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We present nanosecond timescale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma
transport and dynamics in a hohlraum with an applied external magnetic field, under conditions
similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation
allows for a complete treatment of the heat flow equation and Ohm’s Law, including Nernst advection
of magnetic fields. In addition to showing the prevalence of non-local behavior, we demonstrate
that effects such as anomalous heat flow are induced by inverse bremsstrahlung heating. We show
magnetic field amplification up to a factor of 3 from Nernst compression into the hohlraum wall.
The magnetic field is also expelled towards the hohlraum axis due to Nernst advection faster than
frozen-in-flux would suggest. Non-locality contributes to the heat flow towards the hohlraum axis
and results in an augmented Nernst advection mechanism that is included self-consistently through
kinetic modeling.

There has been recent interest in the role of applied
magnetic fields in high-energy-density plasmas [1–3] for
inertial fusion energy applications [4]. The Magneto-
Inertial Fusion Electric Discharge System has been de-
veloped to provide steady state magnetic fields for long
time-scales relative to the experiments. An experi-
ment on the Omega Laser Facility with a 7.5 T ex-
ternal axial magnetic field imposed on an Omega-scale
hohlraum measured a rise in observed temperature along
the hohlraum axis [5] and modeling showed that external
fields can guide hot electrons from laser-plasma interac-
tions [6] through the hohlraum, rather than the capsule
[7].

From Ohm’s Law, it has been shown that electron
heat transport advects such magnetic fields through the
Nernst effect [8–14] in addition to well-known processes
like “frozen-in-flow” and resistive diffusion. Dimension-
less numbers comparing the ratio of the magnitudes of
the Nernst term to the bulk plasma flow term, RN � 1
[10], and the Hall term, HN � 1 [13], suggest that
Nernst convection should be the dominant mechanism
for magnetic field transport in a hohlraum. Such a hot
and semi-collisional environment is, however, rich in non-
equilibrium effects that may complicate the magnetic
field dynamics.

Laser heating of the plasma results in steep tempera-
ture gradients, typicallyO(3 keV/50 µm). The collisional
mean-free-path of a 3 keV electron is O(10 µm), depend-
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ing on the plasma density. Since λmfp/L < 100, non-
locality can be expected to be important [15]. The steep
temperature gradients caused by intense laser heating in
a hohlraum have been shown to result in non-local heat
flow [16, 17]. Careful consideration of the electron pop-
ulation with 2vth < v < 4vth is required as these carry
most of the heat. Additionally, inverse-bremsstrahlung
heating of a plasma [18, 19] not only leads to deviations
from Braginskii transport [20], but also new transport
terms [21, 22]. Both non-locality and laser heating result
in modifications to the distribution function and non-
equilibrium behavior that result in breakdown of the clas-
sical transport approximations. In order to avoid those
approximations, a kinetic approach is necessary. This al-
lows for modeling of magnetic field dynamics through a
self-consistent and generalized Ohm’s Law derived with-
out distribution function approximations.

Using a Vlasov-Fokker-Planck-Maxwell formulation,
we show simulations of magnetized, 2D hohlraum-scale
plasma including ray-tracing of an Omega-like laser con-
figuration over a nanosecond time-scale. Therefore, this
simulation includes self-consistent treatment of the fully
kinetic Ohm’s Law and non-local effects in heat-flow.
The hohlraum is considered without a fuel capsule but
a gas fill throughout. Note that radiation transport and
“laser-plasma interactions” are neglected in these calcu-
lations. While these may modify the magnitude of the
electron temperature near the high density plasma, the
conclusions presented here primarily arise as a result of
the non-local dynamics prevalent within the low density,
optically thin, gas fill where the radiation effects will
be negligible [23]. With the use of Impacta [24, 25],
we studied the effect of non-equilibrium electron kinetics
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on thermal energetic and magnetic field dynamics of a
Omega-scale hohlraum with an externally imposed 7.5 T
magnetic field. We found that significant proportions of
the total heat flow are non-local. Additionally, presence
of inverse bremsstrahlung heating resulted in anomalous
heat flow towards the over-dense plasma of the hohlraum
wall. Therefore, the diffusive heat flow from the laser-
heated regions is not an adequate description of the ther-
mal energetics. Heat flow from the laser heating moves
the externally imposed magnetic field through Nernst ad-
vection. To examine the effects of Nernst advection in re-
lation to plasma bulk flow, we show modeling without an
electron contribution to the transport of magnetic field
in Ohm’s Law for comparison.

We find that magnetic field transport due to Nernst
flow results in significantly faster field cavitation than
via frozen-in-flux. The field cavitation occurs due to non-
local heat flow towards the hohlraum axis. Retention of
the distribution function allows for accurate modeling of
the magnetic field pile-up because the local approxima-
tion of the Nernst velocity underestimates the true veloc-
ity by a factor of 2. Nernst flow into the over-dense region
causes flux pile-up at the walls and results in magnetic
field amplification by a factor of 3.

The Vlasov-Fokker-Planck equation for electrons given
by[

∂

∂t
+ v · ∂

∂x
+

e

me
(E + v ×B) · ∂

∂v

]
f(v, r, t) =

− ∂

∂v
·{f(v, r, t)〈∆v〉}+ 1

2

∂

∂v

∂

∂v
: {f(v, r, t)〈∆v∆v〉},

(1)

is coupled with Ampere’s and Faraday’s Laws and a hy-
drodynamic ion fluid model to describe the plasma. The
code we use, Impacta [24, 25], uses a Cartesian tensor
expansion, with the distribution function expanded as
f(t, r,v) = f0 + f1 · v̂ + f

2
: v̂v̂ + . . . , where v̂(θ, φ)

is a unit velocity vector. This expansion can be trun-
cated in collisional plasma, as collisions smooth out an-
gular variations resulting in a nearly isotropic distribu-
tion, represented by f0. Higher orders are successively
smaller perturbations, f0 � f1 � f

2
etc. In the classical

limit that f0 is a Maxwell-Boltzmann velocity distribu-
tion, Impacta has been shown to agree with Braginskii’s
transport equations [24]. These simulations, however, are
collisional enough such that f

2
is neglected to an error

O(λmfp/L)2.
A 2-dimensional slice of a hohlraum is modeled in the

x-y plane where the y-axis represents the longitudinal
axis of the hohlraum and the fuel pellet would sit at the
origin. The hohlraum walls are represented by dense,
high-Z plasma located at approximately x = ±800 µm,
and the gas fill by low-Z plasma, with the overall Z distri-
bution described by Z(x, y) = 59.25+19.75 tanh(x−750

40 ).
Electron number density is described by ne(x, y) =
(2.98 + 2.93 tanh(x−750

40 )) × 1022 cm−3. The initial uni-
form temperature was kBTe0 = 160 eV. The initial uni-

FIG. 1: (a) Ray tracing profile overlaid onto laser
intensity profile (W/cm2) at t = 0. (b) Electron Plasma

Temperature (keV), (c) Externally applied magnetic
field (T), (d) Nernst Velocity (vN/vth0) at t = 250 ps.

form magnetic field was B0(ŷ) = 7.5 T and ln Λei = 5.4.
To convert from the normalized units, ne0 = 5 × 1020

cm−3 and vth0/c = 0.025 are used. The laser parameters
resemble those of ref. [5]. The ray tracing package tracks
the three beam cones that enter at 21, 42, and 59 deg
from the axis, to their respective refraction points.

The rays and initial heating profile are shown in fig. 1a.
Figure 1b shows the temperature profile after 300 ps of
laser heating. Figure 1c shows the cavitation and am-
plification in the in-plane magnetic field profile caused
by intense laser heating. The Nernst velocity, shown in
fig. 1d, is directed towards the hohlraum axis in the low
density gas fill and into the hohlraum wall in the Au
plasma. In the rest of this paper, we show that Nernst
flow is primarily responsible for the magnetic field profile
seen in fig. 1c.

Inverse bremsstrahlung heating of plasma results in a
super-Gaussian electron distribution [18], which modifies
the transport coefficients [21, 26, 27] and introduces new
terms including an anomalous heat flux up a pressure
gradient qn, represented by the last term in

qe = −Te
e
ψ′ · j−

(
κ+ neφ

)
· ∇Te − Teφ · ∇ne , (2)
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FIG. 2: (a) Heat flow (mene0v
3
th0) (b) 1− qeq. (2)/qcode

(c) v5(fcode − fMB) (d) v5(fcode − fSG)
@ x = 0.4 mm, y = −0.6 mm,

m = 2.625 , t = 100 ps.

where ψ, φ and κ are transport coefficients. These are
functions of the local magnetic field, current, and tem-
perature gradients and density gradients, as described in
ref. [21]. Equation (2) recovers the calculation from ref.
[26] in the limit where f0 is a Maxwell-Boltzmann veloc-
ity distribution. qn increases as m > 2 increases, where
m is the power of the super-Gaussian distribution func-
tion defined by fSG(v) = C(m)ne/v

3
th exp (− (v/αevth)

m
)

where αe = [3Γ(3/m)/2Γ(5/m)]1/2 and C(m) =
m/4πα3

eΓ(3/m).

In these simulations, by finding the best fit of a super-
Gaussian distribution to the low-velocity part of f0, m
reaches a maximum of 3.1 near the centers of the laser
heated regions, but varies spatially and temporally, thus
requiring the preservation of the distribution function at
each point throughout the simulation for accurate cal-
culation of the heat flow. Using theory detailed in refs.
[21, 27], the heat flow can be modified in hydrodynamics
codes to include this effect. However, the distribution is
not precisely a super-Gaussian [28] due to other effects
such as non-locality, magnetic-fields, and collisions and
this fix remains an approximation.

A post-processed calculation of the anomalous heat
flow shows that there is heat flow towards the hohlraum
wall due to the φ∇Pe term and this approximately re-
sults in a 10% correction to the diffusive heat flow i.e.
κ∇Te.

A majority of disagreement between the heat flow from
the code and the post-processed heat flow from all three
terms from eq. (2) stems from the strongly non-local heat
flow that is prevalent in the hohlraum. Figure 2b shows
a 2D profile of a metric for quantifying the discrepancy
between the two heat flows, described by the relative dif-
ference between the super-Gaussian-approximation and
the exact heat fluxes, 1− qeq. (2)/qcode.

The regions within black contours have ±25% agree-
ment between the two heat flows. The white con-
tours correspond to regions of high non-locality where
the super-Gaussian transport calculation is an underap-
proximation, while the blue contours correspond to re-
gions where the heat flow is significantly overcalculated.
Heat flow from regions near the temperature hotspots,
±50 µm, is overestimated by the super-Gaussian calcula-
tion while the heat flow further away from the hotspots,
±200 µm, is underestimated, as expected from the exis-
tence of non-locality. The regions of relative agreement
are ± 50− 200 µm from the hot spots.

Consideration of the in-plane electron distribution
function f(θ, v) = f0+f1xv̂x+f1y v̂y can show the signifi-
cance of inverse-bremsstrahlung heating and non-locality.
Since q ∝

∫
v5 f(θ, v) v̂(θ, φ) dv sin θdθdφ, the important

contributions to the heat flow may be best illustrated by
the function v5f(θ, v). Figure 2c and d show the dif-
ference between the calculated distribution v5f and (c)
a Maxwell-Boltzmann v5fMB and (d) a super-Gaussian
with best fit to m, both with Te((x = 0.4, y = −0.6).
Figure 2c shows that f > fMB in the region 2 < vth < 4
and f < fMB in the region 4 < vth < 6, which is char-
acteristic of inverse-bremsstrahlung heating. Calculating
the heat flow contribution difference between the real dis-
tribution and the best-fit super-Gaussian (m ≈ 2.625 in
this case), shows that the inverse-bremsstrahlung model
does not replicate the distribution function fully due to
anisotropy from the flow and non-locality. The enhanced
tail and shifted center in the 180◦ direction is characteris-
tic of the (non-local) heat flow down the density gradient
while the colder return flow is a result of the features in
the 0◦ direction.

As shown in ref. [9], the Nernst velocity is given by

vN =
〈vv3〉
2〈v3〉

+
j

ene
, (3)

≈
κ · ∇Te
5/2Pe

. (4)

It can be shown for this geometry that By has no field
generation terms from the curl of Ohm’s Law and there-
fore, can be transported through (vN + C)×B term in
addition to resistive diffusion. Over 0.5 ns, the simulation
shows that there is magnetic field cavitation resulting in
flux pile-up on the hohlraum axis and compression at
the hohlraum wall due to the energy deposition from the
laser. Pile-up of magnetic flux results in a 25 T magnetic
field, more than 3 times the strength of the initial 7.5 T
field.
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FIG. 3: B (T) after 50 ps with only plasma bulk flow
(a) and full Ohm’s Law (b).

B after 400 ps with only plasma bulk flow (c) and full
Ohm’s Law (d)

In order to determine the effect of Nernst advection on
the magnetic field evolution, simulations with and with-
out the B × f1 term in the f1 equation were compared.
This term is responsible for the interaction of kinetic elec-
trons with the magnetic field, therefore, responsible for
the Nernst and Hall terms in Ohm’s Law as well as the
Righi-Leduc effect in the heat flow equation. Simulations
agree with the previous determination that j � vN be-
cause HN � 1 and the Hall effect can be neglected. The
magnetic field after 50 ps without and with full Ohm’s
Law treatment is shown in fig. 3a and fig. 3b, respectively.
The field has been expelled from the laser heated region
in both cases but the magnitudes differ. It is not evident
in fig. 3a since the field is only modified by a few per-
cent by the plasma bulk flow. Thermal energy transport
results in a more noticeable change immediately over 50
ps.

An estimate of the time-scale for plasma bulk flow to
transport frozen-in magnetic fields to the hohlraum axis
is given by, rH

Cs
≈ rH√

kBTe/Mi

∼ 2 ns. Figure 3d shows

that including the Nernst effect results in magnetic field
cavitation on a faster time-scale than can be expected due
to field advection only through bulk plasma flow in fig. 3c.

Given a 7.5 T initial field strength, the magnetic field
on the axis grows to 30 T within 0.5 ns. Figure 3d also
shows that the magnetic flux pile-up in the hohlraum wall
occurs due to the Nernst effect, increasing to a strength
of nearly 25 T towards the hohlraum wall.
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FIG. 4: Magnetic field at the hohlraum axis decreases
as applied field strength is increased because the Nernst
effect is mitigated, preventing the magnetic field from
accumulating near the hohlraum axis. (t = 300 ps).

The discrepancy between the approximated and exact
Nernst velocity also decreases.

We ran a series of simulations with varying initial ap-
plied field By0 to understand how field strength affects
the hohlraum dynamics. Figure 4 shows results of these
simulations suggesting the limiting behavior as the mag-
netic field is increased is given by

lim
By0→∞

By−axis/By0 = 1. (5)

The maximum value of vN in the domain of magnetic
field advection towards the axis (−0.5 mm < x <
0.5 mm) is chosen. This trend can be explained by the
observed reduction in the Nernst velocity towards the
hohlraum axis as the magnetization increases (also shown
in fig. 4), which quenches magnetic field transport. These
vN (ωτ) curves are in line with other predictions [9, 13, 21]
that vN ∝ 1/ωτ for ωτ � 1. Figure 4 also shows that
the exact Nernst velocity from eq. (3) is consistently, and
up to 2×, larger than what the local approximation from
eq. (4) would predict for Te, ne, and B profiles at 300 ps.
This discrepancy decreases at higher field strengths due
to magnetic field induced localization of the heat flow
carrying electrons.

The degree of magnetic flux pile up in the hohlraum
wall, however, is not affected strongly by the increase in
magnetic field strength because ωτ ∼ n−1e . The magni-
tude of maximum field strength in the wall ranges from
2 < By/By0 < 3 for 1 < By0 < 100 T.
Impacta is in agreement with the Hydra modeling

performed in [5] with respect to the hydrodynamic mo-
tion of the plasma only. In that sense, the hydrodynamic
ion model that is coupled to the electron transport model
in Impacta agrees. While it is not possible to compare
the modeling in the two works directly, the Impacta
modeling seeks to highlight the fact that magnetic field
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transport in [5] is inadequate because it does not include
Nernst convection.

We have shown Vlasov-Fokker-Planck modeling of ex-
ternal magnetic fields of 1-100 T imposed upon an
Omega-scale hohlraum. Magnetic flux pile-up increases
the magnetic field magnitude by a factor of 3 for a 7.5
T magnetic field. Additionally, the heat flow is respon-
sible for magnetic field cavitation on a faster time-scale
than that from the bulk flow of the plasma. Not only
is the heat flow strongly non-local, it also has distinct
signatures of inverse bremsstrahlung heating. The abil-
ity to preserve distribution function information through
use of a kinetic code allows to model the heat flow accu-
rately. Full Vlasov-Fokker-Planck-Maxwell treatment of
the system enables accurate modeling of magnetic field
dynamics. We have shown that Nernst flow is the dom-
inant mechanism for magnetic field transport and is re-
sponsible for the increase in field strength, up to 100 T
for a initial 100 T field, in the wall as well as cavitation of
the magnetic field towards the hohlraum axis. The field
cavitation is mitigated at higher field strengths. Fur-
thermore, the Nernst velocity is up to 2× larger in self-
consistent non-local calculations than would be predicted
by diffusive transport.

These findings suggest that attempting the same cal-

culation with diffusive transport would result in signif-
icantly different B & Te evolution. Accurate modeling
of these quantities has implications for laser plasma in-
teractions [5, 6] and hot electron propagation [7] in the
gas fill and understanding hot spots on the dense plasma
that generate X-rays. The kinetic electron transport
and B field physics presented here could affect details
of X-ray drive if incorporated into full-scale radiation-
hydrodynamics modeling (including reduced phenomeno-
logical laser-plasma interaction models) of indirect drive
with externally applied B-field.
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