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We present a probability density function (PDF) method for a system of nonlinear stochastic
ordinary differential equations driven by colored noise. The method provides an integro-differential
equation for the temporal evolution of the joint PDF of the system’s state, which we close by means
of a modified Large-Eddy-Diffusivity (LED) closure. In contrast to the classical LED closure, the
proposed closure takes into account the advective transport of the PDF in the approximate temporal
deconvolution of the integro-differential equation. Additionally, we introduce the generalized local
linearization (LL) approximation for deriving a computable PDF equation in the form of a second-
order partial differential equation (PDE). We demonstrate the proposed closure and localization
accurately describe the dynamics of the PDF in phase space for systems driven by noise with
arbitrary auto-correlation time. We apply the proposed PDF method to the analysis of a set of
Kramers equations driven by exponentially auto-correlated Gaussian colored noise to study nonlinear
oscillators and the dynamics and stability of a power grid. Numerical experiments show that the
PDF method is accurate when the noise auto-correlation time is either much shorter or much longer
than the system’s relaxation time, with the accuracy decreasing as the ratio of the two time scales
approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation
of the noise.

I. INTRODUCTION

A variety of important physical systems in physics and
engineering can be modeled as nonlinear dynamical sys-
tems driven by fluctuations with non-trivial auto- and
cross-correlation time scales [1–3]. Applications include
reaction kinetics [4], electronic systems subject to phase
noise [5], and electro-mechanical power systems driven
by ucertain renewable power input [6]. For such sys-
tems there is no clear time scale separation between the
system’s relaxation and oscillation time scales and the
characteristic time scales of the driving noise, so that a
white noise model for the driving fluctuations is inade-
quate. In fact, these time scales may interact, resulting
in dynamic behavior that cannot be predicted by white
noise models. It is therefore important to employ models
that accurately capture the effect of colored fluctuations.
Nonlinear stochastic processes driven by fluctuations

correlated in time (“colored noise”) are non-Markovian
and thus not amenable to treatment by means of the
Fokker-Planck equation (FPE). If the “colored noise” can
be modeled by a Langevin stochastic differential equation
(SDE) driven by “white noise”, then one may reformu-
late the problem as an expanded Markovian process (i.e.,
expand the phase space to include the fluctuations) and
formulate the FPE for the joint noise-state PDF. Nev-
ertheless, such an approach may be undesirable if the
dimension of the phase space and the number of driv-
ing processes is large, thus resulting in an even larger,
less amenable expanded system. Also, not every noise
correlation structure can be readily described by a SDE.
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As an alternative, various projection approaches,
or PDF methods, have been proposed for deriving
an integro-differential conservation equation, or quasi-
Fokker-Planck equation, for the evolution of the joint
PDF of the system’s state (e.g., [7–10]). The nonlocal
nature of the resulting PDF equation reflects the non-
Markovian character of the nonlinear stochastic process.
Nevertheless, obtaining computable coefficients for the
PDF equation for the entire range of correlation times of
interest in applications remains an open challenge, and
additional approximations are necessary. The so-called
Best Fokker-Planck Approximation (BFPA) can be em-
ployed for an arbitrary number of SDEs, but it is valid
only for correlation times short relative to the character-
istic time scale of the system, and thus of limited use.
Alternative approximations have been successfully em-
ployed for a single ODE and a system of two SDEs, such
as the local linearization (LL) of [10] for the Langevin
equation, and the decoupling theory of [8, 9] for the
Langevin and Kramers equations.

In this manuscript, we present a PDF method for sys-
tems of nonlinear SDEs driven by colored noise of arbi-
trarily long auto-correlation time. Our method can be
employed for systems of an arbitrary number of SDEs,
and results in a quasi-Fokker-Planck equation with com-
putable coefficients. We derive our method by formu-
lating a modified Large-Eddy-Diffusivity (LED) closure
for closing the stochastic flux term of the PDF equa-
tion. LED closures were originally introduced in the con-
text of stochastic averaging of advective velocity fluctu-
ations for scalar transport [11, 12], and have been ex-
tensively employed for the analysis of advection-diffusion
and advection-reaction transport processes [13–19]. More
recently, the LED closure has been employed in the con-
text of nonlinear Langevin equations driven by colored
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noise with short to moderately long auto-correlation time
scale [1, 6].
The classical LED theory results in a time-convoluted

integro-differential equation for the PDF, which is trans-
formed into a PDE by introducing a classical localization.
Such a localization nevertheless is ill-suited for treating
systems characterized by a mean-field velocity with non-
zero divergence and long noise auto-correlation time with
respect to the systems’ relaxation time. In order to ad-
dress this shortcoming, we introduce a modified localiza-
tion which employs the history of the advective dynamics
of the PDF to deconvolve the integral expression for the
stochastic flux. Finally, we propose a generalization of
the LL approximation of [10] in order to obtain a com-
putable expression for the stochastic flux applicable to
an arbitrary number of SDEs.
The manuscript is structured as follows: The PDF

method is introduced in Section II. In Section III, we
outline the LED theory, discuss the shortcomings of the
classical theory, and introduce our modified localization.
Stochastic diffusion coefficients are computed in Sec-
tion IV by means of our generalized LL approximation.
The resulting PDF method is applied in Section V to a
set of M Kramers equations. In particular we discuss the
overdamped and general case for M = 1, and the general
case for M > 1. Approximate analytical solutions for
the stationary joint PDF are presented for M = 1, and a
Gaussian approximation is presented for M > 1. Finally,
conclusions are given in Section VI.

II. PDF METHOD

We consider a dynamical system described by the non-
linear initial-value problem (IVP) in N dimensions

dxi

dt
= vi(x, t) = 〈vi(x, t)〉0 + v′i(x, t), (1)

xi(0) = x0
i , (2)

for i = 1, . . . , N , where v = [v1(x, t), . . . , vN (x, t)]⊤ is a
random function with known statistics. Each vi(x, t) is
decomposed into a deterministic function or “mean-field
velocity”, 〈vi(x, t)〉0, and a stochastic fluctuation term,
v′i(x, t), with zero mean for fixed x and t, and charac-
terized by its correlation time, λ, and its characteristic
amplitude σ < ∞, i.e., σ2 ≡ supi,j,x,t〈v

′
i(x, t)v

′
j(x, t)〉,

where 〈·〉 denotes ensemble average. In this manuscript,
we study systems for which the effect of non-zero corre-
lation time of the fluctuations is important and cannot
be disregarded.
Let x(t) = [x1(t), . . . , xN (t)]⊤ ∈ A be the system’s

state vector, where A ⊆ R
N is the phase space. For

simplicity we assume that A ≡ R
N , although different

supports for the state variables can be considered. Ad-
ditionally, let X = [Xi, . . . , XN ]⊤ ∈ A denote a vari-
able in phase space. In order to derive the PDE govern-
ing the evolution of the one-point joint PDF of the sys-
tem’s state, p(X; t), we define the auxiliary “raw” PDF,

Π(X; t), given by

Π(X; t) = δ[x(t) −X] =

N
∏

i=1

δ[xi(t)−Xi]. (3)

For a given time t, Π(X; t) is a Dirac delta function in
phase spaced centered around X = x(t). The raw PDF
can be decomposed into its ensemble average and a zero-
mean scalar fluctuation, i.e., Π = 〈Π〉+Π′. The ensemble
average of Π(X; t) over all realizations x(t), 〈Π(X; t)〉, is
equal to the PDF p(X; t), i.e., p(X; t) ≡ 〈Π(X; t)〉 [20].
To see this, we recall the definition of the ensemble av-
erage of an arbitrary function Q of x(t), 〈Q(x(t))〉 ≡
∫

A Q(Y)p(Y; t)dY. Substituting δ[x(t)−X] for Q(x(t)),
we obtain the relation

〈Π(X; t)〉 ≡

∫

A

δ(Y −X)p(Y; t) dY = p(X; t). (4)

The raw PDF obeys the conservation law (see Ap-
pendix A)

LΠ =
∂Π

∂t
+∇X · (〈v〉0Π) = −∇X · (v′Π), (5)

where 〈v(X, t)〉0 = [〈v1(X, t)〉0, . . . , 〈vN (X, t)〉0]
⊤ is the

mean-field velocity, and v′ = [v′1(X, t), . . . , v′N (X, t)]⊤ is
the zero-mean velocity fluctuation, with initial condition
given by (2) and (3), namely,

Π(X; 0) = δ(x0 −X), (6)

where x0 = [x0
1, . . . , x

0
N ]⊤.

Taking the ensemble average of (5)–(6), employing the
decomposition Π = p+Π′, and recalling that 〈v′〉 = 0, we
obtain the boundary value problem (BVP) for p(X; t),

∂p

∂t
+∇X · (〈v〉0p) +∇X · 〈v′Π′〉 = 0, (7)

with initial conditions

p(X; 0) = δ(x0 −X), (8)

and vanishing free space boundary conditions for xi →
±∞, which correspond to A = R

N . For periodic state
variables with bounded support, the boundary conditions
for the BVP are periodic.
The cross-covariance 〈v′Π′〉 can be understood as a

stochastic flux in addition to the deterministic advec-
tive flux induced by mean-field velocity 〈v〉0. This flux
is unknown a priori and requires full knowledge of the
solution of the nonlinear IVP (1)–(2) in order to be eval-
uated; therefore, the governing PDE (7) is unclosed. An
appropriate closure must be provided so that (7) can be
utilized to solve for the dynamic behavior of the joint
PDF p. For this purpose, we propose employing a mod-
ified Large-Eddy-Diffusivity (LED) closure, presented in
the following section.
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III. MODIFIED LED CLOSURE

Various closures have been proposed for expressing the
stochastic flux 〈v′Π′〉 in terms of the joint PDF p [8–
10, 21, 22]. In the present work, we introduce the family
of so-called Large-Eddy-Diffusivity (LED) closures [11–
13], and propose a modified LED closure appropriate for
deriving a localized PDF equation for nonlinear dynam-
ical systems.
The stochastic flux 〈v′Π′〉 can be written in terms

of the deterministic operator L’s Green’s function
G(X, t|Y, s), defined as the solution to the adjoint prob-
lem

L̂G = −
∂G

∂s
− 〈v〉0 · ∇YG = δ(X−Y)δ(t − s), (9)

with homogeneous free space boundary conditions and
terminal condition G(X, t|Y, t) = 0, where L̂ is the ad-
joint of the operator L introduced in (5). In terms of
G(X, t|Y, s), 〈v′Π′〉 can be written as (see Appendix B)

〈v′Π′〉(X, t) = −

∫ t

0

∫

A

G(X, t|Y, s)

×∇Y ·
〈

Π(Y, s)v′(X, t)v′⊤(Y, s)
〉

dYds. (10)

This expression is exact but unclosed, as it depends
on the unknown moment 〈Π(Y, s)v′(X, t)v′⊤(Y, s)〉. In
order to proceed, we use the standard LED closure

∫ t

0

∫

A

f(Y)∇Y ·
〈

v′(X, t)v′⊤(Y, s)Π(Y; s)
〉

dYds

≈

∫ t

0

∫

A

f(Y)∇Y ·
〈

v′(X, t)v′⊤(Y, s)
〉

p(Y; s) dYds,

(11)

for an arbitrary function f : A → R. Approximation (11)
disregards the contribution to the stochastic flux due to
the third moment 〈Π′(Y, s)v′(X, t)v′⊤(Y, s)〉, as it is as-
sumed to be much smaller than the second-order term:

∫ t

0

∫

A

f(Y)∇Y ·
〈

v′(X, t)v′⊤(Y, s)
〉

p(Y; s) dYds

≫

∫ t

0

∫

A

f(Y)∇Y·
〈

Π′(Y, s)v′(X, t)v′⊤(Y, s)
〉

dYds,

The disregarded contributions are of order (σλ)3, so that
the approximation is second-order accurate in σλ [7].
Applying this approximation to Eq. (10) and substi-

tuting Green’s function (B8) into the resulting expres-
sion, we obtain the following Lagrangian form for the
(unclosed) stochastic flux in terms of the PDF p (see
Appendix B):

〈v′Π′〉(X, t) ≈ −

∫ t

0

J (s|X, t)

×∇χ ·
[〈

v′(X, t)v′⊤(χ(s|X, t), s)
〉

× p(χ(s|X, t); s)] ds, (12)

where χ(s|X, t) ∈ A is the solution to the terminal value
problem,

d

ds
χ(s|X, t) = 〈v(χ(s|X, t), s)〉0 , s < t, (13)

χ(t|X, t) = X, (14)

and J (s|X, t) is the Jacobian determinant of the (re-
verse) flow (X, t) 7→ χ(s|X, t), given by the Liouville-
Ostrogradski formula

J (s|X, t) =

∣

∣

∣

∣

∂χ(s|X, t)

∂X

∣

∣

∣

∣

= exp

(

−

∫ t

s

∇χ · 〈v(χ(s′|X, t), s′)〉0 ds
′

)

. (15)

Here, χ(s|X, t) can be interpreted as the Lagrangian
coordinate in phase space at time s < t, defined by the
mean-field velocity 〈v〉0, which coincides with the Eule-
rian coordinate X at time t.
Substituting (12) into (7), we obtain a time-convoluted

integro-differential equation for p. The temporal convolu-
tion reflects the non-Markovian character of the stochas-
tic process x(t) when driven by colored noise.
For the particular case of temporally uncorrelated ve-

locity fluctuations, (i.e., Gaussian white noise), we have
〈v′(X, t)v′⊤(Y, s)〉 = δ(t − s)G(X,Y), with G(X,Y)
the cross-covariance tensor of the velocity fluctuations,
for which (12) reduces to

〈v′Π′〉(X, t) ≈ −∇X ·D(X)p(X; t), (16)

where the diffusion tensor is simply

D(X) ≡ G(X,X). (17)

Then, substituting (16)–(17) into (7) we recover the
Fokker-Planck equation.
Although the integro-differential BVP (7), (8) and (12)

for p, resulting from the classical LED theory, may be
solved numerically as is, it is much more desirable to
transform said problem into a partial differential BVP
by means of an appropriately chosen approximate de-
convolution or “localization”. Such a localization con-
sists of approximating p(χ(s|X, t); s) and ∇χin terms of
p(X; t) and ∇ over the correlation time-span (t − λ, t)
for which the contribution of the cross-correlation term
〈v′(X, t)v′⊤(χ(s|X, t), s)〉 to the integral in (12) is non-
trivial.
A possible approach to formulate a localization is the

one provided by the classical LED theory [1, 13, 15, 18,
19], which assumes that p and its spatial derivatives are
approximately uniform over the timespan (t− λ, t). Un-
der this assumption, we can replace p(χ(s|X, t); s) with
p(X; t) and∇χp(χ(s|X, t); s) with∇Xp(X; t) in the inte-
grand of (12), resulting in the classical closed-form LED
expression for the stochastic flux

〈v′Π′〉(X, t) ≈
[

vL(X, t)−DL(X, t)∇X

]

p(X; t), (18)
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where vL and DL are the classical LED drift velocity and
diffusion tensor, given by

vL(X, t) ≡ −

∫ t

0

J (s|X, t)

× 〈v′(X, t)∇χ · v′(χ(s|X, t), s)〉ds,

(19)

DL(X, t) ≡

∫ t

0

J (s|X, t)

×
〈

v′(X, t)v′⊤(χ(s|X, t), s)
〉

ds.

(20)

The classical LED localization disregards two impor-
tant effects:

1. The expansion (or contraction) rate of the PDF p
from t − λ to t due to non-zero divergence of the
mean-field velocity, ∇ · 〈v〉0 6= 0, which may play a
significant role if the inverse of the divergence rate
is much shorter than the noise correlation time.

2. The divergence operator ∇χ may not be collinear
with ∇X at time s < t, so that significant direc-
tional contributions to the gradient may be under-
estimated or disregarded altogether.

It follows that the localization approximation provided
by the classical LED theory is only accurate for short
correlation time scales and negligible divergence of the
mean-field velocity.
We propose an alternative localization approximation

that addresses the aforementioned limitations of the clas-
sical LED theory. Our approximation consists of assum-
ing that the contribution to the dynamics of p over the
time-span (t − λ, t) due to mean-field advective trans-
port is much larger than that due to stochastic transport;
therefore, it suffices to capture the average-flow advective
dynamics of p from t− λ to t for the purpose of localiza-
tion.
In order to formulate such an approximation, we con-

sider the solution of the purely mean-field advective
transport problem

∂p

∂s
+∇X · (〈v〉0p) = 0, s < t (21)

with terminal condition p(X, t), which has the the solu-
tion

p(χ(s|X, t); s) = J−1(s|X, t)p(X; t). (22)

The expression (22) serves as our localization approx-
imation for p. Substituting (22) into (12) we obtain the
partially localized expression

〈v′Π′〉(X; t) ≈ −

∫ t

0

J (s|X, t)

×∇χ ·
{〈

v′(X, t)v′⊤(χ(s|X, t), s)
〉

×J−1(s|X, t)p(X; t)
}

ds. (23)

where the PDF p in the integrand has been localized from
(χ(s|X, t), s) to (X, t), but the Lagrangian gradient ∇χ

has been not. Note that the map (X, t) 7→ χ(s|X, t)
implies that the Lagrangian gradient ∇χ acts on p(X; t)
and thus p(X, t) cannot be taken outside the integral in
Eq. (23).
Eq. (23) for the stochastic flux, and its generalized

LL approximation, presented in the following section, are
the main results of this manuscript, and form our PDF
method. Eq. (23) is also important because it bridges
the more general LED theory with the second-order cu-
mulant expansion of [7], indicating that both theories are
equivalent for nonlinear SDEs.
The Lagrangian gradient operator can be re-written in

Eulerian coordinates by virtue of the chain rule:

∇χ =

(

∂X

∂χ(s|X, t)

)⊤

∇X

= Ψ⊤(t|χ(s|X, t), s)⊤∇X,

(24)

where Ψ⊤(t|χ(s|X, t) is the sensitivity matrix of the flow
(X, t) 7→ χ(s|X, t) with respect to χ(s|X, t), defined as
follows: Consider the flow (Z, s′) 7→ χ(t′|Z, s′) between
time s′ and t′ > s′, with initial condition Z. We define
the sensitivity matrix Ψ of the flow with respect to Z as

Ψ(t′|Z, s′) =
∂χ(t′|Z, s′)

∂Z
. (25)

The sensitivity matrix Ψ satisfies the variational equa-
tion

d

dt′
Ψ(t′|Z, s′) = J(χ(t′|Z, s′), t′)Ψ(t′|Z, s′), (26)

Ψ(s′|Z, s′) = I, (27)

where I is the N × N identity matrix. Eq (26) is ob-
tained by differentiating (13) with respect to Z, where the
J(X, t) = {Jij(X, t)} is the Jacobian of the mean-field
velocity, with components Jij(X, t) = ∂〈vi(X, t)〉0/∂Xj.
Although Equations (23) and (24) provide a closed ex-

pression for the stochastic flux, its exact analytical eval-
uation requires analytical expressions for the sensitivity
matrix Ψ(t|χ(s|X, t)) and the Jacobian J (s|X, t), which
are only available for special cases. As an alternative, in
the next section we present an approximate scheme for
the analytical evaluation of the stochastic flux.

IV. COMPUTING LED DIFFUSION

COEFFICIENTS

In this section we consider the evaluation of the ap-
proximate stochastic flux (23) obtained via our modified
LED closure. We restrict our attention to additive noise
problems for which the mean-field flow is autonomous,
and

∇X · 〈v〉0 = −γ, (28)
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with γ a positive constant. This family of problems
include Brownian motion [1, 23], the Kramers equa-
tion [6, 8, 24], power grid systems driven by uncertain
power input [6], and other similar stochastic processes.
The SDEs for such systems read

dxi

dt
= 〈vi(x)〉0 + ξi(t; ω̃), i = 1, . . . , N. (29)

Furthermore, we assume that the velocity fluctuations
are stationary.

Various approximations have been proposed for obtain-
ing closed-form expressions for the stochastic flux, appli-
cable to particular cases. For N = 1, the stochastic flux
was evaluated in [10] by employing the so-called “lin-
ear localization” (LL) approximation. For the Kramers
equation (N = 2), an approximate stochastic flux was

obtained in [8]. In this section we propose a generaliza-
tion of the LL approximation for arbitrary N .
Substituting (28) into (15), and then into (23), we ob-

tain the stochastic flux for additive noise

〈ξΠ′〉(X; t) ≈ −DM(X, t)∇X p(X; t), (30)

with diffusion tensor

DM(X, t) ≡

∫ t

0

〈

ξ(t)ξ⊤(s)
〉

×Ψ⊤(t|χ(s|X, t), s) ds. (31)

Note the differences between the diffusion tensors ob-
tained via the classical LED theory (20) and the modified
theory (31). We now proceed to propose a computable
approximation to the sensitivity matrix. The solution
of (26) is

Ψ(t|χ(s|X, t), s) = T exp

(
∫ t

s

J(χ(s1|X, t)) ds1

)

≡ 1 +

∫ t

s

J(χ(s1|X, t)) ds1 +

∫ t

s

∫ t

s1

J(χ(s2|X, t))J(χ(s1|X, t)) ds1ds2 + · · · , (32)

where T exp denotes the time-ordered exponential func-
tion [25]. Instead of evaluating the time-ordered expo-
nential in (32), we propose to linearize the variational
equation (26)–(27) for the flow (X, t) 7→ χ(s|X, t) around
(X, t), so that J(χ(s′|X, t)), s < s′ < t in (32) can be
approximated by J(X), and the time-ordered exponen-
tial can be replaced by a matrix exponential, resulting in
the approximation

Ψ(t|χ(s|X, t), s) = T exp

(
∫ t

s

J(χ(s1|X, t)) ds1

)

≈ exp((t− s)J(X)).

(33)

The approximation to the sensitivity matrix of
Eq. (33), together with the modified LED closure ex-
pression for the stochastic flux [given by Eq. (23)], are
the main contributions of this manuscript, as they lead
to a fully localized quasi-Fokker-Planck PDE. This ap-
proximation can be interpreted as the multi-dimensional
generalization of the (LL) approximation introduced in
[10]. Substituting (33) into (31) and introducing the lag
variable τ = t − s, the generalized LL approximation
leads to a computable expression for the stochastic dif-
fusion tensor

DM(X, t) =

∫ t

0

〈

ξ(0)ξ⊤(τ)
〉

exp(τJ⊤(X)) dτ. (34)

This integral can be evaluated analytically in the sta-
tionary limit t → ∞ for exponentially auto-correlated,

mutually uncorrelated velocity fluctuation components,
i.e.,

〈ξi(0)ξi(τ)〉 = σ2
i exp(−|τ |/λi),

〈ξi(0)ξj(τ)〉 = 0, i 6= j,

whereby DM(X, t → ∞) = DM,st(X) obeys the Sylvester
equation

Λ−1DM,st −DM,stJ⊤ = Σ, (35)

with Λ = diag(λ1, . . . λN ) and Σ = diag(σ2
1 , . . . , σ

2
N ).

Replacing the approximate equality in (30) with an
equality, and substituting into (7), we obtain the PDF
equation

∂p

∂t
+∇X · (〈v〉0p) = ∇ ·DM∇p. (36)

V. APPLICATIONS TO KRAMERS

EQUATIONS

In this section we present the application of the pro-
posed modified LED theory to a set of coupled Kramers
equations. The Kramers equation is widely used to model
reaction kinetics [24], oscillatory dynamics [8, 23], elec-
tromechanical power systems [6], among other phenom-
ena of interest in engineering and physics. We consider
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the set of M coupled Kramers equations

dxi

dt
= vBvi, (37)

dvi
dt

= Fi − Si(x1, . . . , xM )− γvi + Γi(t), (38)

for i = 1, . . . ,M . For each i, xi ∈ AX
i is the position

variable, either periodic (AX
i ≡ [−π, π)) or free-space

(AX
i ≡ (−∞,∞)), and vi ∈ (−∞,∞) is the (dimension-

less) momentum variable (not to be confused with the
RHS of the nonlinear SDEs (1); additionally, vB is the
momentum scale, Fi is a deterministic force, Γi(t) is a
zero-mean stochastic force, γ is the relaxation rate, and
Si(x1, . . . , xN ) is the position-dependent recovery force.
For periodic coordinates, the functions Si satisfy

Si(x1, . . . , xj , . . . , xn)

= Si(xi, . . . , xj + π, xn), i, j = 1, . . . ,M.

We assume that the driving stochastic forces are sta-
tionary and mutually uncorrelated, with auto-correlation
structure

〈Γi(0)Γi(τ)〉 = σ2
i exp(−|τ |/λi). (39)

Let AX ≡
∏M

i=1 A
X
i and AV ≡ R

M denote the posi-
tion and momentum phase spaces, respectively, and let
(X,V) ∈ AX × AV . Then, the PDF equation (36) for
the joint PDF p(X,V; t) reads

∂p

∂t
+ vBVi

∂p

∂Xi
+

∂

∂Vi
(Fi − Si − γVi) p

=
∂

∂Vi

(

DX
ij

∂p

∂Xj
+DV

ij

∂p

∂Vj

)

. (40)

Along the Xi directions, i = 1, . . . , N , Eq. (40) is sub-
ject to either periodic or free-space boundary conditions,
namely

p([X1, . . . , Xi, . . . , XN ]⊤,V; t)

= p([X1, . . . , Xi + π, . . . , XN ]⊤,V; t), (41)

for periodic coordinates, or

p([X1, . . . , Xi = ±∞, . . . , XN ]⊤,V; t) = 0, (42)

for free-space coordinates. Along the Vi directions, i =
1, . . . , N , we have vanishing conditions

p(X, [V1, . . . , Vi = ±∞, . . . , VN ]⊤; t) = 0. (43)

The deterministic initial condition is

p(X,V; 0) = δ(x0 −X)δ(V), (44)

where x0 ∈ AX . Additionally, we have the probability
conservation relation

∫

AX

∫

AV

p(X,V; t) dVdX = 1, t > 0. (45)

The diffusion tensors DX(X) and DV (X) are given by
Eq (35). The Jacobian of the mean-field flow is

J(X) =

[

0 vBI
−H(X) −γI

]

, (46)

where 0 and I are the zero and unit order-M second-
rank tensors, and H(X) = {Hij(X)} is the matrix with
components Hij = ∂Si/∂xj. Substituting (39) and (46)
into (35), and computing the block-wise matrix inver-
sion, we obtain the following relations for the stationary
diffusion tensors DX(X) and DV (X),

[I+ (γΛ)−1]DV + (γ)−1vBΛDV H⊤ = (γ)−1Σ, (47)

DX = vBΛDV . (48)

The PDF equation (40) makes clear the limitations of
the classical LED theory. Most evidently, the classical
theory (e.g., [1]) predicts a stationary diffusion term of
the form

∂

∂Vi
〈ΓiΠ

′〉 = −D̄V,st
ij

∂2p

∂Vi∂Vj
,

with constant diffusion coefficients

D̄V,st
ii =

σ2
i λi

1−Mγλi
, i = 1, . . . ,M,

D̄V,st
ij = 0, i 6= j,

given by (20), (28), and (39). The classical theory dis-
regards both the variability in phase space of the diffu-
sion coefficients predicted by the modified theory, and the
cross-derivative diffusion term ∂(DX

ij ∂p/∂Xj)/∂Vi; addi-

tionally, the limit of D̄V,st
ii for λ → ∞ is negative, which is

non-physical. As a consequence, the classical LED the-
ory is unable to predict some key dynamic behavior of
the system in the intermediate-to-long auto-correlation
time scale regime, as is discussed in Section VB.
Unfortunately there is no general solution to (40)–(44)

for a general choice of recovery forces Si, stochastic pa-
rameters, and number of equations. Nevertheless, we can
derive approximate analytical expressions for some par-
ticular cases. In particular, we discuss the overdamped
case and general case for M = 1 in Sections VA and VB,
respectively, and the general case for M > 1 in Sec-
tion VC.

A. Overdamped Kramers equation

For M = 1, we can write the net force F −S(x) in (38)
as F − S(x) = −dU eff/dx, i.e., as stemming from the
effective tilted potential U eff(x) = −Fx + U(x), where
U(x) is a potential function. For periodic coordinates,
we assume U(x) is a periodic metastable potential with
a single minimum over the period [−π, π) at the attractor
x0 (Figure 1).
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FIG. 1. Example of effective tilted metastable potential
Ueff(x), with stable equilibrium at x = x0.

In this section we consider the case of the overdamped
Kramers equation. Consider a system oscillating around
the equilibrium position x0 due to the stochastic forc-
ing Γ(t), and let vs be the natural frequency of oscil-
lations around this equilibrium. If γ & vs, there is a
clear separation between the time scales of the dynamics
of the position and momentum variables, with the mo-
mentum variable relaxing towards its equilibrium value
v = 0 faster than the position variable. Setting M = 1,
combining Eqs (37) and (38) as

1

vB

d2x

dt2
+

γ

vB

dx

dt
= F − S(x) + Γ(t),

and disregarding the acceleration term d2x/dt2, we ob-
tain the reduced SDE

γ

vB

dx

dt
= F −

dU(x)

dx
+ Γ(t), (49)

where S = dU/dx. The corresponding quasi-Fokker-
Planck equation for the PDF p(X, t) reads

γ

vB

∂p

∂t
+

∂

∂X

(

F −
dU

dx

)

p+
∂

∂X
〈ΓΠ′〉 = 0, (50)

where the stochastic flux can be computed by means of
(23), namely,

〈ΓΠ′〉(X, t) = −
vB
γ

∫ t

0

〈Γ(t)Γ(s)〉
∂χ(s|X, t)

∂X

×
∂

∂χ(s|X, t)

[

∂X

∂χ(s|X, t)
p(X, t)

]

ds.

We can apply the chain rule to the previous expression
in order to obtain the closed LED approximation

〈ΓΠ′〉(X, t) = −
vB
γ

∂

∂X
D(X)p(X, t), (51)

D(X, t) =

∫ t

0

〈Γ(t)Γ(s)〉
∂X

∂χ(s|X, t)
ds. (52)

Also, employing the LL approximation (33), we have

∂X

∂χ(s|X, t)
≈ exp

(

−(t− s)
vB
γ

d2U

dx2

)

. (53)

Finally, substituting (53) and (39) into (51)–(52), com-
bining the resulting expression with (50), and disregard-
ing transient behavior of the diffusion coefficient, we ob-
tain the approximate PDF equation

γ

vB

dp

dt
+

∂

∂X

(

F −
dU

dx

)

p

=
vB
γ

∂

∂X

[

λσ2

1 + λvBU ′′(X)/γ

∂p

∂X

]

, (54)

where U ′′(X) denotes d2U/dX2. This result was ob-
tained by [10], where the LL approximation was origi-
nally proposed for an overdamped oscillator; therefore,
it is shown that our generalized LL approximation coin-
cides with the original LL approximation for the partic-
ular case of a single nonlinear SDE.

B. Single Kramers equation

For M = 1, (37)–(38) read

dx

dt
= vBv, (55)

dv

dt
= F −

dU(x)

dx
− γv + Γ(t), (56)

where S(x) = dU(x)/dx, and U(x) is the potential intro-
duced in Section VA.
For arbitrary values of the relaxation rate γ, the time

scale separation argument presented in Section VA is not
applicable, and, therefore, we cannot consider the mo-
mentum as a fast variable. Nevertheless, a different time
scale separation argument appears to be valid. It was
noted in [6] that Monte Carlo (MC) simulation exper-
iments show a clear time scale separation between the
dynamics of the momentum and position variables for
γλ & 1, i.e, when the auto-correlation time scale of the
driving force fluctuations is approximately equal or larger
than the relaxation time scale. Over the span of the cor-
relation time, for which the noise fluctuation Γ varies
slowly, the momentum variable is observed to relax to its
stationary value v = 0, while the position variable stabi-
lizes towards the root of F − dU(x)/dx + Γ = 0. There-
fore, we can employ a separation of variables ansatz in
order to obtain an approximate analytical solution to the
stationary joint distribution.
Setting M = 1, (40) reads

∂p

∂t
+ vBV

∂p

∂X
+

∂

∂V

(

F −
dU

dx
− γV

)

p

=
∂

∂V

(

DX ∂p

∂X
+DV ∂p

∂V

)

, (57)
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with stationary stochastic diffusion coefficients given by
(47)–(48),

DV (X) =
σ2/γ

1 + 1/(γλ) + λvBU ′′(X)/γ
, (58)

DX(X) = λvBD
V (X). (59)

The decoupling theory of [8] results in the same expres-
sions for diffusion coefficients, but with 〈U ′′(x(t))〉 used
instead of U ′′(X). In [9], 〈U ′′(x(t))〉 was computed us-
ing white driving noise in order to calculate the diffusion
coefficients. On the other hand, the position-dependent
diffusion coefficients (58)–(59) proposed here can be di-
rectly calculated, because U ′′(X) is a known function of
X .
The joint PDF of the state of the Kramers equation

with a tilted metastable potential is characterized by
two modes. The main mode corresponds to “locked so-
lutions”, or realizations of the stochastic process that os-
cillate around the the stable equilibrium. The secondary
mode corresponds to “running solutions”, or realizations
that “slide” between equilibrium positions due to the tilt-
ing of the effective potential [23].
For the remainder of this section we are interested in

deriving an approximation to the quasi-stationary distri-
bution of locked solutions. We can write the joint PDF
as pst(X,V ) = pX(X)p̃V (V |X), where pX(X) denotes
the marginal distribution of x, and p̃V (V |X) denotes the
conditional probability density of v given x = X . The
mode of locked solutions is characerized by 〈v(t)〉 ≈ 0;
therefore, we assume that the conditional PDF p̃V satis-
fies

− γ
∂

∂V
V p̃V = DV (X)

∂2

∂V 2
p̃V , (60)

together with the conservation relation
∫

AV

p̃V (V |X) dV = 1. (61)

and natural boundary conditions at V → ±∞. Note
that by construction, the net probability flux of pst along
the V direction is zero. Equations (60)–(61) have the
solution

p̃V = (2πDV /γ)−1/2 exp

(

−
γV 2

2DV

)

, (62)

which obeys the property
∫

AV

V np̃V dV = 0, n odd, (63)

Substituting (62) into (57), integrating over V , and re-
calling the property (63), we obtain the first-order equa-
tion for pX

− vBσ
2 λ

γ

∂

∂X

[

1 + 1/(γλ)

1 + 1/(γλ) + λvBU ′′(X)/γ
pX

]

+

[

F −
dU

dx

]

pX = f(X), (64)

where f(X) is the probability flux in X direction (ap-
pearing as an integration constant with respect to V ).
Given that at the steady-state, the probability flux is
divergence-free and the probability flux in V direction is
zero, the probability flux f(X) must be constant.
An interesting feature of the proposed analytical ap-

proximation is that it shows that the time scale sepa-
ration argument advanced in this section is essentially
equivalent to the time scale separation shown by an over-
damped oscillator. This can be seen by taking the limit
γλ → ∞ in (62) and (64), for which pst → pXδ(V ), and
(64) reduces to the stationary form of (54). Therefore,
it can be said that a system with a long auto-correlation
timescale behaves similarly to an overdamped system.
The well-known periodic solution to (64) over the do-

main [−π, π) reads [26]

pX(X) = C
e−V (X)

D(X)

∫ X+2π

X

eV (X′) dX ′, (65)

where

V (X) =

∫ X U ′(X ′)

D(X ′)
dX ′, (66)

D(X) = vBσ
2λ

γ

1 + 1/(γλ)

1 + 1/(γλ) + λvBU ′′(X)/γ
, (67)

and C is a constant chosen such that
∫

AX pXdX = 1.
Similarly, for free-space coordinates, the solution to (64)
reads

pX(X) = Ce−V (X)/D(X). (68)

Having obtained p̃V and pX , the marginal distribution of
v can be computed using the relation

pV (V ) =

∫

AX

pX(X)p̃V (V |X) dX. (69)

Alternatively to the approximate marginal distribu-
tions (65) and (69), one can compute a Gaussian approxi-
mation to the solution of (57) if the stationary joint PDF
is unimodal. Such an approximation violates the periodic
boundary conditions in the case of periodic coordinates.
The corresponding approximate marginal distributions
read

pXg (X) = [2πs2]−1/2 exp

[

−
(X − x0)2

2s2

]

, (70)

pVg (V ) = p̃V (V, x0), (71)

where s2 = D(x0)/U
′′(x0), with D(X) given by (67), and

x0 is the system’s deterministic equilibrium position.
We validate the analytical approximations (65), (68)

and (69) by comparing them with MC estimators of the
marginal distributions for two choices of potential func-
tions: the periodic cosine potential

U(x) = −d cos(x), (72)
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for x ∈ [−π, π), and the bistable potential

U(x) = −
α

2
x2 +

β

4
x4, (73)

for x ∈ (−∞,∞). In order to generate the MC sam-
ples, the SDEs (55)–(56) are integrated numerically us-
ing a second-order strong RK scheme [27], together with
an evolution equation for the Ornstein-Uhlenbeck (O-U)
process that generates the exponentially-correlated fluc-
tuation Γ. The initial value of the fluctuation is drawn
directly from the stationary distribution of the O-U pro-
cess.
Figures 2 and 3 show the stationary marginal PDFs

pX(X) and pV (V ) for the cosine potential (72), com-
puted using (65) and (69), and the approximate Gaussian
marginals (70)–(71), together with MC simulation re-
sults. Stationary marginals are estimated for three values
of γλ, 5×10−3, 5×10−2 and 5×10−1, and three values of
the standard deviation of fluctuations, σ = 0.05F , 0.10F
and 0.20F . A good agreement is observed between the
stationary marginals computed via the proposed separa-
tion ansatz and MC simulations for all values of γλ and
σ considered. Figure 3 shows that the proposed separa-
tion ansatz captures accurately the marginal distribution
of the momentum, including the tails of the distribution.
For the marginal distribution of the position, Figure 2
indicates that the separation ansatz is accurate in the
vicinity of the stable equilibrium, and that the agreement
with MC simulations deteriorates with increasingX (i.e.,
in the direction of the tilt of the effective potential U eff).
Nevertheless, it can be seen that the separation ansatz
captures the non-gaussian behavior of the distribution,
and that its agreement with MC simulations improves
with increasing γλ.
It is important to note that the proposed modified LED

closure captures the widening and then sharpening of the
marginal distributions with increasing auto-correlation
time. The stochastic resonance of the system’s relaxation
rate and the noise auto-correlation time scale can be seen
at the level of the PDF equation on the stochastic diffu-
sion coefficients (58)– (59), and occurs for U ′′(x0) 6= 0.
On the other hand, this behavior is not captured by the
classical LED theory, which highlights its limitations in
the regime γλ & 1.
Figure 4 shows the stationary marginal PDF pX(X)

for the bistable potential (73), computed using (68), to-
gether with MC simulation results, for σ = 0.2, 0.5 and
1.0, and three choices of γ and λ. Additionally, we show
the marginal PDF computed using the decoupling the-
ory of [8]. Figure 4a shows that for small γλ, both our
approximation and the decoupling theory result in accu-
rate marginal distributions. As γλ increases (Figure 4b),
both approximations become significantly less accurate,
specially for large σ. Nevertheless, our approximation
qualitatively retains the bimodal character of the distri-
bution. Increasing γλ further (Figure 4c, achieved by in-
creasing γ from 1.0 to 10.0), both approximations regain
accuracy, with our approximation being more accurate
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(a) γλ = 5× 10−3
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(b) γλ = 5× 10−2
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(c) γλ = 5× 10−1

FIG. 2. Stationary marginal distribution of the position vari-
able, pX(X), for the cosine potential, with d = 0.21, F = 0.09,
γ = 0.5, vB = 120π, and σ = 0.05F , 0.10F and 0.20F , for
various values of γλ. Continuous lines indicate the analytic
approximation (65). Dashed lines indicate the Gaussian ap-
proximation to the solution to (70).
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(a) γλ = 5× 10−3
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(c) γλ = 5× 10−1

FIG. 3. Stationary marginal distribution of the momentum
variable, pV (V ), for the cosine potential, with d = 0.21, F =
0.09, γ = 0.5, vB = 120π, and σ = 0.05F , 0.10F and 0.20F ,
for various values of γλ. Continuous lines indicate the analytic
approximation (69).

than the decoupling theory. This experiment illustrates
the limitations of the modified LED theory and our PDF
method: it is more accurate for small σ and γλ < 1 or
γλ ≫ 1, and less accurate for large σ, and for γλ & 1.

C. Multiple Kramers equations

In this section we discuss the case M > 1, and employ
our modified LED theory to approximate the marginal
distribution of state variables of an electrical power sys-
tem governed by coupled Kramers equations.
The separation ansatz presented in the previous sec-

tion for the case M = 1 essentially disregards the cross-
correlation between the position and momentum pro-
cesses. For M > 1, the system may exhibit a non-trivial
degree of correlation between the various position and
momentum coordinates; therefore, it is in general not
possible to employ a similar separation ansatz, and we
must recur to the full PDF equation (40).
The general solution to (40) is not straightforward and

falls outside the scope of this manuscript. Nevertheless,
we can evaluate the accuracy of the proposed modified
LED closure by computing a Gaussian approximation to
the quasi-stationary PDF of locked solutions around a
given attractor (x0, 0),

pst ∝ exp

(

−
1

2

[

(X− x0)⊤ V⊤
]

Σ−1
S

[

X− x0

V

])

(74)

where the cross-covariance matrix ΣS is the symmetric
part of the solution Σ to the Sylvester equation

J(x0)Σ+ΣJ⊤(x0) = −2

[

0 0
DX(x0) DV (x0).

]

(75)

As an application, we consider an electrical power sys-
tem consisting of M + 1 synchronous machine system
(Figure 5), driven by renewable mechanical power sources
Pm
i , i = 1, . . . ,M + 1. Such power sources are uncertain

and exhibit non-trivial auto-correlation times, and thus
are amenable to treatment by means of our theory.
Employing the so-called classical model of synchronous

machines [28], such systems can be modeled via a set of
2M nonlinear ODEs of the form (37)–(38) , where the
position and momentum variables xi and vi, i = 1, . . . ,M
are the ith generator angular position and velocity with
respect to reference machine i = M+1 (see Appendix C).
The driving mechanical power for the reference machine
i = M + 1 is assumed constant. For machines 1 to M ,
Pm
i is modeled as stationary stochastic processes with

properties

Pm
i (t) = 〈Pm

i 〉(1 + σΓi), (76)

〈Γi(t)Γi(s)〉 = exp(−|τ |/λ), (77)

〈Γi(t)Γj(s)〉 = 0, i 6= j. (78)

We approximate the quasi-stationary joint and
marginal distributions for the system of Figure 5 (M =
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(b) γ = 1.0, λ = 1.0, γλ = 1.0
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(c) γ = 10.0, λ = 1.0, γλ = 10.0

FIG. 4. Stationary marginal distribution of the position vari-
able, pX(X), for the bistable potential, with F = 0, α = 0.2,
β = 1.0, and σ = 0.2, 0.5 and 1.0, for various values of γ and
λ. Continuous lines indicate the analytic approximation (68),
Dash-dotted lines indicate the results of the decoupling the-
ory [8], and crosses denote the results obtained from the MC
simulations.

FIG. 5. Schematic for a power system composed of 3 syn-
chronous generators, 3 buses, and 3 loads Li, i = 1, 2, 3. Gen-
erators 2 and 3 are driven by stochastic mechanical powers
Pm

1 (t; ω̃), Pm

2 (t; ω̃). Generator 3 is driven by the constant
mechanical power Pm

3 .

2), and parameters given in [29]. Figure 6 shows the
marginal distribution for the relative position and ve-
locity variables X1 and V1, respectively, for σ = 0.2,
γ = 0.5, and three values for the auto-correlation time,
λ = 2 × 10−2, 2 × 10−1 and 2 × 100, together with MC
simulation results. Good agreement is observed between
the approximate solution of the PDF equation and MC
simulations for the range of auto-correlation time scales
studied, indicating that our modified LED theory cap-
tures the dependence of the variance of the stochastic
processes on the auto-correlation time scale of the driv-
ing colored noise. Additionally, similarly to what was
observed in Section VB, the marginal distributions be-
come wider with increasing λ up to a critical value λ∗,
and then become sharper with further increase of λ.
Furthermore, the marginal distributions of angular ve-

locity can be employed for evaluating the quality of elec-
tric power service in terms of deviations from synchronic-
ity due to mechanical power fluctuations. This can be
quantified in terms of the probability of the absolute rel-
ative angular velocity exceeding a certain quality thresh-
old vt. Figure 7 shows the probability Prob(|V1| > vt) as
a function of λ, computed using (74), with vt = 1× 10−3

(0.1%), and with σ = 5 × 10−2, σ = 0.1 and σ = 0.2.
Again, good agreement is again observed between the
analytical results and MC simulations.

VI. CONCLUSIONS

We have presented a PDF method for the analysis of
nonlinear dynamic systems driven by colored noise. The
method is based on a modified LED closure, and is ap-
plicable to systems of an arbitrary number of SDEs char-
acterized by mean-field flow of non-zero divergence, and
noise fluctuations of small variance and arbitrarily long
correlation time scales. The localization of the modified
LED closure takes into account the advective transport of
the PDF in the approximate deconvolution of the integro-
differential equation governing the dynamics of the PDF.
The resulting stochastic flux of the modified LED theory
is shown to be equivalent to the second-order cumulant
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FIG. 6. Stationary marginal distribution of the (a) relative
position variable X1, and (b) relative velocity variable V1 for
the electrical power system of [29], with σ = 0.2, γ = 0.5,
and λ = 2 × 10−2, 2 × 10−1 and 2 × 100. Smooth lines indi-
cate the Gaussian approximation (74). Symbols indicate MC
simulations.

expansion theory of [7]. Additionally, we have introduced
a generalized linear localization (LL) approximation for
the evaluation of the diffusion coefficients of the PDF
method.
Our method has been applied to the analysis of a set

of Kramers equations. We show that the classical LED
theory is inaccurate for such systems with γλ & 1; on
the other hand, our method successfully captures the
stochastic resonance behavior resulting from the inter-
action between the relaxation time scale of the Kramers
system and the auto-correlation time scale of the noise
processes.
Given that the LED theory is employed for a variety of

applications, the observations made on the properties of
the classical LED theory have consequences beyond the
study of nonlinear dynamical systems. Future research
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FIG. 7. Prob(|V1| > vt) for the electrical power system of [29]
as a function of λ, computed using (74), with vt = 1× 10−3,
and σ = 0.05, σ = 0.10, σ = 0.20.

will extend our modified LED theory to other applica-
tions, such as advection-reaction and advection-diffusion
processes for fluctuating advection fields. Our modified
LED theory can also be systematically extended by re-
taining higher orders of (σλ) in the equivalent cumulant
expansion presented in [7], e.g., as is done in [30] for the
deterministic ODE for the mean of linear SDEs.
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Appendix A: Conservation equation for raw PDF

The raw PDF obeys a conservation law with flux vΠ
[16, 17, 20]. To see this, we differentiate (3) with respect
to time, so that we obtain

∂Π

∂t
=

dxi(t)

dt
δ(1)[xi(t)−Xi] = −

dxi(t)

dt
δ(1)[Xi − xi(t)]

= −
dxi(t)

dt

∂Π

∂Xi
,

where δ(1) is the first distributional derivative of the delta
function. By virtue of the sifting property of the delta
function, we have

Π(X; t)
dxi(t)

dt
= Π(X; t)vi(x, t; ω̃) = Π(X; t)vi(X, t; ω̃),

so that we can rewrite the previous equation as

∂Π

∂t
+

∂

∂Xi
(viΠ) =

∂Π

∂t
+∇X · (vΠ) = 0, (A1)
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thus recovering (5).

Appendix B: Derivation of the modified LED closure

Subtracting (7) from (5), we obtain the governing PDE
of Π′,

LΠ′ = −∇X · (v′Π− 〈v′Π′〉), (B1)

with homogeneous initial conditions, and vanishing con-
ditions for xi → ±∞.
Rewriting the right-hand side of (B1) in terms of s

and Y, multiplying by Green’s function G(X, t|Y, s), in-
tegrating over (0, t) and A, and performing integration
by parts, we obtain the reciprocity relation

∫ t

0

∫

A

GLΠ′ dYds =

∫

A

(GΠ′)|
t
0 dY

+

∫ t

0

∫

∂A

n ·G〈v〉0Π
′ dYds+

∫ t

0

∫

A

Π′L̂GdYds,

where L̂ is the adjoint of L,

L̂ = −
∂

∂t
− 〈v〉0 · ∇X. (B2)

We choose G(X, t|Y, s) as the solution of the adjoint
problem

L̂G = δ(X−Y)δ(t − s), (B3)

with homogeneous boundary conditions and terminal
condition G(X, t|Y, t) = 0. Replacing above and recall-
ing the initial and boundary conditions of the Π′ problem
we obtain

Π′(X; t) = −

∫ t

0

∫

A

G(X, t|Y, s)∇Y · [v′(Y, s)Π(Y; s)

− 〈v′(Y, s)Π′(Y, s)〉] dYds, (B4)

Multiplying (B4) by v′(X, t) and taking the ensemble
average, we recover (10). Employing the first approx-
imation of the classical LED theory, (11), (10) can be
rewritten in terms of the PDF p as

〈v′(X, t)Π′(X; t)〉 = −

∫ t

0

∫

A

G(X, t|Y, s)

×∇Y · [〈v′(X, t)v′(Y, s)〉p(Y; s)] dYds. (B5)

We can solve for G via the method of characteristics.
The characteristics solve the initial value problem

d

ds′
χ(s′|Y, s) = 〈v(χ(s′|Y, s), s′)〉0 , s′ ∈ [s, t], (B6)

χ(s|Y, s) = Y. (B7)

Along characteristics the problem for G is reduced to
the terminal value problem

d

ds′
G(X, t|χ(s′|Y, s), s′) = −δ(t− s′)δ(X − χ(s′|Y, s)),

G(X, t|χ(t|Y, s), t) = 0.

Integrating from s to t and recalling the terminal con-
dition, we obtain

G(X, t|Y, s) =

∫ t

s

δ(t− s′)δ(X− χ(s′|Y, s), s′) ds′

= H(t− s)δ(X− χ(t|Y, s)).

(B8)

This result allows us to evaluate integrals over A of G
times functions of Y as follows:

∫

A

G(X, t|Y, s)f(Y) dY

= H(t− s)

∫

A

δ(X− χ(t|Y, s))f(Y) dY

= H(t− s)

∫

A′

J −1(t|Y, s)δ(X − χ(t|Y, s))f(Y) dχ

=

{

H(t− s)J (s|X, t)f(χ(s|X, t)) if X ∈ A′,

0 if X 6∈ A′,
(B9)

where A′ is the image at time t of A at time s, and
J (s|X, t) is given by (15). Given our choice of support
for the stochastic variables, A and A′ are equivalent, and
thus X ∈ A′ for any choice of X. Finally, employing (B9)
on (B5) we obtain (12).

Appendix C: Equations of the classical model for

synchronous machines

Consider a system composed of M + 1 synchronous
machines. Let x̃i and ṽi be the angular position and
(dimensionless) velocity of the ith machine with respect
to a synchronous reference frame. The classical model
governing equations for x̃i and ṽi read

dx̃i

dt
= vBṽi, (C1)

2Hi
dṽi
dt

= Pm
i − P e

i −Diṽi, (C2)

for i = 1, . . . ,M + 1, where Hi > 0, Pm
i , P e

i , Di > 0 are
the ith generator’s inertia constant, driving mechanical
power, electrical power, and damping constant, respec-
tively, and vB is the velocity scale.
The electrical power P e

i is a function of the angular
positions relative to one another, given by the classical
model as

P e
i − E2

i Gii

=
M+1
∑

j=1
j 6=i

[Dij cos(x̃i − x̃j) + Cij sin(x̃i − x̃j)] , (C3)
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together with the relations

Cij = EiEjBij , Dij = EiEjGij ,

(no index summation implied), where Ei is the ith gener-
ator internal voltage, and G = {Gij} and B = {Bij} are
the M +1×M+1 so-called system reduced conductance
and susceptance matrices, respectively.

For simplicity, we restrict our attention to the case
D1/2H1 = . . . DM+1/2HM+1 = γ. For this case, we
can eliminate the equations for the (M + 1)th machine
by dividing (C2) by 2Hi and subtracting (C1)–(C2) for
i = M + 1 from (C1)–(C2) for i = 1, . . . ,M , obtaining

the reduced system of equations

dxi

dt
= vBvi, (C4)

dvi
dt

= Fi − Si − γvi, (C5)

Fi =
Pm
i

2Hi
−

Pm
M+1

2HM+1
, (C6)

Si =
P e
i

2Hi
−

P e
M+1

2HM+1
, (C7)

for i = 1, . . . ,M , thus recovering a system of the
form (37)–(38), where xi = x̃i−x̃M+1 and vi = ṽi−ṽM+1

are the angular position and velocity of the ith machine
with respect to the M+1th machine. Note that the elec-
trical power P e

i given by (C3) can be written in terms of
the relative angular positions xi, i = 1, . . . ,M .
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