
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Rotationally invariant ensembles of integrable matrices
Emil A. Yuzbashyan, B. Sriram Shastry, and Jasen A. Scaramazza

Phys. Rev. E 93, 052114 — Published  9 May 2016
DOI: 10.1103/PhysRevE.93.052114

http://dx.doi.org/10.1103/PhysRevE.93.052114


Rotationally invariant ensembles of integrable matrices

Emil A. Yuzbashyan1, B. Sriram Shastry2, Jasen A. Scaramazza1

1Center for Materials Theory, Department of Physics and Astronomy,
Rutgers University, Piscataway, NJ 08854, USA

2Physics Department, University of California, Santa Cruz, CA 95064, USA

We construct ensembles of random integrable matrices with any prescribed number of nontrivial
integrals and formulate integrable matrix theory (IMT) – a counterpart of random matrix theory
(RMT) for quantum integrable models. A type-M family of integrable matrices consists of exactly
N −M independent commuting N × N matrices linear in a real parameter. We first develop a
rotationally invariant parameterization of such matrices, previously only constructed in a preferred
basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines
a type-1 family and vice versa. Higher types similarly involve a random vector and two matrices.
The basis-independent formulation allows us to derive the joint probability density for integrable
matrices, similar to the construction of Gaussian ensembles in the RMT.

I. INTRODUCTION

It is well established that random matrix theory
(RMT) describes the universal features of energy spectra
of various quantum systems[1–6]. RMT does not, how-
ever, capture the typical behavior observed in exactly
solvable many-body models, such as e.g. Poisson level
statistics [7–13]. Though there exist matrix ensembles
(e.g. band matrices[14, 15], or an invariant ensemble re-
lated to the thermodynamics of non-interacting fermions
[16]) that display this kind of behavior, it is desirable to
have a formulation that is both (i) basis-independent and
(ii) stems from a well-defined notion of quantum integra-
bility. The purpose of the present work is an explicit
construction of ensembles that have both these proper-
ties, thereby bridging the gap and providing the missing
ensemble – integrable matrix theory (IMT) – for the anal-
ysis of quantum integrability.

We recently proposed a simple notion of an integrable
matrix (quantum integrability) that leads to an explicit
construction of various classes of parameter-dependent
commuting matrices[17–21]. In this approach, we con-
sider N × N Hermitian matrices H(u) = T + uV linear
in a real parameter u. We call H(u) integrable if it has
at least one nontrivial (other than a linear combination
of itself and the identity matrix) commuting partner of
the form H̄(u) = T̄ + uV̄ , i.e. [H(u), H̄(u)] = 0 for
all u. To appreciate the motivation behind this defini-
tion, consider exactly solvable many-body models such
as the 1D Hubbard[22–24], XXZ spin chain[25–28] or
Gaudin magnets[29] in the presence of an external mag-
netic field[30–32]. Suppose we specialize to a particular
number of sites and fix all quantum numbers correspond-
ing to parameter-independent symmetries (e.g. number
of spin up and down electrons, total momentum etc. in
the case of the Hubbard model). Such blocks are inte-
grable matrices under our definition. Indeed, they are
linear in a real parameter (Hubbard U , anisotropy, the
magnetic field) and all have at least one nontrivial in-
tegral of motion linear in the parameter. The Gaudin
model has as many linear integrals as spins[30], while
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FIG. 1: (color online) The normalized level spacing distribu-
tion P (s) of a single 20000× 20000 real symmetric integrable
matrix H(u) = T+uV at u = 1. This matrix, whose construc-
tion is detailed in Sect. V, has exactly 297 nontrivial commut-
ing partners (conservation laws) linear in the parameter u and
is therefore type-19703 by our classification. The solid curves
are a Poisson distribution P (s) = e−s and the Wigner surmise

for real symmetric random matrices P (s) = π
2
s e−

π
4
s2 . Pois-

son level statistics, as shown here, are typical for the invariant
integrable matrices described in this work. Inset: Tails of the
same curves.

the Hubbard and XXZ models in general have at least
one such nontrivial linear integral in addition to more
with polynomial parametric dependence[33–36].

Remarkably, it turns out that merely requiring the
existence of commuting partners with fixed parameter-
dependence leads to a range of profound consequences.
First, it implies a categorization of integrable matrices
according to the number of their integrals of motion. We
say that H(u) belongs to a type-M integrable family if
there are exactly n = N−M linearly independent N×N
Hermitian matrices[37] Hi(u) = T i + uV i that commute
with H(u) and among themselves at all u and have no
common u-independent symmetry[38], i.e. no Ω 6= c1
such that [Ω, Hi(u)] = 0 for all i and u. A type-M
family is therefore an n-dimensional vector space, where
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Hi(u) provide a basis, the general member of the family
being H(u) =

∑
i diH

i(u), where di are real numbers.
The maximum possible value of n is n = N − 1 (type-1
or maximally commuting Hamiltonians), while a generic
H(u) (e.g. with randomly generated T and V ) defines a
trivial integrable family where n = 1.

Let us briefly recount further consequences of the com-
mutation requirement and related developments. Inte-
grable 3 × 3 matrices first appear in Ref. 17. Shastry
constructed a class of N × N commuting matrices[18]
in 2005, which are type-1 in the above classification.
Owusu et. al.[19] subsequently developed a transparent
parametrization of type-1, an exact solution for their en-
ergy spectra, proposed the above notion of an integrable
matrix, and proved that energy levels of any type-1 ma-
trix cross at least once as functions of u. Later work
parametrized[20] all type-2, 3 and a subclass of type-
M for any M > 3. Let us also note the Yang-Baxter
formulation[21] and eigenstate localization properties[39]
for type-1.

However, existing parameterizations are tied to a par-
ticular basis, which prevents an unbiased choice of an
integrable matrix and obscures the origin of the param-
eters. Recall that the invariance of the probability dis-
tribution with respect to a change of basis is a key re-
quirement in RMT[2]. Similarly, a rotationally invariant
formulation is necessary for a proper construction of in-
tegrable matrix ensembles. Here we first derive such a
formulation and then obtain an appropriate probability
distribution of random integrable matrices with a given
number of integrals of motion. In a follow-up work[40]
we will study level statistics of these ensembles as well as
spectral statistics of individual integrable matrices, see
Fig. 1 for an example.

More specifically, consider type-1 matrices in the
parametrization of Ref. 19. Up to an arbitrary shift by
the identity matrix, a general real symmetric type-1 ma-
trix H(u) = T + uV reads

H(u) =
1

2

∑
k 6=j

dk − dj
εk − εj

(γkγjpkj−γ2
j pk−γ2

kpj)+u

N∑
k=1

dkpk,

(1)
where dk, εk, γk are 3N arbitrary real numbers, pkj =
|k〉〈j| + |j〉〈k|, pk = |k〉〈k|, and |k〉 are the normalized
eigenstates of V (shared by all V i). This expression im-
mediately yields kj-th matrix element of H(u) in the ba-
sis where V is diagonal. Parameters εk and γk specify
the commuting family, while dk pick a particular ma-
trix within the family. Note that H(u) =

∑
k dkH

k(u),

i.e. Hk(u) = ∂
∂dk

H(u) where [Hj(u), Hk(u)] = 0, ∀j, k.
The question is, what is the natural choice of dk, εk, γk?
More precisely, what is the probability distribution func-
tion of these parameters? For example, we can take εk
to be uncorrelated random numbers or eigenvalues of a
random matrix from the Gaussian unitary, orthogonal
or symplectic ensembles (GUE, GOE, or GSE). More-
over, it turns out that certain choices drastically af-
fect the level statistics, e.g. those where dk and εk are

correlated[21, 40].
We will see below that each type-1 family is uniquely

specified by a choice of a Hermitian matrix E and a vector
|γ〉, εk and γk in Eq. (1) being the eigenvalues of E and
components of |γ〉, respectively. On the same grounds as
in RMT, an appropriate choice is therefore to take E from
the GUE (GOE for real symmetric, GSE for Hermitian
quaternion-real matrices[2]) and |γ〉 to be an appropri-
ate random vector. Note that this choice follows from
either rotational invariance of the distribution function
combined with statistical independence of the matrix el-
ements or, alternatively, from maximizing the entropy of
the distribution[2]. Finally, dk are the eigenvalues of V
and we will show that they are distributed as GUE (GOE,
GSE) eigenvalues uncorrelated with εk. Our construction
of integrable matrix ensembles for higher types (M > 1)
is restricted to the real symmetric case, is more complex
and involves the deformation of an auxiliary type-1 fam-
ily. However, in the end it still boils down to the same
choice of |γ〉 and two matrices from the GOE.

II. ROTATIONALLY INVARIANT
CONSTRUCTION OF TYPE-1 INTEGRABLE

MATRIX ENSEMBLES

We start with certain preliminary considerations valid
for all types. The defining commutation requirement,
[Hi(u), Hj(u)] = 0 for all u, reduces to three u-
independent relations

[V i, V j ] = 0, [T i, V j ] = [T j , V i], [T i, T j ] = 0. (2)

The second of these relations is equivalent to

T i = W i + [V i, S], [V i,W i] = 0, (3)

where S is an antihermitian matrix characteristic of
the commuting (integrable) family. Note that S is in-
dependent of the element in the family, i.e. for any
H(u) = T+uV in the family, T and V are related through

T = WV + [V, S], [V,WV ] = 0, (4)

with the same S.
Now we specialize to type-1. Since all T i commute,

they share the same eigenstates |αk〉 and therefore

T i =

N∑
k=1

tik|αk〉〈αk|. (5)

By definition of type-1, there are N − 1 linearly inde-
pendent T i. Together with 1 =

∑
k |αk〉〈αk|, we have

N independent linear equations for N unknown projec-
tors |αk〉〈αk| with a unique solution in terms of T i for
each |αk〉〈αk|. Let |α1〉 ≡ |γ〉 for notational convenience.
Thus,

|γ〉〈γ| = a01 +
∑
i

aiT
i, (6)
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where ai are real numbers (real scalars in the quaternion
case).

Consider an element of the commuting family Λ(u) =
a01 +

∑
i aiH

i(u). By construction

Λ(u) = |γ〉〈γ|+ uE, (7)

where E is an N ×N Hermitian matrix with either com-
plex, real, or quaternion real entries. Moreover, E is
nondegenerate, for any degeneracies[53] in E imply a u-
independent symmetry Ω (see Appendix A) contrary to
the above definition of an integrable family. Every type-
1 integrable family thus contains such a Λ(u) given by
Eq. (7) with a rank one T -part[54]. We will now show
that the converse is also true. In other words, any Λ(u)
(i.e. an arbitrary choice of a vector |γ〉 and a nondegen-
erate Hermitian matrix E) uniquely specifies a type-1
family.

We begin with an arbitrary Λ(u) = |γ〉 〈γ| + uE from
which we will construct a type-1 integrable family of ma-
trices {Hi(u)}Λ. We require that Λ(u), henceforth known
as the “reduced Hamiltonian”, be an element of this pu-
tative family. Then Eq. (3) gives

|γ〉〈γ| = WE + [E,S], [E,WE ] = 0. (8)

Eq. (8) uniquely determines the matrix elements of S
as a function of E and |γ〉. We then consider H(u) =
T + uV and impose [Λ(u), H(u)] = 0, ∀u, which implies
(see Eq. (2) and Eq. (3))

[V,E] = 0.

T = W + [V, S], [V,W ] = 0,

[T, |γ〉 〈γ|] = 0.

(9)

The third equation implies |γ〉 is an eigenstate of T . Via a
non-essential shift of T by a multiple of the identity we set
the corresponding eigenvalue to zero, i.e. T |γ〉 = 0. We
will see that the choice of V in Eq. (9) uniquely specifies
T , and therefore determines H(u). As E is nondegen-
erate, Λ(u) has no permanent degeneracies (eigenvalues
degenerate at all u) and therefore any Hi(u) and Hj(u)
so constructed will satisfy [Hi(u), Hj(u)] = 0, ∀u.

We have thus constructed a type-1 integrable fam-
ily {Hi(u)}Λ from an arbitrary reduced Hamiltonian
Λ(u) = |γ〉 〈γ|+ uE. But from the considerations at the
beginning of this section, we know that all type-1 fam-
ilies contain a reduced matrix Λ(u). It follows that our
basis-independent construction, i.e. Eqs. (8-9), produces
all type-1 matrices.

It is not immediately obvious from Eqs. (8-9) that a
simple parametrization of matrix elements follows. It
is therefore helpful to select a preferred basis and write
them in components to demonstrate the feasibility of the
construction. In the shared diagonal basis of the matrices
E and V , Eq. (8) implies

Sij =
γiγ
∗
j

εi − εj
, (10)

where E = diag(ε1, ε2, . . . , εN ) and γi are the compo-
nents of |γ〉. The components γj are either complex,
real, or quaternion real, corresponding to the three pos-
sibilites for the Hermitian matrix E. Therefore γ∗j de-
notes complex conjugation in the first two cases and
quaternion conjugation in the third case. Let V =
diag(d1, d2, . . . , dN ), then Eq. (9) gives

Tij = Hij(u) = γiγ
∗
j

di − dj
εi − εj

, i 6= j,

Tii + uVii = Hii(u) = u di −
∑
j 6=i

|γj |2
di − dj
εi − εj

.
(11)

To determine the common eigenvectors of H(u), con-
sider the eigenvalue equation Λ(u)|ϕ〉 = uλ|ϕ〉 for the
reduced Hamiltonian,

|γ〉〈γ|ϕ〉+ uE|ϕ〉 = uλ|ϕ〉, (12)

where we introduced a factor of u for convenience. In
components this yields

ϕk =
γk

u(λ− εk)
〈γ|ϕ〉. (13)

The “self-consistency” condition
∑
k γ
∗
kϕk = 〈γ|ϕ〉 then

implies an equation for λ

u =

N∑
j=1

|γj |2

λ− εj
, (14)

This equation has N real roots λi for i = 1, . . . , N that
play a special role in the exact solution (and the analysis
of level crossings) of type-1 Hamiltonians[19]. In partic-
ular, the eigenvalues ηi of H(u) from Eq. (11) are

ηi =

N∑
j=1

|γj |2dj
λi − εj

= 〈γ|V |i〉 , (15)

and the corresponding unnormalized eigenstates |i〉 ac-
cording to Eq. (13) read

|i〉k ≡ ϕ
(i)
k =

γk
λi − εk

, (16)

Note that these are the components of |i〉 ≡ |ϕ(i)〉 in the
eigenbasis of V and that uλi are the eigenvalues of the
reduced Hamiltonian.

Finally, using Eqs. (8-9), one can show that if a fam-
ily of commuting matrices Hj(u) is Hermitian (real-
symmetric, Hermitian quaternion-real) for all u, the cor-
responding matrices E and V j are also Hermitian (real-
symmetric, Hermitian quaternion-real) and the vector |γ〉
is complex (real, quaternion real) and vice versa. We will
show next in Sect. III that these three choices correspond
to selecting these objects from the GUE, GOE or GSE,
respectively. Recall that, physically speaking, GUE ma-
trices break time reversal invariance. GOE and GSE ma-
trices are invariant under time reversal, while GSE matri-
ces futhermore break rotational invariance and represent
systems with half-integer spin[1, 2].
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III. PROBABILITY DENSITY FUNCTION OF
TYPE-1 INTEGRABLE ENSEMBLE

In Sect. II, we found that any Hermitian type-1 inte-
grable matrix is specified by the choice of a vector |γ〉 and
two Hermitian matrices E and V satisfying [E, V ] = 0.
Consider the set of all type-1 N ×N matrices as a ran-
dom ensemble H1

N (u) with a probability density function
(PDF) P (γ,E, V ) on the parameters |γ〉 , E and V . The
probability of obtaining a matrix H(u) ∈ H1

N (u) char-
acterized by parameters in the region between (γ,E, V )
and (γ + dγ,E + dE, V + dV ) is P (γ,E, V ) dγ dE dV ,
where

dγ =

N∏
i=1

dRe(γi) d Im(γi),

dV =
∏
j<i

dRe(Vij) d Im(Vij)
∏
k

d Vkk.

(17)

Here we derive a basis-independent P (γ,E, V ) in a man-
ner similar to the construction of the PDF of the Gaus-
sian RMT ensembles[2]. As indicated in Eq. (17), we
will restrict our notation to complex Hermitian matri-
ces. Matrices and vectors with quaternion entries have
four real numbers associated to each off-diagonal matrix
element and to each vector component. We find that
the eigenvalues of E and V (the εi and di in Eq. (11))
come from independent GUE, GOE or GSE eigenvalue
distributions Ω(a)

Ω(a) ∝
∏
i<j

|ai − aj |βe−
∑
k a

2
k , (18)

where β = 2, 1 and 4 for the GUE, GOE, and GSE,
respectively. The eigenvalue sets are independent essen-
tially because eigenvalues of a random matrix are inde-
pendent of the eigenvectors, and the [E, V ] = 0 require-
ment only constrains eigenvectors. The final expression
for P (γ,E, V ) is Eq. (25), while the corresponding PDF
for the parameters from Eq. (11), denoted P (γ, ε, d), is
Eq. (26).

There are two approaches to this derivation, both
of which give the same result. First, one can maxi-
mize the entropy functional[2, 41] S[P ] = −〈ln(P )〉 =
−
∫
X
P (γ,E, V ) ln(P (γ,E, V ))dγ dE dV subject to con-

strained averages, where the set X includes all parame-
ter values such that |γ|2 = 1 and [E, V ] = 0. The con-
strained averages in this case are 〈1〉 = 1, 〈TrE2〉 =
〈TrV 2〉 = α, α ∈ R+. Alternatively, one may postulate
that (|γ〉 , E, V ) are independent objects, each with its
own PDF given by known results from RMT[2, 3] be-
fore projecting the product of these PDFs into the con-
strained space [E, V ] = 0. We use the latter strategy in
what follows.

As |γ〉 is independent of E and V , we have

P (γ,E, V ) = P (γ)P (E, V ). (19)

The function P (γ) is well known in RMT[3]

P (γ) ∝ δ
(
1− |γ|2

)
, (20)

which is the only invariant P (γ) that preserves the norm
|γ| = 1.

We now determine P (E, V ), which is the crux of the
whole derivation. Consider the PDF P0(A,B) of two
independent N ×N random matrices A and B from the
GUE or GOE

P0(A,B)dAdB = P0(A)P0(B)dAdB,

P0(A) ∝ e−TrA2

.
(21)

To project P0(A,B) from Eq. (21) into the constrained
space [A,B] = 0, it is convenient to make a change
of variables from the matrix elements Aij (respectively
Bij) to the eigenvalues ai (bi) and functions f of eigen-
vectors qai (qbi ). It is well known that the Jacobian
J(Aij ; ai, f(qai )) of this transformation factorizes[2]

P0(A,B) dAdB = Ω(a)Ω(b) da db df(qa) df(qb),

Ω(a) ∝
∏
j<i

|ai − aj |βe−TrA2

,

da =
∏
i

dai, df(qa) =
∏
i

df(qai ).

(22)

We will not specify the precise form of the func-
tion f(qa). Also, by making the change of variables
{Aij} → {ai, qai }, we have implicitly selected a particu-
lar gauge of eigenvectors of A (i.e. the eigenvectors have
fixed phases).

If A and B are nondegenerate, [A,B] = 0 is equiv-
alent to qai = qbi , ∀i. If A or B have degeneracies,
there are many ways for the commutator to vanish, but
Eq. (22) shows P0(A,B) itself vanishes for any degen-
eracies. Therefore, the probability PA,Bcomm that two given
matrices A and B commute is

PA,Bcomm =
∏
j

δ
(
f(qaj )− f(qbj)

)
+ (degen. terms) . (23)

It follows that the measure P (E, V ) dE dV for commut-
ing matrices E and V is

P (E, V ) dE dV ∝ Ω(ε)Ω(v)
∏
j

δ(qεj − qvj )×

dε dv dqε df(qv),

(24)

where εi (vi) are eigenvalues of E (V ). Thus

P (γ,E, V )dγ dE dV ∝ δ
(
1− |γ|2

)
Ω(ε)Ω(v)×∏

j

δ(qεj − qvj ) dγ dε dv dqε df(qv).

(25)
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Now we integrate out the eigenvectors in order to obtain
the joint PDF P (γ, ε, d) for the parameters appearing in
Eq. (11)

P (γ, ε, d) ∝ δ
(
1− |γ|2

)
×∏

i<j

|εi − εj |β |di − dj |βe−
∑
k ε

2
ke−

∑
k d

2
k , (26)

where we substituted vi → di in order to be consistent
with the notation in previous papers. Eq. (26) is partic-
ularly significant because it allows one to study the level
statistics of the ensemble of N × N type-1 integrable
matrices H1

N , which according to numerical simulations
generally turn out to be Poisson[40].

IV. PARAMETER SHIFTS

Here we consider two parameter shifts that leave the
commuting family invariant. The second is useful in the
rotationally invariant construction of type-M integrable
matrices for M > 1 in Sect. V. First, we can shift the
parameter u→ u− u0 ≡ ũ for some fixed u0 and rewrite
H(u) = T + uV as

H(u) = H̃(ũ)

= T (u0) + ũ V,
(27)

where T (u0) = T + u0V . The relation between the new
T -part and V must have the same form as Eq. (3), i.e.

T (u0) = W (u0) + [V, S(u0)], [V,W (u0)] = 0. (28)

In the present case S(u0) = S, W (u0) = W + u0V . For
type-1 matrices in particular Eq. (8) only changes by a
simple WE →WE + u0E.

We can also redefine the parameter as x = 1/u and (via
multiplication by x) transfer the parameter dependence
from V to T and then shift the new parameter x →
x− x0 ≡ x̃

H(x) = xT + V

= H̃(x̃)

= x̃ T +H(x0),

(29)

where H(x0) = x0T + V becomes the new V -part. This
transformation is more interesting, and has consequences
for our construction of type M > 1 matrices.

Note that there is an asymmetry in transformation
properties under shifts in u and x introduced by our
choice to express T through V in Eq. (3) rather than
the other way around. We have

T = W (x0) + [H(x0), S(x0)],

[H(x0),W (x0)] = 0.
(30)

The x0-dependencies of W (x0) and S(x0) are nontrivial.
We see that the matrix T , and by extension the whole

commuting family, is characterized by a continuum of
antihermitian matrices S(x0), corresponding to the shift
freedom in x0. In particular S(0) = S, the unshifted
antihermitian matrix.

Specializing to type-1, we understand S(x0) better by
examining the shifted reduced Hamiltonian

Λ(x) = x |γ〉 〈γ|+ E

= Λ̃(x̃)

= x̃ |γ〉 〈γ|+ Λ(x0),

(31)

from which Eq. (30) becomes

|γ〉 〈γ| = WΛ(x0) + [Λ(x0), S(x0)],

[Λ(x0),WΛ(x0)] = 0.
(32)

As in Eq. (8), Eq. (32) is the defining equation for S(x0),
whose matrix elements obtain most conveniently from
the eigenbasis of Λ(x0).

The matrix Λ(x0) = x0 |γ〉 〈γ|+ E takes the role of E
in Eq. (8). In particular,

Sij(x0) =
αiα

∗
j

λi − λj
, (33)

where λi are the eigenvalues of Λ(x0) given by Eq. (14)
with u→ 1/x0, and αi are the components of |γ〉 in the
eigenbasis of Λ(x0).

V. HIGHER TYPES

Integrable matrices H(u) = T+uV of type M ≥ 1 have
exactly n = N −M nontrivial linearly independent com-
muting partners for all u. The restriction on n for higher
types tends to complicate their parametrizations – most
notably the matrix V is no longer arbitrary. Previous
work[20] developed a parametrization (in the eigenbasis
of V ) called the “ansatz type-M” construction, valid for
all M ≥ 1. This construction is complete for M = 1, 2 in
the sense that one can fit any such integrable matrix into
the ansatz construction. Numerical work and parameter
counting suggest that it is similarly complete for M = 3,
but produces only a subset of measure zero among all
type M > 3 matrices. Finally, the type-1 construction
of Sect. II maps into the ansatz type-1 construction and
vice versa. The parametrization of Ref. 20 reads

Hij(u) = Tij = γiγj
di − dj
εi − εj

Γi + Γj
2

, i 6= j,

Hii(u) = uVii + Tii

= u di −
∑
j 6=i

γ2
j

di − dj
εi − εj

Γi + Γj
2

Γj + 1

Γi + 1
,

(34)

where the γi and εi are free real parameters, and the
constrained di and Γi obey the following equations with
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free parameters gi, Pi and x0

di =
1

x0

N−M∑
j=1

gj
〈j|j〉

1

λj − εi
,

Γ2
i = 1 +

1

x0

N∑
j=N−M+1

Pj
〈j|j〉

1

λj − εi
,

(35)

where λi and 〈i|i〉 are related to εi and γi through

1

x0
=

N∑
j=1

γ2
j

λi − εj
,

〈i|i〉 =

N∑
j=1

γ2
j

(λi − εj)2
.

(36)

Note that λi and |i〉 are the eigenvalues and eigenstates,
respectively, of a certain auxiliary type-1 family, see
Eqs. (14) and (16).

The signs of Γi are arbitrary[55] and each set of sign
choices corresponds to a different commuting family. The
choice of x0, εi (equivalently λi), γi, and Pi[56] defines
the commuting family while varying gi produces differ-
ent matrices within a given family. Ref. 20 proves that
these equations indeed produce type-M integrable ma-
trices and also determines the eigenvalues of H(u).

A. Rotationally invariant construction

Here we present a rotationally invariant formulation
of the real symmetric ansatz construction of an N × N
Hamiltonian H(u). We emphasize that unlike the type-1
case we do not have a clear constructive way of motivat-
ing the final expressions other than the fact that they
reproduce the above basis-specific expressions.

We start with Eq. (34). Consider three mutually com-
muting real symmetric matrices V , E and Γ. In their
shared eigenbasis

V = diag(d1, d2, . . . , dN ),

E = diag(ε1, ε2, . . . , εN ),

Γ = diag(Γ1,Γ2, . . . ,ΓN ),

|γ〉 = (γ1, γ2, . . . , γN ).

(37)

Further, define an antisymmetric matrix SM through

WE + [E,SM ] =
Γ |γ〉 〈γ|+ |γ〉 〈γ|Γ

2
,

[E,WE ] = 0.
(38)

The matrix T obeys

T = WV + [V, SM ], [V,WV ] = 0, (39)

which is Eq. (4) with S → SM . We then require that
(Γ + 1) |γ〉 be an eigenstate of T

T (Γ + 1) |γ〉 = 0, (40)

where we set the corresponding eigenvalue to zero via
a shift of T by a multiple of the identity. This equa-
tion replaces the type-1 equation T |γ〉 = t |γ〉. Basis-
independent Eqs. (38-40) are equivalent to Eq. (34).

The next step is to express the constraints (35) in a
basis-independent form. To this end we introduce an
auxiliary type-1 family with the reduced Hamiltonian

Λ = x0 |γ〉 〈γ|+ E, (41)

where we have elected to transfer the parameter depen-
dence to the T -part as discussed in Sect. IV. We consider
this family at a fixed value of the parameter x = x0, so
we suppress the dependence on x0 in the reduced Hamil-
tonian, Λ(x0) → Λ, as well as in other members of the
auxiliary type-1 family.

By construction di are the eigenvalues of V and Γ2
i − 1

are the eigenvalues of a matrix Γ2 − 1 simultaneously
diagonal with V . Multiplying both sides of Eq. (35) by
γi and using Eqs. (14) and (16), we see that Eq. (35) is
equivalent to the following basis-independent equations

V |γ〉 =
1

x0

N−M∑
j=1

gj
〈j|j〉

|j〉 ,

(Γ2 − 1) |γ〉 =
1

x0

N∑
j=N−M+1

Pj
〈j|j〉

|j〉 .

(42)

It remains to trace parameters gi and Pi to an object
with known transformation properties under a change
of basis. By construction, the matrices V and Γ2 − 1
are simultaneously diagonal with V -parts of the auxiliary
type-1 family. We can therefore complement them to the
corresponding members of this family as follows

H1 = x0TV + V, H2 = x0TΓ + Γ2 − 1, (43)

where TV and TΓ are given by Eq. (9). In particular,
TV |γ〉 = TΓ |γ〉 = 0, so that Eq. (42) implies

H1 |γ〉 =
1

x0

N−M∑
j=1

gj
〈j|j〉

|j〉 ,

H2 |γ〉 =
1

x0

N∑
j=N−M+1

Pj
〈j|j〉

|j〉 .

(44)

Further, since |j〉 are eigenvectors of H1,2, upon multi-
plying each side of Eq. (44) by |i〉 〈i| we find

H1 |i〉 = gi |i〉 , H2 |i〉 = 0, 1 ≤ i ≤ N −M,

H1 |i〉 = 0, H2 |i〉 = Pi |i〉 , N −M < i ≤ N,
(45)

where we used 〈γ|j〉 = x−1
0 , which follows from Eqs. (14)

and (16). Finally, Eq. (45) implies

H1H2 = 0. (46)

Define G ≡ H1 + H2 to be a real symmet-
ric matrix with N unconstrained eigenvalues
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(g1, g2, . . . , gN−M , PN−M+1, . . . , PN ). In order to
guarantee that H(u) be real symmetric, however, the
numbers Pj and therefore the matrix G must be properly
scaled so that the right hand side of the second relation
in Eq. (35) is nonnegative[56].

We have therefore derived a basis-independent formu-
lation of Eqs. (34-36) in terms of unconstrained (apart
from the aforementioned scaling of G to ensure real Γ)
quantities (G,E, |γ〉 , x0). One works backwards from
Eq. (46) to Eq. (38) to derive (Λ, V,Γ, T ) in order to con-
struct ansatz type-M matrices H(u) = T + uV . In fact,
since Eq. (41) and Eq. (43) imply [G,Λ] = 0, we find it
more natural to select (Λ, G, |γ〉 , x0) and from them de-
rive (E, V,Γ, T ). We have no definitive argument, how-
ever, that favors one procedure over the other.

Let us now briefly recount the construction. Any real
symmetric matrix G allows us to define two matrices H1

and H2 that satisfy Eq. (46)

G = H1 +H2,

H1H2 = 0,
(47)

where the type M = rank(H2), the number of non-zero
eigenvalues of H2. Let Λ be a real symmetric matrix sat-
isfying [G,Λ] = 0. We derive E from Λ using Eq. (41),
which generates an auxiliary type-1 integrable family of
which Λ is the reduced Hamiltonian. Specifically, we ob-
tain the type-1 antisymmetric matrix S through Eq. (8).
The common eigenvectors |i〉 of Λ, H1 and H2 are given
by Eq. (16) in the eigenbasis of E.

The next step is to obtain V and Γ2 through Eq. (43).
To do this we need matrices TV and TΓ, for which it
is helpful to use the second parameter shift discussed in
Sect. IV. We define the x0-dependent type-1 antisym-
metric matrix S(x0) through Eq. (32). Then TV and TΓ

obtain from

TV = W1(x0) + [H1, S(x0)], [H1,W1(x0)] = 0,

TΓ = W2(x0) + [H2, S(x0)], [H2,W2(x0)] = 0,

TV,Γ |γ〉 = 0,

(48)

which when combined with Eq. (43) determines V and
Γ2. The final step is to determine ansatz T through
Eqs. (38-40). The choice of x0, |γ〉, Λ and H2 defines
the ansatz type-M commuting family, while the choice
of H1 specifies a matrix within the family.

Setting x0 = 0 seemingly simplifies the construction,
because then we have V = H1 and Γ2 − 1 = H2 and we
bypass the auxiliary type-1 step in the derivation. De-
spite this simplication, x0 = 0 actually produces type-1
integrable matrices H(u) = T + uV with M -fold degen-
erate V , which we prove in Appendix B. In this sense,
ansatz type-M matrices H(u) = T + uV , for which V is
generally non-degenerate, are deformations of degenerate
type-1 families with deformation parameter x0.

B. Probability distribution function for ensembles
of type-M > 1 integrable matrices

Despite being significantly more complex than type-1
matrices, ansatz type-M matrices are similarly generated
by the choice of two commuting random matrices G and
Λ and a random vector |γ〉. Therefore, the derivation for
the probability density function from Sect. III, restricted
to the GOE, also applies to ansatz matrices. Let ci, 1 ≤
i ≤ N be the N eigenvalues of G and λi those of Λ. Using
Eq. (26)

Pa(γ, c, λ) ∝ δ
(
1− |γ|2

)
×∏

i<j

|ci − cj ||λi − λj |e−
∑
k c

2
ke−

∑
k λ

2
k

= δ
(
1− |γ|2

)
P (c)P (λ),

(49)

where (c1, . . . , cN ) = (g1, . . . , gN−M , PN−M+1, . . . , PN )
in order to connect Eq. (49) to parameters appearing
in Eqs. (34-36). As noted earlier, one may adopt the al-
ternative viewpoint of selecting the matrix pair (G,E)
instead of (G,Λ), where there is no commutation restric-
tion on G and E. The PDF from this standpoint is then

Pb(γ, c, ε) ∝ δ
(
1− |γ|2

)
×∏

i<j

|ci − cj ||εi − εj |e−
∑
k c

2
ke−

∑
k ε

2
k

= δ
(
1− |γ|2

)
P (c)P (ε),

(50)

where εi are the eigenvalues of E. To be clear, Eq. (50)
and Eq. (49) are two different PDFs for ansatz matrix
parameters. To see this, we use Eq. (49) to write down
the corresponding Pa(γ, c, ε).

Pa(γ, c, ε) = δ
(
1− |γ|2

)
P (c)P (λ(ε, γ))

∣∣∣∣det
∂λ(ε, γ)

∂ε

∣∣∣∣ .
(51)

There is no a priori reason to expect the additional de-
pendence on |γ〉 to cancel out in Eq. (51), much less for
the resulting PDF to be equal to Eq. (50). It is inter-
esting to note that Ref. 43 shows that if εi are GOE or
GUE distributed, then λi will have the same character-
istic level repulsion, though this fact alone is insufficient
to prove Pa(γ, c, ε) = Pb(γ, c, ε). We have no objective
argument that prefers one distribution to the other, al-
though we view Pa(γ, c, λ) as the more natural choice due
to its closer relationship to the type-1 case.

Lastly, we stress that in order for ansatz matrices H(u)
to be real symmetric, the parameters Γi in Eq. (34)
must be real[56]. This requirement in turn places the
restriction on a given G that the corresponding Pi must
be scaled. Therefore, PDFs Eq. (49) and Eq. (50) are
strictly speaking only correct for complex symmetric
H(u) and must be modified for real symmetric H(u). For
example, one can write PRa (γ, c, λ) = Pa(γ, c, λ)I(γ, c, λ)
where I(γ, c, λ) is a binary indicator function for the con-
dition Γi ∈ R.
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VI. DISCUSSION

We derived two basis-independent constructions of in-
tegrable matrices H(u) = T + uV that were previously
parametrized in a preferred basis – that of V . All
type-1 matrices are constructed from Eqs. (8-9), while
ansatz type-M ≥ 1 are given by Eqs. (38-42) along
with Eqs. (43-46). The primary significance in obtain-
ing these basis-independent constructions is that one
may now speak of and study random ensembles of in-
tegrable matrices in the same way that one studies en-
sembles of ordinary random matrices in random matrix
theory (RMT), for which unitary invariance is a theoret-
ical cornerstone[2].

The two invariant constructions involve choosing a vec-
tor |γ〉 and two matrices: E and V such that [E, V ] = 0
for type-1, and Λ and G such that [Λ, G] = 0 for ansatz
type-M . We showed that the eigenvalues of E and V
come from independent GUE, GOE or GSE eigenvalue
distributions. The eigenvalues of Λ and G, on the other
hand come from independent GOE distributions. This
result is significant because Ref. 40 shows that correla-
tions between these matrix pairs induce level repulsion in
integrable matrices, which generally have Poisson statis-
tics.

It follows from the complete type-1 construction pre-
sented in Sect. II that if E, V and |γ〉 are selected
from the GUE, GOE or GSE, then the corresponding
integrable family of matrices Hj(u) has the same time-
reversal properties that define these three ensembles (the
“3-fold way”[1, 2]) for all u, and vice-versa. It is pos-
sible (though not yet proved) that a similar statement
is true for the natural mathematical and physical gen-
eralization of these ensembles, initiated by Altland and
Zirnbauer[44], that includes charge conjugation (particle-
hole) symmetry considerations as well. This “10-fold
way” is useful in particular for classifying topological in-
sulators and superconductors[45].

Given the known success of RMT in describing generic
(e.g. chaotic) quantum Hamiltonians, one can now also
study quantum integrability through the lens of an inte-
grable ensemble theory – integrable matrix theory (IMT).
More specifically, until now quantum integrability was
mainly studied through specific models satisfying some
loose criteria of integrability, whereas there now exists a
new tool based on broad and rigorous definitions to study
entire classes of quantum integrable models at once. One
immediate use of IMT is the study of level statistics in
integrable systems, a work soon to be released[40] by
the authors. Another recent development is the proof
that the generalized Gibbs ensemble (GGE)[41, 46, 47]
is the correct density matrix for the long-time averages
of observables evolving with type-1 Hamiltonians[48].
An interesting question is how well the GGE works for
type M > 1 matrices under different scalings of M
with N . Other possibilities include the characteriza-
tion of localization[39] and the reversibility of unitary
dynamics[49–52] generated by matrices in IMT.

There are two further open problems raised in this
work that we have not solved. One is the origin and
motivation for the ansatz type-M construction found in
Sect. V, which as it stands is verifiably correct but rather
ad-hoc in appearance. There ought to be an intuitive mo-
tivation for the construction as is the case for the clear
and concise type-1 approach found in Sect. II. Another
open problem is the complete invariant construction of all
type M > 3 matrices, of which only a subset is covered
by the ansatz. The reduced Hamiltonian approach to the
type-1 solution has an analogous generalization for type-
M which could conceivably cover all such matrices, but
the details involve working out the general constraints
arising from the restricted linear independence of matri-
ces in type-M families, which are nontrivial.
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Appendix A: Degenerate E implies u-independent
symmetry in type-1 matrices

In Sect. II we constructed N ×N type-1 families start-
ing from a vector |γ〉 and a matrix E. The proof that
this construction is exhaustive hinges on E being non-
degenerate. We show here that a degenerate E implies
a common u-independent symmetry prohibited by our
definition of an integrable family[38, 53].

Suppose E has a two-fold degeneracy and con-
sider Eq. (8) in the eigenbasis of E, so that E =
diag(ε, ε, ε3, . . . , εN ). We furthermore pick the degener-
ate subspace of E that diagonalizes WE . The off-diagonal
components of Eq. (8) read

γiγ
∗
j = (εi − εj)Sij , i 6= j. (A1)

This in particular implies that γ1γ
∗
2 = 0 and S12 is arbi-

trary. Without a loss of generality we let γ1 = 0.
Now we turn our attention to H(u) = T + uV , where

in this basis V = diag(d1, d2, . . . , dN ). Note that by def-
inition of type-1 linear independence, for any integrable
family there exists an H(u) such that the matrix V is
nondegenerate (this is the typical case, but it suffices
that there exist one such matrix). Looking again at off-
diagonal components, through Eq. (9) we find

Hij = Tij = (di − dj)Sij , i 6= j. (A2)

At this point, we can almost see that H(u) is block-
diagonal, since any S1j = 0 for j 6= 2. In fact, we can
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visualize H(u) through the following helpful schematic

H(u) =


× × 0 0 . . . 0
× × × × . . . ×
0 × × × . . . ×
0 × × × . . . ×
. . . . . . . . .
0 × × × . . . ×

 ,

where × represents possibly non-zero matrix elements.
To show that H(u) is indeed block-diagonal, we consider
the eigenvalue equation

T |γ〉 = t |γ〉 , (A3)

which is true by construction of Λ(u). Since γ1 = 0,
the first component of Eq. (A3) combined with Eq. (A2)
implies ∑

j 6=1

(d1 − dj)S1jγj = 0, (A4)

and S1j = 0 for j 6= 2 reduces this to

(d1 − d2)S12γ2 = 0. (A5)

As V is nondegenerate, Eq. (A5) requires either S12 = 0
or γ2 = 0. In the first case, H(u) is of the form

H(u) =


× 0 0 0 . . . 0
0 × × × . . . ×
0 × × × . . . ×
0 × × × . . . ×
. . . . . . . . .
0 × × × . . . ×

 ,

while in the second case S2j = 0, j 6= 1, from Eq. (A1)
and

H(u) =


× × 0 0 . . . 0
× × 0 0 . . . 0
0 0 × × . . . ×
0 0 × × . . . ×
. . . . . . . . .
0 0 × × . . . ×

 .

Either way, each member of the family H(u) reduces to
two such blocks indicating a u-independent symmetry.
For example, Ω made of two similar blocks that are dif-
ferent multiples of identity commutes with H(u).

Appendix B: Ansatz matrices at x0 = 0 are type-1

Here we prove that ansatz type-M matrices H(u) =
T + uV become type-1 at x0 = 0, which is most clearly
seen in the eigenbasis of V . We first review the con-
struction of ansatz matrices H(u) at x0 = 0. We then
construct a particular type-1 family of matrices H̄(u)
through Eqs. (8-9) and show that [H(u), H̄(u)] = 0, ∀u.

We first consider ansatz type-M matrices H(u) = T +
uV . At x0 = 0, Eq. (43) implies that V = H1 and
Γ2 − 1 = H2, so that[55]

V = diag(d1, d2, . . . , dN ),

= diag(g1, g2, . . . , gN−M , 0, . . . , 0),

Γ = diag(Γ1,Γ2, . . . ,ΓN ),

= diag(1, 1, . . . , 1,±
√

1 + PN−M+1, . . . ,±
√

1 + PN ),

E = diag(ε1, ε2, . . . , εN ).

(B1)

We note also that E = Λ at x0 = 0 by Eq. (41). Recall
that E arises in the ansatz construction from an auxiliary
type-1 problem, so E is nondegenerate without loss of
generality (see Appendix A).

With Eq. (B1) in mind, we also rewrite Eqs. (38-40),
the defining equations for the ansatz antisymmetric ma-
trix SM and for ansatz T , which are true at any x0

T = WV + [V, SM ], [V,WV ] = 0,

T
1

2
(Γ + 1) |γ〉 = 0,

(B2)

where SM follows from

ΩE + [E,SM ] =
Γ |γ〉 〈γ|+ |γ〉 〈γ|Γ

2
, [E,ΩE ] = 0.

(B3)

We now prove that ansatz type-M H(u) = T + uV
constructed with Eq. (B1) are in fact type-1 matrices.
Consider a type-1 integrable matrix H̄(u) = T̄ +uV̄ fam-
ily constructed through the methods of Sect. II, with the
substitution |γ〉 → 1

2 (Γ + 1) |γ〉 ≡ |γ̄〉. This particular
type-1 family is unrelated to the auxiliary type-1 family
appearing in the ansatz construction. In the following,
bars X̄ will indicate quantities X that involve the type-1
integrable matrix family. We have

V̄ = diag(d̄1, d̄2, . . . , d̄N )

|γ̄〉 〈γ̄| = W̄E + [E, S̄], [E, W̄E ] = 0,

T̄ = W̄V̄ + [V̄ , S̄], [V̄ , W̄V̄ ] = 0,

T̄ |γ̄〉 = 0,

(B4)

where E is the same as in Eq. (B3), and therefore
[E, V̄ ] = 0. In particular, the reduced Hamiltonian Λ̄(u)
(see Eq. (9)) of this type-1 family is

Λ̄(u) = |γ̄〉 〈γ̄|+ uE. (B5)

Recall that by construction [Λ̄(u), H̄(u)] = 0, ∀u.
Therefore, it suffices to show [Λ̄(u), H(u)] = 0, ∀u,
which combined with the non-degeneracy of Λ̄(u) implies
[H̄(u), H(u)] = 0, ∀u.

To this end, consider the commutator [Λ̄(u), H(u)]

[Λ̄(u), H(u)] =

= [|γ̄〉 〈γ̄| , T ] + u ([E, T ] + [|γ̄〉 〈γ̄| , V ]) + u2[E, V ].

(B6)
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The first term in Eq. (B6) vanishes by Eq. (B2), and the
third term in Eq. (B6) vanishes by construction. We then
have

[Λ̄(u), H(u)] = u ([E, T ] + [|γ̄〉 〈γ̄| , V ]) . (B7)

Eq. (B7) is true for all x0, but in order for its r.h.s. to
vanish, we must have (see Eqs. (2-3))

T = ΩV + [V, s], [V,ΩV ] = 0,

|γ̄〉 〈γ̄| = Ω̄E + [E, s], [E,ΩE ] = 0,
(B8)

where s is an antisymmetric matrix. Eq. (B8) is not true
for general x0, but we can show it is true at x0 = 0. From
Eq. (B2) and Eq. (B4) we actually have

T = WV + [V, SM ], [V,WV ] = 0,

|γ̄〉 〈γ̄| = W̄E + [E, S̄], [E, W̄E ] = 0.
(B9)

We now show that at x0 = 0, [V, SM ] = [V, S̄], so that
s = S̄ in Eq. (B8). This last step will complete the proof
that [H(u), H̄(u)] = 0. Consider the matrix elements
SM,ij and S̄ij in the eigenbasis of V , which obtain from

Eq. (B3) and Eq. (B4)

SM,ij =
γi(Γi + 1)γj(Γj + 1)

4

1

εi − εj

− γi(Γi − 1)γj(Γj − 1))

4

1

εi − εj
,

S̄ij =
γi(Γi + 1)γj(Γj + 1)

4

1

εi − εj
,

(B10)

but at x0 = 0, Eq. (B1) is true and therefore many Γi =
1. More precisely, we find

SM,ij = S̄ij , if i ≤ N −M, OR j ≤ N −M,

SM,ij 6= S̄ij , otherwise.
(B11)

Now using Eq. (B1) again, we see that di − dj = 0 if
SM,ij 6= S̄ij , where di is the i-th diagonal entry of the
diagonal matrix V . Therefore [V, SM ] = [V, S̄] at x0 = 0,
which implies Eq. (B8) holds with s = S̄, and therefore
[Λ̄(u), H(u)] = 0, ∀u. It follows that [H̄(u), H(u)] = 0,
∀u and H(u) is type-1 at x0 = 0.
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