inference’s reliability must be re-
ported. Common error analyses do not suit estimates of
(∆F )-values, for two reasons. First, ∆F depends on the
random variable W logarithmically [see Eq. (2)]. Second,
W tends not to be Gaussian. Approaches such as an un-
controlled approximation, in the form of a truncation of
a series expansion, have been proposed [1]. Our approach
centers on the agent’s choice of wδ.

Consider choosing a wδ-value and performing Nδ tri-
als. With what accuracy can one estimate ∆F? We will
bound the percent error

ε :=

∣∣∣∣∆F − (∆F )est

∆F

∣∣∣∣ (19)

roughly. To render the problem tractable, we assume
that one knows the exact form of Prev(−W ) for all W ≤
wδ.

This assumption features also in the neglected-tail
model of [3, 4, 6]. The percent error in e−β∆F is calcu-
lated, with free-energy perturbation theory (FEP), in [3].
This percent error, if small, approximates the absolute er-
ror ∆F − (∆F )est in the free-energy difference [4]. Bias
calculations are extended from FEP to nonequilibrium
work fluctuation relations in [6].

Theorem 2 (Approximate error bound). Let the work
tolerance be wδ ∈ (−∞,∞). Let (∆F )est denote the esti-
mate of the free-energy difference ∆F inferred from data
taken during Nδ trials. If (∆F )est is calculated from the
exact form of Prev(−W ) ∀W ≤ wδ, the estimate has a
percent error of

ε ≥ 1

β(∆F )

[
η +O(η2)

]
, (20)

wherein

η :=
eβw

δ

Nδ〈eβW 〉rev
. (21)

Proof. Let us solve the nonequilibrium work relation (2)
for ∆F :

∆F =
1

β
log
(
〈eβW 〉rev

)
(22)

=
1

β
log

(∫ ∞
−∞

dW eβWPrev(−W )

)
. (23)
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The estimate has a similar form:

(∆F )est =
1

β
log

(∫ wδ

−∞
dW eβWPrev(−W )

)
(24)

=
1

β
log

(∫ ∞
−∞

dW eβWPrev(−W )

−
∫ ∞
wδ

dW eβWPrev(−W )

)
. (25)

We replace the first integral with 〈eβW 〉rev, using
Eq. (22). The second term, representing the error, is
expected to be much smaller than the first term. This
second term will serve as a small parameter in a Taylor
expansion:

(∆F )est =
1

β

[
log
(
〈eβW 〉rev

)
+ log

(
1−

∫∞
wδ
dW eβWPrev(−W )

〈eβW 〉rev

)]
(26)

= ∆F − 1

β

{
η′ +O( [η′]2 )

}
, (27)

wherein

η′ :=

∫∞
wδ
dW eβWPrev(−W )

〈eβW 〉rev
. (28)

We can bound the numerator, using Fig. 1:∫ ∞
wδ
dW eβWPrev(−W ) (29)

≥ eβw
δ

∫ ∞
wδ

dW Prev(−W ) (30)

= eβw
δ

(1− δ) =
eβw

δ

Nδ
. (31)

Substituting into Eq. (28) yields η′ ≥ η. Hence Eq. (27)
reduces to

(∆F )est ≤ ∆F − 1

β

[
η +O( η2 )

]
. (32)

Substituting into the percent error’s definition [Eq. (19)]
yields Ineq. (20).

The approximate error bound can be estimated from
agent-chosen parameters and from data: The experi-
ment’s set-up determines the value of β. The agent
chooses the value of wδ. For Nδ, one can substitute
the number of trials performed [or can substitute from
Ineq. (9)]. ∆F and 〈eβW 〉rev can be estimated from data.

Numerical experiments—To illustrate our analyt-
ical results, we considered the weakly interacting dilute
classical gas. This system’s forward and reverse work dis-
tributions can be calculated exactly [15]. The gas begins
in equilibrium with a heat bath at inverse temperature

FIG. 3: Probability densities and numerical data for
a weakly interacting dilute gas: (Color online.) We
considered a gas undergoing compression (a forward
protocol) and expansion (a reverse protocol). The
probability per unit energy that any particular trial will
involve an amount W of work [Eq. (33)] was calculated
in [15]. The short, right-hand, brown curve represents
Pfwd(W ). The tall, left-hand, dark-blue curve represents
Prev(−W ). By sampling work values from these
distributions, we effectively simulated each protocol 105

times. The cyan bars (under the left-hand curve) depict the
data gathered from the forward-protocol samples. The
orange bars (under the right-hand curve) depict the data
from the reverse-protocol samples.

β ≡ 1
kBT

. During the forward protocol, the gas is iso-
lated from the bath at t = −τ . The gas is quasistatically
compressed, its temperature rising from T . During the
reverse protocol, the gas expands and cools. When dis-
cussing either direction, we denote the initial volume by
V0 and the final volume by V1.

The probability densities over the possible work values
were calculated in [15]:

P (W ) =
β

|α|Γ(k)

(
βW

α

)k−1

e−βW/α θ(αW ). (33)

During the forward protocol, α := (V0/V1)2/3 − 1 > 0;
during the reverse, α < 0. The gamma function is de-
noted by Γ(k); and its argument, by k := 3

2n, wherein
n denotes the number of particles. The theta function
θ(αW ) ensures that W ≥ 0 is invested in forward trials
(for which P = Pfwd); and W ≤ 0, in reverse trials (for
which P = Prev).

This model illustrates accuracies also in [10]. Kofke
synthesizes theoretical results about ∆F estimates. Rel-
evant results include the neglected-tail model [6]. Nu-
merical experiments on the gas illustrate those results.

We sampled 105 values of W from the forward (com-
pression) work distribution and 105 values from the re-
verse (expansion) work distribution. Figure 3 shows the
probability densities and the sampled data. We chose
V0/V1 = 2 and n = 6, following [15], and β = 10. Divid-
ing a histogram of the forward-protocol data into 50 bins
yielded pmax = 1.577. Satisfying Ineq. (11), this pmax

enables Hβ
∞(Pfwd) to tighten the Nδ bound.
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FIG. 4: Three number-of-required-trial measures:
(Color online.) The abscissa shows possible choices of the
threshold wδ for wδ-dominant work values. The blue (gently
sloping) curve, calculated from 105 forward-trial samples,
represents the bound on the number Nδ of reverse trials
expected to be performed before any trial outputs a
wδ-dominant amount W ≥ wδ of work (Theorem 1). The
red (staggered) curve, calculated from 105 reverse-trial
samples, depicts the actual number Ntrue of trials performed
before W ≥ wδ is extracted. The green curve (flat, nearly
coincident with the abscissa) was calculated from
forward-trial samples. This green curve represents
Relation (6): an estimate Nest of the number of trials
required to extract a dominant amount of work, wherein the
meaning of “dominant” is unspecified. The blue (gently
sloping) curve follows the red (staggered) curve’s shape more
faithfully than the green (flat) does, illustrating the precision
of Theorem 1. As expected, the blue (gently sloping) curve
lower-bounds the red (staggered) at most wδ-values.

Figure 4 illustrates our results. Possible values of wδ

appear along the abscissa. The blue(gently sloping) curve
shows the Nδ bound, calculated from forward-trial sam-
ples, in Theorem 1. The red (staggered) curve, calculated
from reverse-trial samples, shows after how many reverse
trials (Ntrue) W ≥ wδ was extracted during one trial.
Ntrue has a jagged, step-like shape, as one might expect.

The green curve (flat) lies close to the abscissa. This
curve depicts the estimate, in [13], of the number of re-
verse trials expected to be performed before one trial out-
puts a dominant work value, for an unspecified meaning
of “dominant.” We calculated Nest = 3 by simulating
forward trials, calculating the average dissipated work,
and substituting into Relation (6).

The curves’ shapes and locations illustrate the Nδ
bound’s advantages. The bound (the blue, gently slop-
ing curve) hugs the actual number Ntrue of trials re-
quired (the red, staggered curve) more closely than Nest

(the green, flat curve) does. Nest remains flat, whereas
the Nδ bound rises as Ntrue rises. The Nδ bound of-
ten lower-bounds Ntrue, as expected. When wδ is small,
the Nδ bound weaves above and below Ntrue, as shown
in Fig. 5. The reason was explained above Theorem 1:

Nδ denotes the number of trials expected, in a sense de-
fined by probability and frequency, to be required. One
might get lucky and extract W ≥ wδ before performing
Nδ trials. The dropping of the Ntrue curve below the Nδ

FIG. 5: Three number-of-required-trial measures at
low threshold work values wδ: (Color online.) At most
threshold values wδ, the Nδ bound (blue, gently sloping)
lower-bounds the actual number Ntrue (red, staggered) of
reverse trials performed before any trial outputs a
wδ-dominant amount W ≥ wδ of work. At low wδ-values,
the red curve zigzags across the blue(gently sloping). This
zigzagging stems from the technical definition of Nδ.

bound represents such luck. But one expects to perform
Nδ trials, and the Nδ bound lower-bounds Ntrue for most
wδ-values.

Conclusions—We have sharpened predictions about
the number of experimental trials required to estimate
∆F from fluctuation relations. We improved the approx-
imation in [13] to an inequality, tightened the bound (in
scenarios of interest) with an entropy Hβ

∞, freed the ex-
perimenter to choose a tolerance wδ for dominance, and
approximately bounded the error in an estimate of ∆F .
How to choose wδ merits further investigation. We wish
to be able to specify the greatest error ε acceptable in
an estimate of ∆F . From ε, we wish to infer the number
N ε of trials we should expect to perform. This entire
investigation improves the rigor with which free-energy
differences ∆F can be estimated from experimental and
numerical-simulation data.
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applications, in International Symposium on Informa-
tion Theory, 2004. ISIT 2004. Proceedings., pp. 232–232,
IEEE, 2004.

[21] D. Collin et al., Nature 437, 231 (2005).
[22] H. T. Quan and H. Dong, arXiv e-print (2008),

0812.4955.
[23] H. Tasaki, eprint arXiv:cond-mat/0009244 (2000), cond-

mat/0009244.
[24] J. Kurchan, eprint arXiv:cond-mat/0007360 (2000),

cond-mat/0007360.


	GreenNumber of trials required to estimate a free-energy difference,  using fluctuation relations
	Abstract
	References


