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ABSTRACT 
 

Statistical mechanical modeling is developed to describe a catalytic conversion 
reaction A → Bc or Bt with concentration-dependent selectivity of the products, Bc or Bt, 
where reaction occurs inside catalytic particles traversed by narrow linear nanopores. 
The associated restricted diffusive transport, which in the extreme case is described by 
single-file diffusion, naturally induces strong concentration gradients. Furthermore, by 
comparing Kinetic Monte Carlo simulation results with analytic treatments, selectivity is 
shown to be impacted by strong spatial correlations also induced by restricted diffusivity 
in the presence of reaction, and also by a subtle clustering of reactants, A.  
 
PACS Numbers: 82.20.Wt, 82.75.Qt, 05.40.-a, 82.40.Qt 
 
 
1. INTRODUCTION 
 

Molecular-level non-equilibrium statistical mechanical modeling has the potential 
to provide a reliable description of cooperative catalytic reaction-diffusion phenomena 
where traditional mean-field (MF) treatments of chemical kinetics are inadequate [1,2]. 
The focus of this paper is on providing such a treatment of catalytic systems with two 
distinctive features. The first involves solution-phase first-order A → B conversion 
reactions occurring in catalytically-functionalized particles traversed by narrow linear 
nanopores which result in restricted diffusive transport [3-11]. The extreme case of 
restricted transport, on which we place some emphasis here, is single-file diffusion 
(SFD) [12-14] wherein reactant and product species cannot pass each other within the 
linear nanopores. Then, the interplay between reaction and SFD produces rapidly 
varying concentration profiles near the pore openings (where the reactant is supplied 
from the surrounding fluid), and strong spatial correlations in reactant locations. The 
latter are neglected in MF treatments. The second phenomenon involves reactions with 
concentration-dependent selectivity, and specifically stereoselectivity where the product 
B can have distinct cis (Bc) and trans (Bt) forms [15]. Here, the selection of the Bc or Bt 
product is controlled by the concentration of the reactant, A. More precisely, in a 
molecular-level picture, the rate for conversion of A to Bc or Bt depends on the number 
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and local arrangement of other nearby A species.  This, in turn, means that the 
selectivity, i.e., the relative yield of each of these products, depends on spatial 
correlations in the reactant distribution.  

Characteristic indicators of SFD in catalytic mesoporous systems were observed 
long ago for certain classes of zeolites with uncoupled narrow linear pores [16,17]. It 
should however also be noted that in samples with linear dimensions of 10’s of microns, 
these uncoupled pores may not traverse the entire sample [18]. A primary motivation for 
our study is catalytic processes in functionalized mesoporous silica nanoparticles (MSN) 
with diameters of around 100-200 nm where hexagonal arrays of parallel uncoupled 
linear nanopores do traverse the entire nanoparticle [19]. While synthesis with a range 
of pore diameters is possible, the broadest of which certainly allows uninhibited 
transport, recent studies for narrow pores did reveal behavior indicative of SFD [2,20].   

There has been extensive characterization of spatial correlations of 
thermodynamic origin associated with inter-molecular interactions in equilibrium 
systems. However, understanding of spatial correlations of kinetic origin in the non-
equilibrium steady states of reaction-diffusion systems is limited [1,2]. Nonetheless, it is 
precisely the characterization of such non-equilibrium correlations which is required for 
reliable prediction of selectivity and other features of concentration-dependent 
stereoselective reactions in nanoporous systems. Given the fundamental nature of this 
challenge, it is addressed here with somewhat simplified statistical mechanical models, 
as described in detail below. We note that over the last two decades a substantial body 
of modeling based on such models has been developed for conversion reactions in 
nanoporous systems (usually zeolites) with simple concentration-independent first-order 
kinetics [3-11]. One can straightforwardly extend this type of modeling to incorporate 
cooperative concentration-dependent kinetics, but it will prove a significant challenge to 
provide a reliable analytic treatment. 

Our focus is on such simplified and generic modeling. However, here we first 
provide some brief comments for broader background and motivation regarding the type 
of systems falling into the above class, and also on theoretical methodologies with the 
potential to provide a first-principles characterization of reaction kinetics. With regard 
concentration-dependent selectivity, homogeneous catalytic desymmetrization of 
diallylamines to give diastereomers (using a Zr-centered catalyst) exhibits a quite strong 
variation with reactant concentration of cis to trans selectivity [15]. Specifically, the yield 
of trans relative to cis product increases with reactant concentration. These studies are 
part of a broader analysis of stereoselectivity in Zr catalyzed reactions [15,21]. To 
develop a heterogeneous version of this process, one might anticipate functionalizing 
the interior pore surfaces of MSN with an appropriate Zr-centered catalytic group. The 
effective diameter of the pores after functionalization can be reduced to the range of d ~ 
1-2 nm where passing of molecular species within the pore can be strongly inhibited. 
While such functionalization remains a significant challenge, substantial progress has 
been made recently [22]. 

Next, we remark that electronic structure analysis could provide a detailed 
theoretical assessment of the origin and nature of concentration-dependent selectivity. 
More specifically, such analysis should ideally elucidate variations in reaction barriers 
and possibly also pathways with the local environment of the reacting “substrate” 
molecule A. This is a significant challenge even for homogeneous catalytic systems, but 
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one might anticipate that the basic features are preserved for heterogeneous catalytic 
analogues. Given the typical complexity and size of the catalytic group, and the 
requirement to incorporate multiple reactant molecules, it is natural to utilize 
computationally less expensive Density Functional Theory (DFT) to facilitate such an 
analysis rather than higher-level quantum chemistry approaches. Indeed, this type of 
analysis has been performed for systems similar to that described above and has 
demonstrated that certain barriers can indeed be lowered by increasing the number of 
reactant molecules [23]. Current analysis has not included solvent effects, but this could 
be done explicitly or using implicit solvent approaches such as COSMO [24] or PCM 
[25]. It is also appropriate to note that once geometries along the reaction path have 
been determined by DFT, higher-level analyses such as MP2 and CCSD can be 
implemented utilizing those geometries to assess corrections to the energetics. In one 
case, the MP2 calculations yielded similar energetics to the DFT analysis [23]. 

Returning to statistical mechanical modeling, we briefly review an effective 
strategy utilized in previous studies to describe solution-phase catalytic conversion 
reactions with restricted transport within catalytically functionalized linear nanopores. 
Direct Molecular or Langevin dynamics simulation [26-28] is not viable to describe the 
overall reaction-diffusion process on the appropriate time-scale (i.e., reactants entering, 
diffusing within, reacting, and products diffusing within and being extruded from the 
pore, with dynamics generally mediated by the presence of a solvent). Thus, instead 
spatially-discrete coarse-grained stochastic modeling is typically implemented [3-11]. In 
this approach, each pore is divided into a linear array of cells each with width a ~ 1 nm 
comparable to that of the reactant and product species. Then, solvent-mediated 
diffusion is described by hopping to adjacent empty cells. Refinements can be made to 
relax the SFD constraint. Adsorption and desorption from the pore are reflected in 
appropriate boundary conditions at the pore openings. A conversion reaction will be 
analyzed here with rates which reflect the local environment of the cell where reaction is 
occurring. The behavior of the stochastic one-dimensional lattice-gas model is precisely 
assessed by Kinetic Monte Carlo (KMC) simulation [2]. However, for a deeper 
understanding, one can develop exact master equations for the model. Although these 
cannot be solved exactly, and standard mean-field type treatments are inadequate, 
effective analytic treatments such as a Generalized Hydrodynamic (GH) approximation 
[10] might be developed to elucidate behavior. 

In Sec.2, we develop a spatially-discrete stochastic model for catalytic 
conversion A → Bc or Bt in nanopores with restricted transport, present the exact 
evolution equations, and also comment on an effective analytic treatment of diffusion. 
Sec.3 provides a characterization of the key spatial correlations in the steady-state of 
the non-equilibrium reaction-diffusion system, focusing on the reactant distribution and 
elucidating the strong correlations which impact the diffusion fluxes. In Sec.4, we 
present an analysis of model behavior, specifically describing non-trivial concentration 
profiles in the steady-state and elucidating the key features impacting the selectivity. 
Conclusions are provided in Sec.5. 
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2. MODEL SPECIFICATION AND EVOLUTION EQUATIONS 
 
2A. SPECIFICATION OF THE SPATIALLY DISCRETE STOCHASTIC MODEL 

Spatially-discrete modeling describes catalytically functionalized nanoporous 
particles, such as MSN, by an ensemble of linear pores each consisting of a 1D array of 
L cells, labelled n = 1 – L, each of width a ~ 1 nm [3-11]. In our treatment, all cells are 
regarded as catalytically active. It is convenient to consider these 1D arrays as being 
extended to a 3D array of cells in the exterior fluid surrounding the catalytic particles as 
this facilitates specification of adsorption and desorption processes at the pore ends. 
The exterior fluid supplies reactant, A, to the pores, and we consider here only the initial 
stage of the reaction where a negligible fraction of the reactant in the external fluid has 
been converted to product. We consider the conversion reaction A → Bc or Bt occurring 
exclusively inside the pores, as indicated above, and let E denote empty cells. It will 
also be useful to let B = Bc + Bt denote either product, X = A + B denote any type of 
species, and Z = B + E denote cells not populated by A. Also if C = A, Bc, or Bt, then we 
will let C′ denote other molecular species, e.g., if C = A then C′ = B.  

The probability that site n is occupied by some species C, corresponding to a 
concentration at site n, is denoted by <Cn>, where 0 ≤ <Cn> ≤ 1. Similarly, the pair 
probability that site n is occupied by C and n+1 by D is denoted by <Cn Dn+1>, etc. The 
“well-stirred” exterior fluid has a large volume compared to the intra-pore region. For the 
initial stages of the reaction under consideration, we specify that a fixed fraction, <A0> = 
<X0> of cells in the exterior fluid are randomly populated by reactant A. Thus, the 
fraction of exterior empty cells is given by <E0> = 1 - <X0>. As an aside, one can regard 
efficient stirring of the exterior fluid as corresponding to very rapid hopping of A between 
adjacent exterior cells.  

The key ingredients of our stochastic model for the catalytic reaction-diffusion 
process, shown schematically in Fig.1, are as follows: 
   (i) Reactants A “adsorb” at rate h from the fluid cell just outside the pore to empty end 
cells n = 1 and n = L. Thus, the overall rate to adsorb, e.g., at the left end of the pore is 
h<A0><E1> accounting for the feature there is no correlation between the occupancy of 
the exterior and interior cells. 
   (ii) Reactants A hop at rate h to nearest-neighbor (NN) empty cells within the pore. 
   (iii) Reactants A convert to products Bc or Bt with rates depending on the local 
environment, specifically the state of the neighboring cells, as prescribed below.  
   (iv) Both types of product also hop at rate h to NN empty sites within the pore. 
   (v) Reactants and products “desorb” by hopping from end cells at rate h to NN empty 
cells in the surrounding fluid. Thus, e.g., the overall rate for A to desorb from the left end 
of the pore is h<A1><E0>. 
   (vi) One can relax the SFD constraint implicit in the above prescription of hopping by 
simply allowing exchange of adjacent (NN) species within the pore with rate Pex h. Of 
key impact is exchange of reactants and products. Selecting Pex = 0 recovers SFD (for 
narrow pores), and setting Pex = 1 corresponds to uninhibited passing (for wide pores).  

It is appropriate to note that since we focus on the initial stage of the reaction, the 
extruded product is extremely diluted in the well-stirred fluid and does not readasorb. 
Also, we remark that the assignment of equal hop rates is natural for cis and trans 
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products, and this is also reasonable for reactants for the type of reaction mentioned in 
Sec.1 which motivates this study.   
 

 
 
Fig.1. Schematic of spatially-discrete stochastic reaction model for concentration-
dependent conversion reaction A → Bc or Bt in catalytically functionalized linear 
nanopores described by a 1D array of cells.  
 

Our primary aim of incorporating concentration-dependent selectivity, or more 
precisely environment-dependent selectivity, is achieved by specifying that the rate for 
conversion of A at cell n depends on the state of neighboring cells as follows 
 
An-1 An An+1 →  An-1 Bt

n An+1 at rate k,        (1a) 
 
An-1 An Zn+1 →  An-1 Bc

n Zn+1 or An-1 Bt
n Zn+1 at rate k/2,     (1b) 

 
Zn-1 An An+1 →  Zn-1 Bc

n An+1 or Zn-1 Bt
n An+1 at rate k/2,     (1c) 

 
and Zn-1 An Zn+1 →  Zn-1 Bc

n Zn+1 at rate k,      (1d) 
 
where again Z means not A. Using exact “conservation of probability” relations, the 
above prescription implies that the rate of loss by reaction of A at site n equals Rn(A) =  
-k<An>. Likewise, the rates of gain by reaction of specific products at site n are given by 
 
Rn(Bt) = ½ k (<An An+1> + <An-1 An>) and Rn(Bc) = ½ k (<An Zn+1> + <Zn-1 An>), (2) 
 
where Rn(Bc) can be rewritten using <An Zn+1> = <An> - <An An+1>, etc. Clearly, the 
overall gain of products satisfies Rn(B) = Rn(Bc) + Rn(Bt) = -Rn(A).  

This model has the following special features. Ignoring the distinction between Bc 
and Bt, the model reduces exactly to a simple concentration-independent conversion 
model A → B with rate k for all cells. Thus, the concentration profile for A (which decays 
quickly into the pore), and all spatial correlations in the location of A species in the full A 
→ Bc or Bt model, are determined by this simpler A → B model. If one does not 
distinguish A and B, then the model reduces to a simple non-reactive diffusion model for 
a single species X. Thus, the steady-state corresponds to a random distribution of X in 
cells within the pore with uniform concentration, <Xn> = <X0>. A corollary of this 
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observation is that empty cells are also distributed randomly in the steady-state with 
uniform concentration <En> = 1 - <X0> = <E0>. 

Finally, we note that the above modeling can be refined or extended in various 
ways. For example, the SFD constraint could instead be relaxed by modeling pores as 
consisting of multiple parallel rows of cells [2] (rather than by including place exchange 
for pores with a single row of cells). Also, rather than just considering the initial stages 
of reaction where a negligible fraction of reactant in the fluid is converted to product, 
one can also assess reactivity for various degrees, f, of conversion of reactant to 
products. Here, one exploits an assumed separation-of-time-scales feature that a quasi-
steady-state within pores will be quickly achieved for each f relative to the time scale for 
conversion of most reactant to product in the fluid. Thus, from an analysis of reactivity 
for a series of f-values, one can piece together overall reaction kinetics [11]. 
 
2B. KMC SIMULATION AND MASTER EQUATION ANALYSIS 

Precise analysis of model behavior will be achieved by Kinetic Monte Carlo 
(KMC) simulations, some details of which are described in Appendix A. However, 
potentially deeper insight comes from an analytic treatment based on exact evolution 
equations for the A → Bc or Bt model which can be written in compact form 
 
d/dt <Cn> = Rn(C) - ∇n JC(n>n+1),   for 1 < n < L with C = A, Bc, or Bt.  (3) 
 
Here ∇n Kn = Kn – Kn-1 denotes a discrete gradient, and the net diffusion flux, JC(n>n+1), 
of C from cell n to cell n+1 satisfies [10] 
 
JC(n>n+1) = h(<Cn En+1> - <En Cn+1>) + Pex h(<Cn C′n+1> - <C′n Cn+1>).  (4) 
 
Separate equations are needed for end cells which reflect the feature that the cell just 
outside the pore is randomly populated by A with probability <X0>. Thus, pair 
probabilities involving the end cell and the adjacent exterior cell factorize as a product of 
single-cell probabilities, e.g., d/dt <A1> = R1(A) - JA(1>2) + h(<A0><E1> - <E0><A1>).  
All these equations couple single-cell probabilities to pair probabilities. One can develop 
separate equations for pair probabilities [2], e.g., 
 
d/dt <An An+1> =  -2k<An An+1>  

 
- h(<An An+1 En+2> - <An En+1 An+2>) + h(<An-1 En An+1> - <En-1 An An+1>) 
 

   - Pex h(<An An+1 A′n+2> - <An A′n+1 An+2>) + Pex h(<An-1 A′n An+1> - <A′n-1 An An+1>), (5) 
  
for 1 < n < L-1 which couple to triplet probabilities. Continuing to develop equations for 
triplets, etc., generates a hierarchy of evolution equations. 

The simplest mean-field (MF) treatment completely neglects spatial correlations 
by factorizing all multi-cell probabilities as products of single-cell quantities. However, 
for the A→B conversion reaction, this MF treatment has been shown to greatly 
overestimate the magnitude of the diffusion flux terms, JC(n>n+1), for SFD, and thus 
overestimates reactant penetration into the pore and reactivity in the steady-state for k 
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<< 1 [9,10]. This is perhaps not surprising as it is well-recognized that there are strong 
back correlations in hop sequences associated with SFD [14]. Of course, the MF 
treatment also neglects correlations determining <An An+1> pair probabilities which will 
be important for accurate description of reaction kinetics.  The pair approximation sets   
<Cn Dn+1 Fn+2> ≈ <Cn Dn+1><Dn+1 Fn+2>/<Dn+1> attempting to account for spatial 
correlations, and requires simultaneous analysis of equations for both single-cell and 
pair probabilities. This yields somewhat improved results, but still significantly 
overestimates fluxes for k << 1, as do higher-order triplet, etc., approximations [10].   

The deficiency of MF type approximations in describing diffusion fluxes has been 
remedied by implementing a Generalized Hydrodynamic (GH) treatment [10] of diffusion 
for the relevant counter-diffusion modes [29] where the total concentration <Xn> = <X0> 
is constant. Here, we start with a hydrodynamic expression for diffusion fluxes 
JC(n>n+1) = - Dtr ∇n <Cn+1> which is applicable for counter diffusion and involves a 
tracer diffusion coefficient, Dtr [2,10,29-31]. Then, we replace the hydrodynamic Dtr, 
which equals zero for SFD in an infinite pore, by a GH form Dtr(n,n+1) = h Ftr(n,n+1). 
This GH form has a finite value O(1/L) in the pore center, and is enhanced near the 
pore openings [10]. Then, the diffusion flux is given in this GH formulation by 
 
JC(n>n+1) ≈ - h Ftr(n,n+1)  ∇n <Cn+1>.       (6) 
 
As described in detail elsewhere [2,10,29], Ftr(n,n+1) are determined either from the 
form of concentration profiles for a counter-permeation setup, or by suitable analysis of 
tagged particle diffusion with various starting locations. Illustrative values for Ftr(n, n+1) 
will be given below. This analysis produces a diffusion flux which is far smaller in 
magnitude than the MF prediction for SFD.  Additional perspective on this feature 
comes from the observation that the MF value of Ftr is given by 
 
Ftr(MF) = <E0> + Pex <X0>.         (7) 
 
See Appendix B. For SFD with Pex = 0, we will find that Ftr(n, n+1) is well below Ftr(MF) 
= <E0>. We discuss further the implications of the success of the GH treatment in Sec.3.  

The regime where spatial correlations are strongest and where analytic treatment 
most challenging is for Pex = 0 (SFD) with higher values of <X0> and k << 1. Higher 
<X0> amplifies the constraints of SFD, and k << 1 produces substantial reactant 
penetration to the pore so the form of the concentration profile impacted strongly by 
SFD. Thus, our discussion will particularly emphasize the case Pex = 0, <X0> = 0.8, and 
k = 0.001, choosing a pore length L = 100. Spatial correlations are reduced upon 
allowing exchange or reducing <X0>, so any treatment which is effective for Pex = 0 and 
high <X0> will be even more accurate for Pex > 0 and lower <X0>. We will also consider 
behavior for <X0> = 0.2 and Pex = 0.25 confirming this feature. Likewise, for larger k, 
significant reactant concentration is limited to near pore openings where correlations are 
weaker, and thus lower-level approximations are more effective [2]. 

Our most successful analytic treatment, described as an “extended GH” or eGH 
approach, will incorporate a GH treatment of diffusion fluxes with a tailored treatment of 
spatial correlations in the pair quantities, <An An+1>, which control the reaction kinetics 
Rn(C). See Sec. 3 for details of the latter. 
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3. SPATIAL CORRELATIONS IN THE REACTIVE STEADY-STATE 
 
3A. CORRELATIONS RELATED TO DIFFUSION FLUXES 

The dramatic failure of the MF treatment of diffusion fluxes for SFD, which is 
reflected in the inequality Ftr(n, n+1)  << Ftr(MF) = <E0>, implies strong spatial 
correlations between the location of cells which are empty and those which are 
populated by reactants, A, within the pore. This behavior is quantified by the GH 
formulation (6) which shows that 
 
<An En+1> - <En An+1> ≈ Ftr(n,n+1)(<An> - <An+1>) << <Eo>(<An> - <An+1>),  (8) 
 
where these quantities are positive near the left end of the pore, and where illustrative 
values for Ftr(n, n+1) are given in Table I.  Thus, as is shown in Fig.2 for SFD with <X0> 
= 0.8 and k = 0.001, <An En+1> and <En An+1> are much closer to each other than the MF 
predictions. (The large difference between the MF estimates reflects a strong variation 
in <An> near the pore opening, noting that <En> = <E0> is constant.) The similarity of 
<An En+1> and <En An+1> is readily understood as a consequence of the restricted 
dynamics associated with SFD. Consider the pair probability <An En+1>. Since cell n+1 is 
empty, A on cell n can readily hop to cell n+1 and will then quite likely hop back to cell n 
(which is guaranteed to be empty immediately after A hopping). This results in a “near-
equalization” of the probabilities <An En+1> and <En An+1>.  This idea naturally extends to 
triplets <An En+1 En+2>, <En An+1 En+2>, and <En En+1 An+2> which are much closer to each 
other than the MF values, and also extends to associated quartets, quintets, etc.  

The GH formulation only quantifies the difference between the pair probabilities 
as indicated in (8). However, it will be useful to also have reliable estimates of the 
individual probabilities <An En+1> and <En An+1>. To this end, we introduce an extended 
GH or eGH approximation as follows. First, we note the anticipated inequality 
 
<An><E0> = <An><En+1>  >  <An En+1>  > <En An+1> > <En><An+1> = <E0><An+1>, (9) 
 
for the left end of the pore (smaller n) which is confirmed by the results in Fig.2. One 
approach to assess <An En+1> and <En An+1> accounts for a “strong asymmetry” in the 
behavior of these quantities relative to MF predictions in that both are much closer to 
<En><An+1> than to <An><En+1> for SFD with high <X0> (or low <E0>) [32]. In the 
notation of the inset to Fig.2, this suggests setting Δn+1 = 0 which immediately yields a 
fully asymmetric eGH formulation eGH(f) 
 
<An En+1>eGH(f) = <E0><An+1> + Ftr(n,n+1)(<An> - <An+1>), and    (10a) 
 
<En An+1>eGH(f) = <E0><An+1>.        (10b) 
 
A less extreme but still asymmetric eGH formulation, eGH(a), anticipates weaker 
asymmetry upon relaxing the SFD constraint or for lower <X0>. We have confirmed this 
trend (not shown). In this case, we assume that deviations of pair probabilities from the 
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MF results are proportional to the relevant A concentration, i.e., one assumes that Δn ∝ 
<An> and Δn+1 ∝ <An+1> (cf. Fig.2). This formulation yields 
 
<An En+1>eGH(a) = 2<An><An+1><E0>/(<An> + <An+1>)  
 

+ Ftr(n,n+1)<An>(<An> - <An+1>)/(<An> + <An+1>), and   (11a) 
           

<En An+1>eGH(a) = 2<An><An+1><E0>/(<An> + <An+1>) 
 

 - Ftr(n,n+1)<An+1>(<An> - <An+1>)/(<An> + <An+1>).   (11b) 
 
We note that for our application, results using (10) or (11), or even an alternative 
symmetric eGH formulation, eGH(s), where Δn = Δn+1 [33], are all much closer to precise 
model behavior determined by KMC simulation that the MF approximation. 
 

 
 
Fig.2. KMC results for behavior of <An En+1> and <En An+1> (solid curves) relative to their 
MF approximations (dashed curves) versus n near the left end of a pore with L = 100, 
<X0> = 0.8 (so <E0> = 0.2), k/h = 0.001, and Pex = 0 (SFD). Since <En> = <E0>, both MF 
approximations are determined solely by the variation of <An> with n (as reflected in the 
“staircase” construction connecting dashed curves). 
 
3B. CORRELATIONS IMPACTING REACTION KINETICS 

Next, we discuss analysis of the pair probabilities, <An An+1>, which is necessary 
to describe the reaction kinetics, Rn(C), in the evolution equations (3). The simplest 
treatment of reaction kinetics would simply apply a MF approximation <An An+1> ≈       
<An ><An+1>. A simple hybrid approach might combine this MF treatment of reaction 
kinetics with a GH treatment of diffusion fluxes. A more refined approach would involve 



10 
 

analysis of the evolution equations (5) for <An An+1>. This, in turn, requires analysis of 
the associated pair diffusion terms which involve quantities like <An An+1 En+2>,                 
<An En+1 An+2>, and <En An+1 An+2>. The same argument as used above for pair 
probabilities, and as quantified in (8), suggests that these quantities will be much closer 
to each other than their MF estimates. Not only is this correct, but more sophisticated 
factorization approximations also fail to capture the key differences in these quantities. 
The reason for failure of such higher-order approximations is briefly discussed in 
Appendix C. Another relevant observation is that unlike the conventional diffusion flux 
terms appearing in the evolution equation for <An>, one cannot readily adapt a 
hydrodynamic transport theory to reliably treat the unconventional pair diffusion flux 
terms appearing in the evolution equation for <An An+1>. We will find that various 
treatments of the reaction kinetics of the above type produce qualitatively reasonable, 
but not quantitatively predictive results. Thus, we are motivated find an alternative 
strategy to assess <An An+1>. 

In fact, we resort to direct estimation of correlations associated with <An An+1> 
allowing treatment of reaction kinetics without analysis of the additional evolution 
equations for this quantity. To motivate our treatment, first we show KMC simulation 
results in Fig.3 for SFD with L = 100, <X0> = 0.8 and k = 0.001 for fn =                        
<An An+1>/(<An><An+1>), and also for gn = <An Bn+1>/(<An><Bn+1>), versus n, where 
deviations from unity reflect the strength of the spatial correlations. It is clear that values 
of fn > 1 reflect clustering of A’s which becomes particularly strong for increasing n. We 
emphasize that this clustering feature will significantly impact selectivity in reaction 
kinetics. In contrast, gn < 1 values reflect anti-clustering which is rather weak for 
intermediate n, and becomes negligible for both large and small n [34]. 
 

 
 
Fig.3. KMC results for fn = <An An+1>/(<An><An+1>), gn = <An Bn+1>/(<An><Bn+1>), versus 
n near the left end of a pore with L = 100, <X0> = 0.8, k/h = 0.001, and Pex = 0 (SFD). 
Deviations from unity reflect the strength of the associated NN spatial correlation. 
 

The origin of the strong clustering of the A’s deeper in the pore is somewhat 
subtle, so further discussion of this feature is appropriate (as well as of the weaker 
correlations between A’s and B’s). The rare event where A penetrates deep into the 
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pore without reaction might be associated with density fluctuations near the pore 
openings, lower densities facilitating such transport. Clearly, if such a fluctuation 
facilitates transport of one A deep into the pore, it also facilitates transport of nearby 
pairs or larger groups of A. This feature explains the observed clustering of A’s. 
However, this clustering is even more subtle in the sense the probability for a site n to 
be populated by A is enhanced not just by knowledge that site n+1 is populated by A 
(and more so if both n+1 and n+2 are populated by A), but it is also enhanced if it is 
known that site n+2 is populated by A and n+1 by B. For further discussion, see 
Appendix C. With regard to A-B correlations, most A deep in the pore will be isolated 
from each other and surrounded by a significant population of B’s. There is no 
mechanism to induce significant positional correlations between these species.  

The above observations suggest the possibility of estimation of <An An+1> in the 
left half of the pore by using the following exact relation <An> = <An An+1> + <An Bn+1> + 
<An En+1>, and then neglecting correlations in <An Bn+1>, and also using (10a) or (11a) 
or alternative eGH expressions for <An En+1>. Specifically, we set 
 
<An An+1> ≈ <An> - <An><Bn+1> - <An En+1>eGH.      (12) 
 
Then <An An+1> in the right half of the pore is determined from the above results using 
symmetry about the pore center. In Table II, we show corresponding results for fn =   
<An An+1>/(<An><An+1>) for high concentration <X0> = 0.8 obtained from various eGH 
formulations. For SFD (Pex = 0), all eGH formulations capture the strong increase in fn 
with increasing n, as determined precisely from KMC simulation. The fully asymmetric 
eGH formulation eGH(f), is most successful in capturing behavior up to n = 10. All 
formulations eventually increase more quickly than precise behavior, actually with 
eGH(f) deviating most. However, we find that it is primarily behavior for n ≤ 10 which 
controls the reactive steady-state, i.e., behavior deeper in the pore is not so relevant. 
From this perspective, eGH(f) is the most successful formulation as anticipated for SFD 
with high <X0>. For Pex = 0.25, correlations are far weaker, so any formulation gives 
reasonable results. As anticipated, eGH(a) performs slightly better than eGH(f). In 
Sec.4, we shall see that (12) allows successful analytic treatment of behavior in the 
reactive steady-state.  
 Finally, we have also analyzed behavior of fn for <X0> = 0.2 (not shown). For 
SFD (Pex = 0), again fn increases smoothly now from f1 = 1.003 for n=1 to f15 = 1.421 for 
n= 15 as determined from KMC simulation (a much slower increase than for <X0> = 
0.8). In this case the eGH(a) predictions varying from f0 = 1.012 to f15 = 1.498 match 
better precise KMC results than eGH(f) predictions varying from f0 = 1.024 to f15 = 
1.948. For Pex = 0.25, spatial correlations are very weak and again eGH(a) is very 
effective. 
 
4. RESULTS FOR CONCENTRATION-DEPENDENT SELECTIVITY: A → Bc OR Bt 
 

First, we present results for the steady-state concentration profiles for single-file 
diffusion (SFD with Pex = 0) where spatial correlations are strongest, and effective 
analytic treatment is most difficult. Precise KMC simulation results in Fig.5 for L = 100 
and <X0> = 0.8 show that that <An> ≈ 0 in the center of the pore, and that the <Bc

n> and 
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<Bt
n> profiles exhibit plateaus with non-trivial values subject to the constraint <Bc

n> + 
<Bt

n> ≈ <X0>. This plateau behavior is somewhat less clear for L = 100 with significantly 
lower <X0> = 0.2, but would become quite clear for this <X0> in longer pores. Since Bt is 
preferentially created in regions with higher A concentration, one might have expected a 
bimodal profile for <Bt

n> (rather than a plateau) with peaks near the pore openings. 
Correspondingly, the profile for <Bc

n> would then be peaked in the pore center (since 
Bc

n> + <Bt
n> ≈ <X0>). While such transient behavior is found in starting with an initially 

empty pore (see Appendix E), it cannot be sustained in the steady-state. The reason is 
simply that in the pore interior with no significant A population, concentration gradients 
in Bc and Bt are eventually eliminated by small but non-zero diffusion fluxes, JC(n>n+1) 
≈ - h Ftr(n,n+1) ∇n<Cn+1> with C = Bt and Bc. 
 

 
 
Fig.5. Steady-state concentration profiles for SFD with L = 100 and k/h = 0.001: (a) 
<X0> = 0.2; (b) <X0> = 0.8. Comparison of precise behavior obtained from KMC 
simulation (solid curves) with poor MF predictions (dotted curves) and two successful 
eGH formulations (dashed curves). 
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We also show the predictions of the standard MF approximation and of our eGH 
formulations (using the GH approximation for diffusion fluxes, and (10a) or (11a) for   
<An An+1>). The standard MF approximation fails completely to capture concentration 
profile behavior. In contrast, the eGH formulations are particularly effective in capturing 
behavior even including the heights of the plateaus for individual Bc and Bt 
concentrations. More specifically, the eGH(f) formulation works especially well for higher 
<X0> and the eGH(a) formulation for lower <X0>, as anticipated previously. To highlight 
the success of the eGH formulations, we emphasize that prediction of the values of the 
individual plateau concentrations is particularly delicate. We have explored various 
other “hybrid” treatments which use the GH approximation for diffusion fluxes, but either 
a MF treatment of reaction kinetics, or using other factorization approximations to treat 
pair diffusion fluxes. These produce qualitatively reasonable forms for concentration 
profiles, but do not have the quantitative predictivity of our eGH formulations. See 
Appendix D.  

Next, we more briefly describe behavior when the SFD constraint is relaxed by 
selecting Pex = 0.25. Here, enhanced diffusion means greater reactant penetration into 
the pore, so longer pore lengths than L = 100 are needed to display a clear plateau in 
the pore center. Results for concentrations when L = 100 shown in Fig.6 reveal that MF 
predictions (dotted curves) are significantly closer to precise behavior determined from 
KMC simulations (solid curves) than for SFD, although still not quantitatively precise. In 
contrast, predictions of our eGH formulations are effectively indistinguishable on these 
plots from the precise behavior. 
 

 
 
Fig.6. Steady-state concentration profiles with exchange, Pex = 0.25, for L = 100 and k/h 
= 0.001: (a) <X0> = 0.2; (b) <X0> = 0.8. Comparison of precise behavior obtained from 
KMC simulation (solid curves) with poor MF predictions (dotted curves). eGH 
formulations are effectively indistinguishable from precise behavior. 
 

Perhaps more significant than prediction of concentration profiles is the 
assessment of selectivity, i.e., determination of the relative yields of products Bc versus 
Bt. KMC simulation allows precise determination of the entire conversion rate profiles, 
Rn(Bc) and Rn(Bt), versus n. See Fig.7 for results for SFD with L = 100, k = 0.001, and 
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<X0> = 0.8. Also shown are the results from a MF treatment, and from our analytic 
eGH(a) and eGH(f) treatments. The total conversion rates, Rtot(Bc,t) = ∑n Rn(Bc,t), 
determine the selectivity through the ratio ℜ = Rtot(Bt)/Rtot(Bc). Analysis of behavior in 
Fig.7 for SFD reveals that for <X0> = 0.8, one has ℜ = 1.56 from precise KMC analysis 
versus our best analytic eGH(f) estimate of ℜ = 1.40, and the poor MF estimate of ℜ = 
0.64. For SFD with <X0> = 0.2, one has ℜ = 0.171 from KMC analysis versus our best 
eGH(a) estimate of ℜ = 0.181, and the poorer MF estimate of ℜ = 0.135. A more 
comprehensive comparison of KMC results with various analytic treatments are 
provided in Table III. As might be anticipated, eGH formulations reasonably recover 
precise behavior, but the MF treatment is inadequate particularly for higher <X0>. 
Results are also given in Table III including exchange (Pex = 0.25), where even the MF 
estimate is reasonable.  
 

 
 
Fig.7 Rescaled local production rates: (a) Rn(Bc)/k and (b) Rn(Bt)/k versus n near the left 
end of a pore with L = 100, k =0.001, <X0> = 0.8 (high concentration), and Pex = 0 
(SFD). Precise results from KMC (solid curves) are well described by our eGH 
formulations (dashed curves), but not by the MF approximation (dotted curves). 
 

It is appropriate to provide further insight into the influence on selectivity of 
restricted diffusion (and particularly SFD), which impacts reactant concentration profiles, 
and of spatial correlations in the form of reactant clustering which impacts reaction 
kinetics. To this end, it is instructive to examine the value of ℜ determined by other 
simple treatments. In a further spatially coarse-grained description, one regards position 
in the pore as described by a continuous variable x = na and the reactant concentration 
profile as a function of this continuous variable <A(x)> = <An>. In a MF treatment of 
reaction kinetics [factorizing expressions (2) for rates and coarse-graining], one has that  
 
Rtot(Bt) ≈ k ∫dx <A(x)>2 and Rtot(Bc) = k ∫dx <A(x)>(1-<A(x)>).    (13) 

 
One can further show that for a MF treatment of diffusion, concentration profiles have 
exponential variation near the ends of a long pore so that <A(x)> ≈ <X0> exp[-(x/Lp)] 
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near the left end of the pore where Lp denotes a penetration depth [7-9]. Then, 
evaluation of integrals in (13) yields 
 
ℜ(MF) ≈ <X0>/(2 - <X0>),          (14) 
 
so the maximum ℜ(MF) ≈ 1 occurs for <X0> = 1. For SFD with high <X0> = 0.8, this 
yields ℜ(MF) = 2/3 ≈ 0.67, far below the value above precise value of 1.56. (For SFD 
with <X0> = 0.2, one finds ℜ(MF) = 1/9 ≈ 0.11 also well below the precise value of 0.17.) 

Next, we consider a hybrid treatment retaining MF reaction kinetics, but utilizing a 
GH formulation to account for the effect of SFD on the reactant concentration profile. If 
the GH tracer diffusion coefficient decays like Ftr ~ x-p into the pore, then it has been 
shown that <A(x)> ≈ <X0> exp[-(x/Lp)q] where q = (2+p)/2 where we discuss the 
appropriate values of p > 0 and q > 1 below [2,10]. Note that MF behavior corresponds 
to p = 0 and q = 1. Evaluation of integrals in (13) now yields  
 
ℜ(hybrid MF) = <X0>/(21/q - <X0>).       (15) 
 
For SFD with high <X0> = 0.8, behavior is well described by the choice p = 2 and thus q 
= 2 [2,10], which yields ℜ(hybrid MF) ≈ 1.30 much closer to the precise value of 1.56 
than the pure MF estimate for q = 1. However, a more appropriate hybrid MF treatment, 
based on discrete evolution equations using a GH formulation for diffusion fluxes and 
MF treatment of reaction kinetics, obtains ℜ ≈ 1.19 not so close to the precise value. 
(For SFD with <X0> = 0.2, one finds an effective p ≈ 1 corresponding to q ≈ 3/2 [2,10]. 
This yields ℜ(hybrid MF) ≈ 0.14 improving over the simple MF estimate, but still below 
the precise value of 0.17.) 

We conclude that deviations from a MF exponential reactant concentration profile 
are important in determining selectivity, but also clustering of reactants has a significant 
impact, particularly in producing higher ℜ-values for SFD with high <X0>. 
 
5. CONCLUSIONS 
 

There is extensive interest within the statistical physics community in cooperative 
reaction-diffusion phenomena where traditional MF treatments of chemical kinetics and 
transport are inadequate [1,2]. Catalytic reactions in nanoporous materials with 
restrictive diffusive transport provide such an example where spatial correlations of 
kinetic origin invalidate MF assumptions. The additional feature of cooperative reaction 
kinetics, such as concentration- or environment-dependent selectivity considered here, 
constitutes an additional complication in the understanding and prediction of behavior. 
While, KMC simulation of such reaction-diffusion models can reliably characterize such 
behavior, we show that for the system of interest here, an analytic formulation can be 
developed which provides deeper insight into the nature and role of subtle non-
equilibrium spatial correlations in determining reaction behavior. 
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APPENDIX A: KMC SIMULATION ALGORITHMS 
 
 The basic principle of KMC simulation is to implement various processes 
(adsorption, desorption, diffusion, reaction) in the stochastic reaction-diffusion model 
with probabilities proportional to their physical rates. We first describe a rejection (rej) 
algorithm which is simpler to implement, but includes a fraction of failed attempts thus 
its reducing efficiency. One assigns a total rate rt = k + 6h for all types of processes at 
each cell in the pore (reaction plus hopping left or right of each of three types of 
species). The total rate, Rt(rej), for the system is rt times the number of sites (taken as 
L+2 since we must consider sites just outside the pore to treat adsorption). At each 
KMC step, simulation randomly picks sites and processes and attempts to implement 
(reaction is only implemented with probability k/rt if the selected cell has an A; hopping 
right of Bc is only implemented with probability h/rt if the selected cell has a Bc and the 
cell to the right is empty; etc.). The simulation is run for ~1011 KMC steps to be certain 
the steady-state is reached, and then simulation data is collected for an additional 
~2x1011 KMC steps.  
 A Bortz-type rejection-free (rf) algorithm maintains lists of the sets of particles 
which can be involved in each type of process (all nA A’s in the pore can react; the set of 
nAr A’s with empty right NN cells which can hop right; etc.) The list must be updated 
after each simulation step which requires extensive book-keeping. Then, the total rate of 
processes for the system is Rt(rf)  = nA k + nAr h +…. Now, one picks a type of process 
with probability proportional to its rate, i.e., nA k/Rt(rf), for reaction of A, picks a particle 
from the relevant list and implements the process for that particle. (For reaction, one 
would also have to select the product based on the local environment.) The simulation 
is run for ~109 KMC steps to equilibrate, and then data is collected for an additional 
~1010 KMC steps. 
 For our primarily focus on steady-state behavior, tracking of physical time in the 
simulation is not relevant. However, for studies of transient behavior (cf. Appendix D), 
time is incremented by Δt = -ln(w)/Rt at each Monte Carlo step where w is a random 
number uniformly distributed on [0,1].  
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APPENDIX B: MF ANALYSIS OF TRACER DIFFUSIVITY 
 

It is possible to somewhat unconventionally assess tracer diffusivity, either at the 
MF-level or for higher-level approximations, from behavior of the concentration profiles 
in the steady-state of our reaction-diffusion model [2,9]. This strategy exploits the 
feature noted Sec.2 that the steady-state corresponds to a counter diffusion mode 
where diffusion fluxes are proportional to the tracer diffusion coefficient in a 
hydrodynamic formulation.  Here, it suffices to take equations (3) and (4) for C = A and 
apply MF factorization. After substantial simplification, this equation reduces to 
 
0 = d/dt <An> = -k<An> + (<E0> + Pex <X0>)h ∇2<An>,     (A1) 
 
where ∇2<An> = <An+1> - 2<An> + <An-1> represents a discrete Laplacian. Since the 
coefficient in front of ∇2<An> corresponds to Dtr, we obtain Ftr(MF) = <E0> + Pex <X0>. 
 
APPENDIX C: ANALYSIS OF MULTI-SITE CONFIGURATIONAL PROBABILITIES 
 

The form of the “pair diffusion terms” in (5) motivates consideration and 
comparison of <An An+1 En+2>, <An En+1 An+2>, and <En An+1 An+2>. The same argument as 
used for <An En+1> and <En An+1> in Sec.3 suggests that these triplet probabilities will be 
much closer than their MF values for SFD especially with high <X0>. This feature, which 
is confirmed in Fig.8 for SFD with <X0> = 0.8 and k = 0.001, complicates the 
requirement of accurately describing differences in these quantities which constitute pair 
diffusion terms. Setting <An An+1 En+2>-<An En+1 An+2> ≈ <An>(<An+1 En+2>-<En+1><An+2>) 
would enable use of the GH approximation for the difference of pair probabilities. 
However, this crude factorization, denoted by (c) below, is not reliable. Also, as shown 
in the inset to Fig.8, a standard pair approximation, denoted (pa) below, reliably 
describes <An An+1 En+2> and <En An+1 An+2> in terms of pair quantities, but not            
<An En+1 An+2>. Thus, the pair approximation will fail to describe key differences in these 
quantities. The failure of the pair approximation for the quantity <An En+1 An+2>, and the 
failure of higher-order approximations for analogous probabilities involving four or more 
cells, is further elucidated by the conditional concentration analysis below. 

Spatial correlations in the reactant distribution can be further elucidated by 
considering conditional reactant probabilities or concentrations <An |Cn+1 Dn+2 …> =                       
<An Cn+1 Dn+2 …>/<Cn+1 Dn+2 …> describing the probability that site n is occupied by A 
given that site n+1 is occupied by C, site n+2 is occupied by D, etc.  In the absence of 
spatial correlations, one has that <An |Cn+1 Dn+2 …> = <An>. Results are shown in Fig.9 
for SFD with <X0> = 0.8 and k = 0.001 for a substantial set of conditional reactant 
concentrations with one or two conditioning sites. These fall into distinct groups with 
values either above or below <An>.  

All of <An |An+1>, <An |An+1 An+2>, <An |An+1 En+2>, <An |En+1 An+2>, <An |An+1 Bn+2> 
and <An |Bn+1 An+2> exceed <An>, i.e., conditional reactant concentrations given one or 
more nearby A exceed <An>. We also expect this feature to apply for conditional 
concentrations with more than two specified cells. This feature indicates a subtle type of 
clustering corresponding to enhanced probabilities (relative to MF values) for 
configurations with an A on site n and one or more other A’s on sites n+1 and n+2. The 
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explanation of this behavior extends that used to rationalize the inequality <An |An+1> > 
<An> in Sec.3. A density fluctuation near the pore opening reducing the density could 
facilitate diffusion of A and also of clusters of A deeper into the pore. Then, it follows 
that <An |An+1>, <An |An+1 Bn+2>, <An |En+1 An+2>, etc., exceed <An>. It is perhaps less 
clear why <An |Bn+1 An+2> > <An>, but consider a triple of A’s diffusing deep into the pore 
(aided by a density fluctuation) where the central A reacts to convert to B. This scenario 
can lead to formation of An Bn+1 An+2 configurations.  
 

 
 
Fig.8. Comparison of <An An+1 En+2>, <An En+1 An+2 >, and <En An+1 An+2> versus n 
determined precisely from KMC simulation and MF approximations near the left end of a 
pore for L = 100, <X0> = 0.8, k/h = 0.001, and Pex = 0 (SFD). 
 

 
 
Fig.9. Comparison of various conditional reactant concentrations versus n determined 
precisely from KMC simulation for L = 100, <X0> = 0.8, k/h = 0.001, and Pex = 0 (SFD). 
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Next, we note that both <An |En+1> and <An |En+1 En+2> are below <An>. These 
results are equivalent to the inequalities <An En+1> < <An><En+1> and <An En+1 En+2> < 
<An><En+1 En+2> = <An><En+1><En+2> (the latter equality following since empty cells are 
randomly distributed). These inequalities have been explained at the beginning of 
Sec.3, where we note that values of <An En+1> and <En An+1> are close, as are those of 
<An En+1 En+2>, <En An+1 En+2>, and <En En+1 An+2> (due to the facile diffusion of A 
between the indicated pair or triple of sites). Our resulting understanding of the 
contrasting behavior of <An |En+1> < <An> and of <An |En+1 An+2> > <An> explains the 
failure of the standard pair approximation to treat <An En+1 An+2> and thus to treat pair 
diffusion fluxes in the evolution equation for <An An+1> (cf. Sec.3). 

Finally, we note that all of <An |Bn+1>, <An |Bn+1 Bn+2>, <An |Bn+1 En+2>, and         
<An |En+1 Bn+2> are also below <An>, but also that these quantities approach <An> for 
large n where the associated correlations are diminished deeper in the pore.  
 
APPENDIX D: HYBRID APPROXIMATIONS 
 

We have seen that a standard MF approximation applied to treat both diffusion 
fluxes and reaction kinetics fails dramatically to describe reactant penetration into the 
pore for small Pex and small k [10]. However, a GH formulation of diffusion fluxes yields 
reliable description of the reactant concentration profile. Thus, it remains only to treat 
the reaction kinetics in order to describe behavior of the A → Bc or Bt conversion 
reaction.  Here, we first consider the simplest hybrid formulation, MF(H), using a GH 
treatment of diffusion fluxes and a MF treatment of reaction kinetics (i.e., ignoring 
spatial correlations in the reactant distribution). MF(H) results for steady-state 
concentration profiles shown in Fig.10 for SFD with <X0> = 0.8 qualitatively reproduce 
KMC simulation behavior. However, predictions for plateau concentrations of Bc and Bt 
differ significantly from the precise values, in contrast our eGH formulation accounting 
for reactant clustering. As noted in Table III, one obtains ℜ = 1.19 for MF(H) versus  ℜ = 
1.40 for eGH(f) versus the precise value of ℜ = 1.56 from KMC simulation.  

We have implemented other hybrid formulations which retain the GH treatment of 
diffusion flux in the equations for single-cell concentrations, but apply various 
factorization approximations to the pair diffusion fluxes in the evolution equations for 
<An An+1>. We have applied a crude factorization (c), e.g., <An An+1 En+2>-<An En+1 An+2> 
≈ <An>(<An+1 En+2>-<En+1><An+2>), and then used the GH treatment of the second 
factor. Fig.10 also reveals that for SFD with <X0> = 0.8, predictions of this approach (c) 
while qualitatively reasonable actually give a poorer estimate of plateau concentrations 
even than the hybrid MF approach. As another alternative denoted (pa), we have 
implemented a standard pair factorization for the pair diffusion terms and then used the 
eGH approximation to describe <An En+1> and <En+1 An> terms. Recall that we know 
from Appendix B that the pair approximation is inadequate for <AnEn+1An+2>. This 
approach predicts concentration profiles very similar to the MF(H) prediction for SFD 
with <X0> = 0.8, and thus again deviating significantly from precise results in contrast to 
our eGH approach. See Fig.10. 
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Fig.10 Comparison of various hybrid approximations, including MF(H) and a crude 
factorization of pair diffusion terms (c) and a pair factorization (pa) with precise behavior 
(KMC) and our eGH(f) treatment for L = 100, <X0> = 0.8, k/h = 0.001, and Pex = 0 
(SFD). 
 
APPENDIX E: TRANSIENT BEHAVIOR WITH AN INITIALLY EMPTY PORE 
 

We have performed simulations to characterize evolution of concentration 
profiles starting with an initially empty pore for L = 100, <X0> = 0.8, and k/h = 0.001. See 
Fig.11. The key features are as follows. The quasi-steady-state reactant profile 
develops relatively quickly on the times-scale of pore filling, where the filling process 
takes a time tf ~ 2000 (in units of 1/h) to achieve a roughly constant total concentration 
of <Xn> ≈ 0.8. This time scale follows from Einstein’s relation (L/2)2 ~ h tf since particles 
must diffuse a length ~L/2 to fill the pore. At the end of this filling stage, Bt has a 
bimodal profile peaked towards the pore openings, and the Bc profile is peaked in the 
pore center. The second stage of evolution to achieve the true steady-state, where both 
Bc and Bc profiles exhibit plateaus in the pore center, takes much longer around tss ~ 
105. This much slower time scale is understood since such evolution is controlled by the 
magnitude of the tracer diffusion coefficient Ftr(n,n+1) ≈ (1-<X0>)(<X0>)-1/L ≈ 0.0025 in 
the pore center [35]. Diffusion over a length scale of ~20 cells would only occur on a 
time-scale of ~tss given such a low diffusion coefficient. 
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Fig.11. KMC simulation results for the evolution of concentration profiles starting from 
an empty pore for L = 100, <X0> = 0.8, and k/h = 0.001. Times are indicated (in units 
where h = 1) and increase from frames (a) to (e). 
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Ftr(n, n+1) 
<X0> = 0.20    Pୣ ୶  ൌ  0.00 

<X0> = 0.20 Pୣ ୶ ൌ 0.25 
<X0> = 0.80 Pୣ ୶ ൌ 0.00 

<X0> = 0.80 Pୣ ୶  ൌ  0.25 
n = 1 0.59353 0.76127 0.05463 0.32147 
n = 2 0.43812 0.71861 0.02302 0.31004 
n = 3 0.35470 0.69915 0.01295 0.30757 
n = 4 0.27708 0.68507 0.00865 0.30522 
n = 5 0.23021 0.69082 0.00627 0.30112 
n = 6 0.19527 0.66456 0.00494 0.30126 
n = 7 0.16801 0.66701 0.00411 0.29957 
n = 8 0.15003 0.66144 0.00358 0.29984 
n = 9 0.13627 0.66434 0.00327 0.29802 
n = 10 0.12136 0.65669 0.00304 0.29793 
n = 11 0.10895 0.65478 0.00286 0.29734 
n = 12 0.09805 0.64189 0.00274 0.29869 
n = 13 0.09060 0.64692 0.00265 0.29780 
n = 14 0.08285 0.64900 0.00260 0.29823 
n = 15 0.07682 0.64390 0.00255 0.29618 
Ftr(MF) 0.80 0.85 0.20 0.40 

 
Table I. Ftr(n, n+1) versus n near the end of a pore with L=100 for different values of 
total concentration <X0> and for SFD (Pex = 0) as well as with exchange (Pex = 0.25). 
Decay into the pore (increasing n) is strong for SFD and weak with exchange. MF 
values, Ftr(MF) = 1 - (1-Pex)<X0> are shown in the second row. Ftr(n, n+1)  is closest to 
Ftr(MF) for low <X0> and Pex > 0, and furthest below Ftr(MF) for high <X0> and Pex = 0.  
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fn values 
Pୣ ୶  ൌ  0.00  Pୣ ୶ ൌ  0.00 Pୣ ୶  ൌ  0.00 Pୣ ୶ ൌ 0.00 Pୣ ୶ ൌ 0.25 Pୣ ୶ ൌ 0.25 Pୣ ୶  ൌ  0.25 Pୣ ୶ ൌ 0.25 

eGH(s) eGH(a) eGH(f) KMC eGH(s) eGH(a) eGH(f) KMC 

n = 1 1.00693 1.00717 1.01385 1.01081 0.99563 0.99551 0.99125 1.00029 

n = 2 1.01870 1.02004 1.03741 1.04782 0.99568 0.99556 0.99135 1.00037 

n = 3 1.03618 1.04011 1.07235 1.12252 0.99551 0.99538 0.99101 1.00031 

n = 4 1.06268 1.07160 1.12535 1.24534 0.99533 0.99520 0.99065 1.00015 

n = 5 1.10838 1.12740 1.21676 1.42971 0.99519 0.99506 0.99039 1.00029 

n = 6 1.18651 1.22442 1.37301 1.69431 0.99492 0.99478 0.98984 1.00010 

n = 7 1.32613 1.40026 1.65225 2.06707 0.99469 0.99454 0.98939 0.99976 

n = 8 1.57841 1.72113 2.15682 2.59594 0.99439 0.99423 0.98877 1.00000 

n = 9 2.02822 2.29550 3.05643 3.34233 0.99414 0.99398 0.98829 0.99964 

n = 10 2.84333 3.34063 4.68666 4.39688 0.99382 0.99364 0.98764 0.99930 

n = 11 4.36949 5.31141 7.73897 5.89006 0.99350 0.99332 0.98700 0.99925 

n = 12 7.18499 8.95460 13.36998 8.04207 0.99308 0.99288 0.98616 0.99892 

n = 13 12.46148 15.80610 23.92296 11.10158 0.99275 0.99254 0.98549 0.99885 

n = 14 22.13462 28.34838 43.26924 15.62479 0.99233 0.99212 0.98467 0.99938 

n = 15 40.48814 52.25351 79.97628 22.42215 0.99204 0.99181 0.98407 0.99845 
 
 
Table II. fn values for <X0> = 0.8 for three different eGH formulations: fully asymmetric 
choice (f) expected to be most appropriate for SFD and high <X0>,  asymmetric choice 
(a), and simple symmetric choice (s). Results are shown for SFD (Pex = 0) and Pex = 
0.25. 
 
 
 
 

Analysis 
of ℜ 

<X0> = 0.20     Pୣ ୶  ൌ  0.00 
<X0> = 0.80 Pୣ ୶ ൌ 0.00 

<X0> = 0.20 Pୣ ୶ ൌ 0.25 
<X0> = 0.80 Pୣ ୶ ൌ  0.25 

KMC 0.1708 1.5579 0.1310 0.6917 
MF 0.1347 0.6434 0.1368 0.7152 
MF(H) 0.1476 1.1894 0.1311 0.6985 
eGH(s) 0.1790 1.2876 0.1311 0.6913 
eGH(a) 0.1806 1.3042 0.1336 0.6911 
eGH(f) 0.2123 1.3950 0.1361 0.6842 

 
Table III. Selectivity, ℜ = Rtot(Bt)/Rtot(Bc), comparing precise value from KMC 
simulations [KMC] with predictions from the standard MF approximation [MF], a hybrid 
MF approximation [MF(H)], and various eGH formulations. 


