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Ionic transport coefficients for dense plasmas have been numerically computed using an effective
Boltzmann approach. We have developed a simplified effective potential approach that yields ac-
curate fits for all of the relevant cross sections and collision integrals. Our new results have been
validated with molecular dynamics simulations for self-diffusion, interdiffusion, viscosity, and ther-
mal conductivity. Molecular dynamics has also been used to examine the underlying assumptions
of the Boltzmann approach through a categorization of behaviors of the velocity autocorrelation
function in the Yukawa phase diagram. Using a velocity-dependent screening model, we examine
the role of dynamical screening in transport. Implications of these results for Coulomb logarithm
approaches are discussed.
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I. INTRODUCTION

Coulomb collisional processes in plasmas occur in
many scenarios, ranging from particle and energy trans-
port (e.g., self-diffusion, interdiffusion, thermal diffusion,
viscosity, thermal conduction, stopping power, tempera-
ture relaxation and electrical conduction) to wave damp-
ing, particulate drag, wake formation, and others. Cen-
tral to the description of such processes is the Coulomb
logarithm (CL), which is usually defined as

ln Λ = ln

(
bmax

bmin

)
. (1)

Here, bmax and bmin are the maximum and minimum im-
pact parameters, respectively. These parameters arise
through truncating both limits in an integral (see, e.g.,
(5) below) over the impact parameter of the form

∫
db/b;

these integrals would otherwise be divergent. The impor-
tance of knowing the correct CL cannot be overestimated,
as the CL is used in a variety of applications, includ-
ing numerical methods, such as direct-simulation Monte
Carlo (DSMC) [1], multilevel Monte Carlo (MLMC)
[2], particle-in-cell (PIC) [3], and continuous-time Monte
Carlo (CTMC) [4] methods, and modeling of physical
systems, including stellar envelopes [5], dusty plasmas
[6], ultracold plasmas [7, 8], inertial confinement fusion
(ICF) [9–14], laser ablation [15], and star clusters [16],
among other physical systems.

Typically, bmax is chosen to be a screening length λ,
and bmin is chosen to be the distance of closest approach
D ≈ Z1Z2e

2/T , where Zie is the ionic charge and T
is the temperature in energy units. The need to sup-
ply these two parameters can be traced to two inde-
pendent approximations. In the binary scattering de-
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scription of the Boltzmann equation, the relevant inte-
grated cross sections for the Coulomb interaction are di-
vergent owing to the long-range nature of the Coulomb
potential. This divergence as b → ∞ is attenuated
by introducing many-body screening into bmax ex post
facto. That is, the Boltzmann equation, or any more
approximate kinetic equation obtained from it, requires
the use of an effective potential between charged par-
ticles. Such many-body screening in Coulomb systems
was first described by Debye and Hückel (DH) in 1923
[17] in the context of electrolytes and was generalized
by Pines and Bohm in 1952 [18] in the context of the
dynamical properties of dense electron gases. However,
the Boltzmann formulation does allow for an impact pa-
rameter of b = 0; thus, no bmin cutoff is needed, and
strong scattering is well described. In the weak-scattering
limit of the Boltzmann equation, one obtains the Landau
(Fokker-Planck) equation [19], which introduces an addi-
tional divergence at b = 0, thereby requiring the bmin

cutoff. This divergence is handled by noting that the
strength of scattering is bounded by trajectories at the
distance of closest approach D. The Landau approach
thereby includes strong scattering, again ex post facto.
Today, we understand this situation in the context of ki-
netic theory, as illustrated in Fig. (1). The Boltzmann
branch, which contains the Landau equation as a sub-
set, is the binary scattering approximation of the full
BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hier-
archy [20, 21] and, for this reason, requires an effective
potential to handle Coulomb systems. The choices bmax

and bmin in (1) implicitly reflect some choice of effective
potential.

Alternatively, kinetic equations can be obtained via a
correlation expansion that innately includes screening;
that is, the effective potential arises naturally. Signifi-
cant conceptual progress was made in 1960 by Lenard
[22] and Balescu [23] through their development of such
a parallel branch of kinetic theory (parallel to that of
Boltzmann), yielding two complimentary approaches, as
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FIG. 1. The relevant structure of kinetic theory is shown.
From a many-body Hamiltonian, one either solves the equa-
tions of motion directly, as in molecular dynamics, or through
an approximation of the BBGKY hierarchy [20, 21]. Most
approximations made in the latter case are of two types, ei-
ther binary-collision approximations, which handle strong col-
lisions well using a cross section, or correlation expansions,
which include many-body physics only in the weak-scattering
limit. Here, we aim to exploit both avenues via the use of an
effective potential, motivated by the right (Lenard-Balescu)
branch, in a numerical cross section from the left (Boltzmann)
branch. Finally, this approach is compared with the Landau
(weak, binary-scattering) approach, which uses a so-called
Coulomb logarithm.

shown in Fig. (1). In Lenard-Balescu (LB) approaches,
many-body effects arise naturally through a dynamical
dielectric response [18] that gives rise to an effective po-
tential of the form v(k)/ε(k, ω), and thus a bmax need not
be specified; however, because the correlation expansion
is perturbative, a bmin divergence remains for classical
systems [24].

A sense of the importance of these issues can be seen by
choosing λ to be the classical DH screening length λDH =√
T/4πnZ2e2 and noting that ln Λ ≈ ln(1/

√
3Γ3/2),

where Γ = Z2e2/aT is the Coulomb coupling parameter
in terms of the ion-sphere radius a = (3/4πn)1/3, where
n is the number density; the CL becomes negative when
Γ > 3−1/3 (≈ 0.7), suggesting that CL-based models fail
significantly near and above this value. Because of the
challenge of directly measuring collisional processes in
high energy-density experiments in this coupling regime,
researchers have turned to comparisons with the results
of molecular dynamics (MD) codes incorporating higher-
fidelity physics; in such codes, the trajectories of parti-
cles in many-body systems are computed directly [25–27].
This approach is shown in the top branch of Fig. (1).

Given the structure of kinetic theory [21] shown in
Fig. (1) and the limitations of the two complimentary

branches, a fully convergent kinetic theory (CKT), which
provides a self-consistent treatment of both strong scat-
tering and screening without any adjustable parameters,
is desired. In the seminal work of Liboff in 1959 [28],
the Chapman-Enskog (CE) solution of the Boltzmann
equation with an effective potential was analyzed to find
effective CLs that include strong scattering and screen-
ing while allowing the full integration over impact pa-
rameters (that is, bmin = 0 and bmax = ∞). Nearly
simultaneously, Kihara [29] also emphasized the impor-
tance of directly including “potentials of mean force” [30–
33] to describe irreversible transport processes in binary-
scattering calculations rather than a more naive choice
for the effective potential. In 1962, Aono [34] extended
these ideas to include both strong scattering and dynam-
ical screening, thereby yielding a convergent result that
improves upon the static screening assumptions of Liboff
and Kihara and is more consistent with predictions of the
LB approach. We now understand that the approaches
of Liboff, Kihara, and Aono are combinations of the two
branches in Fig. (1) that include properties of the Boltz-
mann equation at a small impact parameter and the LB
equation at a large impact parameter, and these works
laid the groundwork for more formal theoretical develop-
ments by Frieman and Book [35], Kihara and Aono [36],
and Gould and DeWitt [37], all of which combine aspects
of the Boltzmann and LB branches.

More recent developments in Coulomb collisional pro-
cesses in the spirit of CKT have been proposed by Brown,
Preston, and Singleton [38], whose findings are in good
agreement with MD results [25]. None of these works,
however, are applicable across coupling regimes. A semi-
nal contribution, in the context of stellar-evolution mod-
eling, was that of Muchmore [39], who both numeri-
cally computed cross sections with an effective poten-
tial and proposed a coupling correction in the screening
length, which will be discussed in detail below. This
particular model was then numerically explored and tab-
ulated by Paquette et al. (PPFM) [5]. In a differ-
ent, but similar, treatment of the screening length in
the context of temperature relaxation, Gericke, Murillo,
and Schlanges (GMS) [9, 40] proposed an effective CL
that included strong coupling corrections in the effec-
tive screening length used in bmax; comparisons with
MD simulations [25, 26] revealed the accuracy of such
an effective-potential approach across coupling regimes,
and this model will also be discussed in more detail be-
low. The Muchmore, PPFM and GMS models are all
based on choosing an optimal effective screening length in
a Yukawa-like effective potential. Such approaches have
recently been extended by Grabowski et al. [27] to the dy-
namical process of charged-particle stopping across cou-
pling regimes, using a hypernetted-chain approach that
directly computes the effective potential and yields ex-
cellent agreement with non-equilibrium MD simulations,
as well.

In parallel with these CKT developments, the Lan-
dau (Fokker-Planck) approach was extended by many
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authors, including Chandrasekhar in 1942 [41], Cohen,
Spitzer, and Routley in 1950 [42], and Rosenbluth [43] in
1957, and in all of these approaches, the doubly divergent
form was retained (1). More recently, in the context of
ICF, Li and Petrasso [13] have derived the leading-order
(inverse CL) corrections to the Fokker-Planck equation
and have applied these corrections to stopping power [14];
however, while yielding a correction to the Fokker-Planck
equation, the basic CL is unmodified and remains an in-
put parameter. In contrast with these Boltzmann-based
approaches, additional, recent results have built upon
the LB branch. Strong scattering (associated with bmin)
and coupling are incorporated in these approaches with
local field corrections; Ichimaru and coworkers [44, 45]
have developed CKTs based on such an approach. In re-
lated work, an effective CL for the one-component plasma
(OCP) valid across coupling regimes has been proposed
by Khrapak [46]; this CL is based on a modification of
the effective bmin that accounts for regions of negative
density in the DH theory.

In this work, we build upon these recent results by
first constructing effective potentials, as suggested in the
works of Kihara, Muchmore, GMS and Grabowski et al.,
and we compute ionic transport coefficients using a CE
approach similar to those of Liboff and Muchmore. The
paper is structured as follows. In Sec. II, we introduce
the Boltzmann formalism [5, 27, 39, 40] in the CE [47]
expansion to assess the importance of treating the cross
section directly. In addition, we review the pathologies
associated with neglecting many-body effects in a bare
Coulomb collision. The concept of an effective poten-
tial is introduced in Sec. III, in which the many-body
problem is cast as an effective two-body problem. We
then numerically compute cross sections and collision in-
tegrals in Sec. IV and present simple, accurate fits to the
calculations. These results are compared with various
formulations of the CL to reveal the relative importance
of specific approximations made in the CL derivation.
In Sec. V, we explore the implications of our results for
several transport coefficients in the context of various
phenomena; we include in this section a validation of our
results with MD and several new results for self-diffusion.
Because our results are based on an effective Boltzmann
equation, we explore the validity of the binary collision
approximation in Sec. VI by examining transitions be-
tween different behaviors of the velocity autocorrelation
function. We additionally explore the role of dynamical
screening on transport in this section using a velocity-
dependent screening model. Finally, concluding remarks
are presented in Sec. VII.

II. THE COULOMB LOGARITHM

In a plasma, the bare interaction between two particles
with charges Zie and Zje, respectively, is given by the

Coulomb potential (4πε0 = 1)

uij(r) =
ZiZje

2

r
. (2)

Here, the charges are either the bare nuclear charge or
the mean ionization state; see App. A for a more detailed
discussion. For the remainder of this work, we use atomic
units such that e = ~ = me = 1; however, these variables
will occasionally be used to provide context. The result-
ing scattering angle of a collision can be calculated as

θij(b, v) = π − 2b

∫ ∞
r0

dr

r2
√

1− ( br )2 − 2
µijv2

uij(r)
, (3)

where b is the impact parameter of the collision, v is the
relative velocity between the particles, and the reduced
mass is given by µij = mimj/(mi +mj), with mk being
the mass of the kth particle. The lower limit of integra-
tion r0 is the distance of closest approach, which is the
largest root of the equation

1−
(
b

r0

)2

− 2

µijv2
uij(r0) = 0. (4)

The scattering angle can, in turn, be used to calculate
the momentum-transfer cross sections

σ
(n)
ij (v) = 2π

∫ ∞
0

db b [1− cosn(θij(b, v))] . (5)

For first-order CE theory, only the values n = {1, 2} are
needed. Finally, the relevant collision integrals are given
by

Ω
(n,m)
ij =

(
T

2πµij

)1/2 ∫ ∞
0

dV e−V
2

V 2m+3σ
(n)
ij (V ), (6)

V 2 =
µijv

2

2T
, m = {1, 2, 3}. (7)

A discussion of how (6) is used in transport models is
given in App. B. For the remainder of this work, the
subscripts (ij) will be omitted unless required to dis-
tinguish between interactions between different types of
species. Using (3), the relevant scattering angle of a bi-
nary (Coulomb) collision is then

θC(b, v) = 2 sin−1

(
1√

1 + ε2b2

)
, ε =

µv2

ZiZje2
. (8)

If we then use (8) to calculate the momentum-transfer
cross section, we encounter a divergence as b→∞ in (5).
If this upper limit is instead truncated at some bmax = λ,
the integration of (5) gives finite cross sections

σ
(1)
C (v) =

(
4π

ε2

)
1

2
ln
(
1 + ε2λ2

)
, (9)

σ
(2)
C (v) =

(
4π

ε2

)[
ln
(
1 + ε2λ2

)
+

ε2λ2

1 + ε2λ2

]
. (10)
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FIG. 2. Collision trajectories for various impact parameters in
the reference frame of one of the particles placed at the origin.
All lengths are in units of the screening length, and all trajec-
tories are for the same fixed initial energy of E = 4Z2e2/λ.
In both panels, the dashed line indicates the trajectory for a
full Yukawa potential. In the top panel, the solid lines are
trajectories computed by assuming a pure Coulomb potential
everywhere for particles that enter with impact parameters
below unity (in these dimensionless units), as indicted by the
green region, while particles not entering in this range of im-
pact parameters experience no force anywhere. In the bottom
panel, the impact parameter cutoff is replaced by a distance
cutoff (below the screening length), as indicated by a circular
green region, and a potential of zero elsewhere; this is the
TC model described in the text. Each of the three trajectory
types yields different scattering angles, with some improve-
ment offered by the TC model over the more common impact
parameter cutoff model.

Note that no notion of bmin is required to bound this cal-
culation. Before moving on, we should understand what
this approximation means physically. It should be em-
phasized that introducing a truncated range in the im-
pact parameter is not equivalent to truncating the range
of the Coulomb interaction. As seen in Fig. (2), all par-
ticles with a sufficiently small impact parameter will in-
teract throughout their entire trajectories, while the re-
maining particles will never interact with each other.

If one were instead to approximate the system with
a truncated-Coulomb (TC) interaction, where uij(r) =
(ZiZje

2)/r for r < λ, and uij(r) = 0 otherwise, the
scattering angle would then take the form

θTC =2 cos−1

(
(1 + 2w2)ρ√

1 + 4(1 + w2)w2ρ2

)
, (11)

ρ =
b

λ
, w2 =

µijλv
2

2ZiZje2
. (12)

FIG. 3. The reduced cross section σ(1)/(2πλ2) as a function

of the dimensionless velocity w = (µλ/2ZiZje
2)1/2v for trun-

cated Coulomb interactions (green, lower curve) and Coulomb
interactions using the truncated impact parameter bmax = λ
(blue, upper curve). While the two interactions result in qual-
itatively similar cross sections, these cross sections differ for
moderate values of w.

For all impact parameters with ρ > 1, the angle is not
defined and should be taken as zero, because there is no
interaction in this range. Note that equation (3) cannot
be used to calculate this angle, as it assumes a contin-
uous interaction over all distances. The corresponding
momentum-transfer cross section can also be calculated
as

σ
(1)
TC = 2πλ2

[
ln
(
1 + 4(1 + w2)w2

)
4(1 + w2)w2

]
. (13)

A similar expression can be obtained for σ
(2)
TC but has

been omitted for brevity. We have plotted σ
(1)
TC/(2πλ

2) as
a function of the dimensionless velocity w in Fig. (3) and
compared it to the corresponding Coulomb interaction
in (9). While qualitatively similar, the behaviors of the
cross sections differ at intermediate values of w.

Before Equation (6) is used to calculate the collision in-
tegrals for binary Coulomb interactions, it is common to
make two additional approximations. First, the explicit
velocity dependence of the logarithms in (9) is usually
neglected and replaced by some thermal velocity

σ
(1)
th (v) =

(
4π

ε2

)
ln Λhyp, (14)

ln Λhyp ≡
1

2
ln

(
1 +

(
2Tλ

ZiZje2

)2
)
. (15)

Next, weak coupling is also assumed in the argument of
the logarithm to yield

σ(1)
wc (v) =

(
4π

ε2

)
ln Λ, ln Λ ≡ ln

(
2Tλ

ZiZje2

)
. (16)
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FIG. 4. Ratio of the collision integral Ω
(11)
C (velocity-

dependent CL), calculated using (9), to the collision integral

Ω
(11)
th (velocity -independent CL), calculated using (14), as

a function of the plasma parameter g = ZiZje
2/(λT ). The

thermal-velocity approximation within the CL is a singular
perturbation and thus approaches the Coulomb form loga-
rithmically as g → 0. This illustrates the magnitude of the
error that results from neglecting the full velocity dependence
of the cross section.

Here, both (14) and (16) contain CLs. The latter CL
in (16) is in the form of (1), where bmax = λ and
bmin = ZiZje

2/(2T ), which can be negative for certain
parameters. As the CL in (14) still contains some infor-
mation about the hyperbolic trajectories of the collisions
(rather than straight-line trajectories), positivity of the
logarithm is maintained. Either form results in the fol-
lowing simple expression for the first-order collision inte-
gral:

Ω(11) =

√
πZ2

i Z
2
j e

4

2
√

2µT 3
ln Λ; (17)

however, each CL can introduce spurious and even patho-
logical physics into the model. As already mentioned,
the weak-coupling approximation seen in (16) can yield
negative cross sections and thus negative collision inte-
grals for sufficiently large values of the plasma parameter
g = ZiZje

2/(λT ) such that g > 2. Second, the thermal
approximation in (14), while always positive, lacks a ve-
locity dependence in the logarithmic term that cannot
be approximated with a constant value in the collision
integrals even for g � 1. To illustrate this issue, we

have calculated Ω
(11)
ij using both the velocity-dependent

cross section in (9) and the thermally approximated cross
section in (14) and have then plotted the ratio of these
two quantities as a function of g in Fig. (4). It can be
seen that the thermal approximation is a singular per-
turbation of the collision integral, and thus, there is a
significant deviation from the true result for any finite g.

To summarize this section, the derivation of the CL
(from a Boltzmann perspective) requires a series of un-
controlled approximations; our numerical results will
shed light on their applicability.

III. EFFECTIVE POTENTIALS IN PLASMAS

As mentioned in Sec. I, no notion of bmin is needed in
(1) within a Boltzmann description (i.e., bmin = 0); how-
ever, bmax is still required to bound the cross sections.
The presence of bmax and its connection to screening re-
veal that transport in plasmas is inherently a many-body
process. Rather than generalize the Boltzmann equation
by including many-body collisions directly with higher-
order correlation functions [48, 49], it is far more practical
to cast the many-body problem in terms of an effective
two-body problem, which in turn allows (3-6) to be used.
This effective Boltzmann (EB) approach, which was de-
veloped by Liboff [28], Kihara [29] and Aono [34], has the
additional advantage of including contributions from the
full density. At the lowest order, the presence of a screen-
ing length can be rigorously incorporated through an ef-
fective pair potential described by the so-called screened
Coulomb (SC; or Yukawa) interaction

ueff(r) =
ZiZje

2

r
e−r/λ, (18)

where λ is the screening length. While (18) is obviously
an approximation, it still represents the leading-order be-
havior of a screened interaction, and in the most im-
portant plasma regimes of weak to moderate coupling,
this form is likely to be accurate. The SC potential has
several additional benefits. First, we wish to determine
which screening length to use in the Boltzmann context,
and it is crucial that this length be well defined, as it is
in the SC model. Second, such a choice allows all of the
numerical results of this work to be presented, discussed,
and fit to a single functional form, with the choice of λ
left to the context in which the results will be used.

In our present work, we will additionally assume a
plasma with ions being linearly screened by background
electrons (or any background species), and hence the pair
interaction between two particles is given by

uij(r) =
ZiZje

2

r
e−r/λe . (19)

Here, the electron screening length λe is not to be con-
fused with the screening length in (18), which would in-
clude the screening effects from ions, as well. For ex-
ample, it is (19) that would be used in MD or Monte
Carlo simulations, where the ionic screening would be
included through the many-body calculation. Further-
more, Equation (19) can be thought of as the first-order
generalization of a pure Coulomb system, which is lack-
ing in any screening from background electrons, and the
results for this special case can be obtained by simply
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letting λe → ∞. However, plasmas in which electron
screening is negligible are rare in nature.

A. Effective Screening Length

The choice of the screening length λ is crucial to ac-
curately encode the many-body physics lacking in binary
collision models, and there are many potential choices.
For ionic collisions, an intuitive choice is the electron
screening length, or λ = λe. However, to construct an ef-
fective potential that includes the surrounding medium,
a better choice might be the total screening length

λ = λtot =

(
1

λ2
e

+
1

λ2
ion

)−1/2

, (20)

which includes both electrons and ions. In HED envi-
ronments, specific choices for these lengths are the DH
theory for N ionic species,

λi =

(
T

4πZ2
i e

2ni

)1/2

, (21)

λion =

(
N∑
i=1

1

λ2
i

)−1/2

, (22)

where ni is the number density of the ith ionic species,
and the (nonrelativistic) Thomas-Fermi (TF) length for
the electrons,

λ−2
e ≈ λ−2

TF =

√
8T

π
F−1/2(βµe), (23)

where the electron chemical potential µe is related to the
electron density ne through

ne =

N∑
i=1

Zini =

√
2T 3

π2
F1/2(βµe), (24)

and β = 1/T is the inverse temperature (in energy
units). The TF screening length naturally includes de-
generacy and recovers the electron DH screening length
λe ∼ (4πe2ne/T )−1/2 in the appropriate limits. Here,
the Fermi-Dirac integral of order p is defined as Fp(x) ≡∫∞

0
ds sp/(1 + es−x), and accurate Padé fits to these in-

tegrals and their inverses can be found in [50, 51]; an
accurate approximation [52] to these fits is given by [53]

λ−2
TF ≈

4πe2ne√
T 2 +

(
2
3EF

)2 , (25)

where the Fermi energy of the electrons is given by EF =
~2(3π2ne)

2/3/(2me). If it is also necessary to include
electronic exchange and correlation effects, a procedure
for adding first-order corrections into the screening length
can be found in [54]. While (20) is accurate for weakly
coupled systems, the DH model over-screens for strong

FIG. 5. Radial distribution functions g(r) (in the
hypernetted-chain approximation) for a one-component
plasma (κ = 0) with Γ = {0.01, 0.1, 1, 10, 100}. Note that
the hole in the ion density around the origin (where there is
implicitly an ion) changes very little for Γ > 10 and that the
peak does not shift, revealing that the screening-scale length
is approximately ai over most of the range of strong coupling.

coupling, potentially yielding the unphysical result that
the screening length becomes drastically smaller than the
inter-ionic spacing.

The collapse of the screening length in strongly-
coupled systems can be avoided by preventing it from
dropping below the ion-sphere radius, a behavior consis-
tent with well-known properties of the radial distribution
function g(r). This behavior is shown in Fig. (5), where
the ionic structure is seen to be dominated by the length
scale ai rather than by the screening length as the cou-
pling is increased. The procedure of transitioning the
screening length to the ion-sphere radius at strong cou-
pling is obviously not unique, and special care must be
taken to choose such a procedure appropriately. In the
GMS model [40], a floor on the screening length was en-
forced by choosing

λGMS =
√
λ2
e + a2

i , (26)

although the GMS screening length does not include the
DH limit for all species, as in (20), and the prescrip-
tion is ambiguous in that regard. Alternatively, a simple
method suggested by PPFM [5] modifies the screening
length to be

λPPFM = max{λtot, ai}; (27)

however, this form can yield inconsistent results in the
limit of weak coupling, especially when electronic screen-
ing is strong. This is readily seen by simply taking
λion → ∞ (that is, vanishing ion screening) and not-
ing that neither (26) nor (27) recover the correct limit
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of λ → λe. In this work, we present an effective screen-
ing length which treats each ionic species separately and
recovers the appropriate weakly coupled limits. For one
ionic component, this effective length takes the form

λeff =

(
1

λ2
e

+
1

λ2
i + a2

i

)−1/2

(28)

=

(
1

λ2
e

+
1

λ2
i

(
1

1 + 3Γ

))−1/2

, (29)

where the screening length associated with a single ionic
species is given in (21), and we have used the definition
of the Coulomb coupling parameter Γ = (Zie)

2/(aiT ).
These empirical approaches have have been successful

in many cases, and their phenomenological behavior can
be justified by considering the following model. Take
a system in which a point source is being screened by
both electrons and ions, yet a hole of radius ai prevents
the ions from approaching the source charge. The corre-
sponding Poisson equation, in terms of the electrostatic
potential, is given by

− 1

4π
∇2Φ = Zδ(r)− Φ

4πλ2
e

− Φ

4πλ2
ion

H(r − ai), (30)

where δ(r) is a delta function, and H(r) is the Heavi-
side step function. Applying the appropriate boundary
conditions, the general solution is given by

Φ(r) =
Z

r

{
Aer/λe + (1−A)e−r/λe , r < ai,

Be−r/λtot , ai < r.
(31)

The coefficients A and B can be solved for by enforcing
C1-continuity in the solution at r = ai. Finally, this “ion-
hole” potential can be expanded about r = 0 as

Φ ∼ Z

r

(
1− r

λIH
+ . . .

)
(32)

to obtain an effective screening length. Solving for A and
B and introducing the standard definition κ ≡ ai/λe, the
above expansion yields the expression

λIH =

[
λe sinh(κ) + λtot cosh(κ)

λe cosh(κ) + λtot sinh(κ)

]
λe. (33)

In the DH limit, where both λe and λion are large, we
recover the relation (20). Furthermore, as λe → ∞, we
obtain λIH ∼ ai + λion. While this model provides some
insight into the effects of strong coupling on an effective
screening length, we have found few quantitative differ-
ences in the results obtained using either (28) or (33),
and we thus use the simpler λeff defined in (28) for the
remainder of this work.

B. Multi-Component Plasmas

While the above quantities are well-defined for a single
ion species, ambiguities arise in the more general multi-
component case. In particular, we must introduce a def-
inition for the ion-sphere radius of each species that is

consistent with the model. Given a system of N species,
an approximate representation for the ion-sphere radius
of the ith species is

ai =

(
3Zie

4πρtot

)1/3

, ρtot =

N∑
j=1

Zjenj . (34)

This relation is obtained by giving each ion sphere a vol-
ume proportionate to its charge such that Vi/Zi = Vj/Zj ,
where Vi = 4πa3

i /3, and by enforcing the overall volu-
metric constraint

∑
i niVi = 1, as well. Note that (34)

reduces to the more common definition for the single-
component case [55]. The appropriate effective screening
length associated with a multi-component system of N
ionic species is now simply

λeff =

(
1

λ2
e

+

N∑
i=1

1

λ2
i

(
1

1 + 3ΓIS
i

))−1/2

. (35)

Here, the screening lengths are again given by (21), and
the coupling parameter of each ionic component ΓIS

i is
now written in terms of the respective ion-sphere radius,
which is now defined by the new relation (34) as

ΓIS
i =

(Zie)
2

aiT
. (36)

While this is not the typical definition for the coupling
parameter in mixtures, this is the relevant quantity for
the desired physics in the screening length, and the usual
form is returned in the single-component case. The above
relation is connected to the more common definition of
the coupling parameter in Section V B. Of course, a sim-
ilar modification can be made to the electronic contribu-
tion, but for hot dense matter, electrons are precluded
from being too strongly coupled due to their smaller
charge and partial degeneracy.

IV. SCREENED COULOMB RESULTS

We now repeat the analysis of Sec. II using the SC
potential. This section follows closely the work of Much-
more [39] and Paquette et al. [5], who extended the works
of Liboff, Kihara, and Aono to include the numerical de-
termination of cross sections and collision integrals. To
first illustrate the dramatic effect of incorporating screen-
ing into the interaction, a series of trajectories are shown
in Fig. (2). Here, the screened Coulomb trajectories are
seen as dashed curves and are compared to the simpler
Coulomb interactions with either truncated impact pa-
rameter (top panel) or truncated range (bottom panel).
The scattering angle of a binary collision will now be
given by

uij(r) =
ZiZje

2

r
e−r/λ, (37)

θij(b, v) = π − 2b

∫ ∞
r0

dr

r2
√

1− ( br )2 − 2
µv2uij(r)

, (38)
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FIG. 6. The reduced cross sections φn = σ
(n)
ij /(2πλ

2) versus

dimensionless velocity w = (µλ/2ZiZje
2)1/2v are shown for

n = 1 (top) and n = 2 (bottom). The numerical results (black
circles) are compared to fits generated with a least-squares
method (blue lines); these fits are presented in Eqs. (C15-
C18).

where λ is again the screening length, and the distance of
closest approach r0 is now the largest root of the equation

1−
(
b

r0

)2

− 2ZiZje
2

µv2r0
e−r0/λ = 0. (39)

To reduce the size of the parameter space, it is conve-
nient to introduce the transformation and dimensionless
parameters

r → λr, ρ =
b

λ
, w2 =

λµijv
2

2ZiZje2
. (40)

Generally, there is no closed-form solution to (38).
In the weak-scattering approximation, Liboff [28] ob-
tained an approximate scattering angle for the screened
Coulomb potential of the form θ ∼ w−2K1(ρ), where
K1(ρ) is the first-order modified Bessel function of the
second kind; however, a full numerical treatment is re-
quired to span the parameter space. Consequently, the
momentum-transfer cross sections (5) must be calculated
numerically, as well. The cross sections can be expressed
in terms of the dimensionless parameters as

σ
(n)
ij (w, λ) = 2πλ2φn(w). (41)

Properties and numerical solutions of φn(w) are pre-
sented in App. C. Furthermore, equations (C15-C18)
represent accurate fits to this function, as seen in Fig. (6).
We can now compare this result to the cross sections cal-
culated in Sec. II. The dimensionless cross section φ1(w)

FIG. 7. Comparison of dimensionless cross sections. The
screened Coulomb (black, solid) cross section from Eq. (C15)
and the Coulomb cross section using a truncated impact pa-
rameter (blue, dashed), as in Eq. (9), have the same limiting
behavior at high velocities but deviate significantly from each
other at low velocities. The Coulomb cross section using a
thermal velocity in the logarithm, as in Eq. (14), is shown for
several plasma parameters (green, dash-dot), for a range of
values of g = {0.1, 1, 10}.

is shown with the Coulomb cross sections with and with-
out velocity-dependent logarithms in Fig. (7). It can
be seen that using the velocity-dependent logarithm in
(9) recovers the limiting behavior at high velocities but
exhibits significant deviation at low velocities. Further-
more, the cross section in (14), which uses a thermal
velocity, only recovers mild qualitative agreement for the
range of plasma parameters chosen.

Using the same units, we can also express the collision
integrals as

Ω
(n,m)
ij =

√
2π

µij

(ZiZje
2)2

T 3/2
Knm(g), (42)

Knm(g) ≡ gm
∫ ∞

0

dw e−gw
2

w2m+3φn(w), (43)

where

g =
ZiZje

2

λT
. (44)

The collision integrals are thus entirely characterized by
the functionKnm(g). We have provided fits forKnm(g) in
Eqs. (C22-C24) in App. C, as well, where the numerical
calculation of K11(g), along with the corresponding fit,
is shown in Fig. (8). To compare these calculations to
the simpler CL results, it is convenient to plot the ratios
of the collision integrals, which allows these quantities
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FIG. 8. The reduced collision integral (43) as a function
of the plasma parameter g = ZiZje

2/(λT ) is shown for the
case (n,m) = (1,1). The numerical results (black circles) are
compared to fits generated with a least-squares method (blue
lines); these fits are shown in Equations (C22-C24). The cases
of (1,2), (1,3) and (2,2) yield visually similar results and have
been omitted for brevity.

to be represented in terms of the plasma parameter g
alone. The ratios of the full collision integral, using the
SC potential within the EB approach, to the collision
integrals calculated from the cross sections (9), (14) and
(16) are shown in Fig. (9). Note that significant deviation
from unity is seen for each approximation at even smaller
values of the plasma parameter g.

V. TRANSPORT COEFFICIENTS

HED environments are most typically modeled us-
ing the macroscopic equations of hydrodynamics [56–58].
When mild kinetic effects are important, HED matter
can be modeled by the Fourier-Navier-Stokes equations
(FNSEs)

∂ρi
∂t

+∇ · (ρiv) = ∇ ·Dij [xj∇ρi − xi∇ρj ] , (45)

ρ

(
∂v

∂t
+ v · ∇ ⊗ v

)
= −∇P + η∇2v, (46)

∂Ti
∂t

=
1

CV
∇ · (Ki∇Ti) +

∑
j

1

τij
(Tj − Ti) + Si, (47)

which are the usual three conservation laws for a mix-
ture. Note that ρ represents the mass density in this sec-
tion, whereas it represents the charge density elsewhere
in this work. These equations describe the time evolution
of a mixture subject to pressure forces but also include
diffusive mixing, viscosity, thermal conduction, temper-
ature relaxation, and possibly an external energy source
or sink. As is common, there is one momentum equa-
tion, representing the total momentum of the mixture.
This form is generic, and the detailed material proper-
ties enter through choices of the equation of state and of

FIG. 9. Comparison of collision integrals as ratios of these
integrals to the EB collision integral calculated from (42).
Here, Ωtip (black, solid) is calculated using the cross section
with a truncated impact parameter in (9), Ωth (blue, dashed)
is calculated using the cross section with a thermal velocity
in (14), and Ωwc (red, dotted) is calculated using the cross
section in the weakly coupled limit from (16). Each approx-
imation results in significant deviations from unity for even
smaller values of the plasma parameter g.

the transport coefficients. Obviously, when the transport
coefficients are small, this set of equations becomes the
simpler Euler hydrodynamics equations [59]; conversely,
for hot dense matter, accurate models require knowledge
of the transport coefficients because they are moderate
to large. In fact, at very high temperature [60], or when
there are steep gradients [61], the FNSE description itself
may become inadequate as non-local transport becomes
important; such circumstances are beyond the scope of
the present work, but see the discussion around (83) be-
low.

In previous sections, we have provided an effective po-
tential approach to computing the transport coefficients
for processes involving ion-ion collisions, and the results
have been reduced to simple fits in (C22-C24). In this
section, we will discuss each transport coefficient in turn.
We begin in the next subsection with the self-diffusion
coefficient, which, while it does not appear in (45-47),
provides the simplest test of the models, and we have
generated new MD data to validate our result for this
coefficient. In the following subsections, we discuss in-
terdiffusivity, viscosity and thermal conductivity, and we
validate our predictions with the MD results of several
investigators.
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A. Self-Diffusivity

The simplest transport process is self-diffusivity, which
describes the movements of tagged individual particles
from regions of high concentration to regions of low con-
centration. To linear order, this can be represented in
terms of gradients of the mass density ρ, as Fick’s first
law

J = −D∇ρ, (48)

where J is the the mass flux, and D is the self-diffusion
coefficient. To validate the EB model for D, we compare
with the more fundamental Green-Kubo relation

D =
1

3

∫ ∞
0

dt 〈v(t) · v(0)〉, (49)

where v is the velocity of a particle, and the brackets
〈· · · 〉 correspond to both an average over particles and
equivalent initial times of the stationary ensemble. It
is useful to define the velocity autocorrelation function
(VACF)

Z(t) =
〈v(t) · v(0)〉
〈v(0) · v(0)〉

, (50)

which is a normalized measure of the collision dynamics
of individual particles over time; note that

D =
T

m

∫ ∞
0

dt Z(t). (51)

We will examine detailed properties of Z(t) in Sec. (VI).
The particle trajectories needed to evaluate Z(t) are

readily obtained from MD; here, we have used a standard
methodology with inter-ionic potentials of the form

u(r) =
Z2e2

r
e−r/λe . (52)

Note that (52) contains only the electronic screening
length, as the many-body effects of the ions are included
naturally in the MD simulation. While many authors
have computed the self-diffusion coefficient for Yukawa
systems, we validated our MD using the results of Ohta
and Hamaguchi [62]; we also extended the work of these
authors to weaker coupling, where the transport coeffi-
cients are large, and our results are therefore relevant to
HED applications. In particular, we focused on plasma
conditions for which there are important differences in
CL prescriptions.

As usual, we characterize the plasma using the stan-
dard dimensionless quantities

Γ =
Z2e2

aiT
, κ =

ai
λe
, (53)

where Γ is the Coulomb coupling parameter. The plasma
parameter, which is the principle input to the collision

integrals, can be expressed in terms of these quantities
as

g =
Z2e2

λeffT
= Γ

(
κ2 +

3Γ

1 + 3Γ

)1/2

. (54)

MD simulations were carried out for the parameter values
listed in Table I to yield dimensionless self-diffusivities
D∗ = D/(ωpa

2
i ), where ai is the ion-sphere radius, and

ωp = (4πnZ2e2/mi)
1/2 is the plasma frequency. The

MD results were then compared to the first-order CE
prediction of the self-diffusivity

D =
3T

8nmiΩ
(11)
ii

=
3T 5/2

16
√
πminZ4

i e
4K11(g)

, (55)

which in its reduced form is given by

D∗ =

√
3π

12Γ5/2K11(g)
. (56)

We can define an effective “diffusion CL” as ln ΛD ≡
4K11 to recover the more familiar expression for the self-
diffusion coefficient.

Our results are shown in Fig. (10), where we compare
MD with EB for three choices of the effective potential
– electron-only screening, total DH screening, and the
effective screening of (28) – and the CL of (15) using
the screening length in (28). Compared with MD, the
electron-only screening model, shown as a solid yellow
line, does a fair job, especially when the electron screen-
ing is strong (large κ). This trend is expected because
the electrons dominate screening when κ is large unless
the ions are very strongly coupled. Including the ions in
the screening length according to (20) yields the dashed
red curve, which represents a very slight improvement for
small Γ but is considerably worse for large Γ. This trend
can be seen in Fig. (11), where an expanded view of the
weak coupling region is shown, now on a log-lin scale.
However, with the modification of (28), excellent agree-
ment with MD is found over most of the ranges of Γ and
κ. These results can be understood as follows. When κ
is small, ionic screening contributes substantially to the
overall effective potential; but, as the coupling becomes
modest to large, the DH model for the ions over-screens,
and the additional contribution of ai in (28) becomes
very important. We would like to point out that the
trend seen in this figure occurs in part because the ionic
Γ is allowed to vary while the electron screening κ is be-
ing held fixed; in a real plasma, a much more complex
interplay between these parameters would occur.

B. Atomic-Scale Diffusive Mixing

Atomic-scale mixing between species is described in
the FNSE model through terms in (45) that contain the
interdiffusion terms involving the coefficients Dij . Pre-
venting such material mixing at interfaces in ICF exper-
iments is essential to ensure a clean fuel region. Because
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FIG. 10. The self-diffusion coefficient D∗ = D/ωpa
2 is shown versus Γ for κ = {0.5, 1.0, 1.5, 2.0}. Shown are three variants of

the EB approach based on (1) an electron-only screening length (solid yellow, “EB (elec)”), (2) the total DH screening (dashed
red, “EB (tot)”), and (3) the effective screening length of (28) (solid blue, “EB (eff)”). Black points are our MD results, and
also shown are the results obtained using the CL of (15) (dash-dot green, “CL”).

κ Γ D∗ κ Γ D∗

0.5 0.1 143 1.5 0.1 209
0.3 16.4 0.3 24.5
0.5 6.4 0.5 10
0.7 3.76 0.7 5.92
1.0 2.14 1.0 3.15
2.0 0.82 2.0 1.19
5.0 0.28 5.0 0.356
10.0 0.13 10.0 0.155
20.0 0.069 20.0 0.0787
30.0 0.043 30.0 0.0505

1.0 0.1 173 2.0 0.1 241
0.3 20.9 0.3 28.4
0.5 8.41 0.5 12.3
0.7 4.72 0.7 7.32
1.0 2.54 1.0 3.72
2.0 1.02 2.0 1.52
5.0 0.31 5.0 0.504
10.0 0.15 10.0 0.229
20.0 0.073 20.0 0.0998
30.0 0.0456 30.0 0.0681

TABLE I. Results from molecular-dynamics calculations of
the self-diffusion coefficient D∗ = D/ωpa

2 are given for ranges
of κ and Γ. These results are shown and compared with the-
oretical models in Fig. (10).

interdiffusion is sufficiently different from self-diffusion,
we present here some of the important definitions needed
when considering interdiffusion before discussing numer-
ical results.

For simplicity, consider a binary mixture with species
number densities n1 and n2, total number density n =
n1 + n2, masses m1 and m2, total mass density ρ =
ρ1 + ρ2 = m1n1 + m2n2 and charges Z1e and Z2e. Us-
ing these quantities, we can form the fractional densities
ci(r, t) = ni(r, t)/n(r, t) and xi(r, t) = ρi(r, t)/ρ(r, t).
The mixing rate for species i can be written using the
continuity equation

∂ρi
∂t

+∇ · (ρiu) = −∇ · Ji, (57)

which is written in terms of the center of mass velocity
field

u(r, t) =
∑
j

xj(r, t)uj(r, t), (58)

which is, in turn, written in terms of the local velocity
fields uj(r, t). The mass flux in excess of the inertial
convection for each species is then

Ji(r, t) = ρi(r, t) [ui(r, t)− u(r, t)] . (59)
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FIG. 11. The quantities shown are the same as in Fig. (10) but are shown using an abbreviated linear scale for Γ to emphasize
the weak-coupling limit.

Using the conservation of the total density ρ(r, t), we can
also express (57) as

ρ

[
∂xi
∂t

+ u · ∇xi
]

= −∇ · Ji. (60)

These relations, which are microscopically exact, are sim-
ply expressions of species continuity written in terms of
variables relevant to mixing.

If we assume time scales such that momenta have
reached a steady state and the only gradients present
are the concentration gradients, we can approximate the
mass fluxes using the relation

Ji ≡ −ρ(r, t)Dij∇xi(r, t) (61)

= −Dij [xj(r, t)∇ρi(r, t)− xi(r, t)∇ρj(r, t)] , (62)

which serves to define the interdiffusion coefficient Dij

[63]. Given the total flux balance J1 + J2 = 0, it must
then be true that Dij = Dji. (However, we will retain
the subscripts to distinguish this coefficient from the self-
diffusion coefficient.) In general, Dij is a complicated
function of the local properties of a dense plasma mix-
ture. In the limit in which the nonlinear advection term
in (60) is negligible, (45) decouples from (46) to yield

∂ρi
∂t

= ∇ ·Dij [xj∇ρi − xi∇ρj ] . (63)

Note that unlike with self-diffusion, density fluctuations
in ρi can arise from inhomogeneities in the jth species,

even if the ith species is itself uniform. If we addition-
ally approximate the mean total density ρ(r, t) to be a
constant, we obtain the simpler form of

∂xi
∂t

= ∇ ·Dij∇xi, (64)

which describes the change in the relative concentration
of species i due to its gradient. These nonlinear diffusion
equations are analogous to those obtained by Molvig et
al. [60]. However, note that (63) is a set of coupled diffu-
sion equations for the two species, and, despite its simple
appearance, (64) is coupled to the evolution equation for
xj , as well, because Dij = Dij(xi, xj). For example,
note that collision rates of species i will depend on the
screening properties of species j, through the effective
potential, and therefore on the temperature, density and
charge of species j, as well. In modeling real experiments,
of course, the steady state assumption (62) obviates the
use of such diffusion equations for short times, the flux in
(62) may involve other gradients, the nonlinear advection
terms may not be negligible, and the total mean density
may not be nearly uniform; in such cases, (46) must be
solved simultaneously with (45).

When (62) is used to model the relative fluxes, the
atomic mixing problem reduces to the solution of non-
linear diffusion equations that require Dij values, which
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can be written as

Dij =
3T

16nµijΩ
(11)
ij

(65)

=
3T 5/2

16
√

2πµijnZ2
i Z

2
j e

4K11(g)
, (66)

where the collision integral Ω
(11)
ij is given by (6).

To validate our numerical results, we have chosen to
compare with the MD results of Hansen, Joly, and Mc-
Donald (HJM) for dense plasma mixtures relevant to stel-
lar interiors [64]. The HJM case was chosen in part be-
cause these investigators employed the binary-ionic mix-
ture (BIM), in which the ions interact through a bare
Coulomb force. That is, in this case, there is no electron
screening contribution in (28), or equivalently, κ = 0; the
effective screening length is thus determined by the self-
screening of the ions alone. A 50/50 mixture of H+ and
He2+ was used for the three values of Γij = {0.8, 8, 80},
where Γij = ZiZje

2/atotT , with atot = (3/4πntot)
1/3 and

ntot = nH + nHe. In these units, the plasma parameter
can be written as

g =
ZiZje

2

λeffT
(67)

= Γij

(
κ2 +

N∑
k=1

3x−1
k Γkk

1 + 3(xk/zk)1/3Γkk

)1/2

, (68)

where now κ = atot/λe, xi = ni/ntot is the number-
density concentration, and zi = ρi/ρtot is the charge-
density concentration. In Fig. (12), we show comparisons
with the MD results of HJM for this case and with two
EB results using the total DH screening length and the ef-
fective screening length of (28). In this case of a mixture,
the coefficient is normalized as D∗ = D/ωhpa

2
tot, where

the “hydrodynamic plasma frequency” ωhp is defined in
terms of the mean charge and mean mass of the mixture.
Once again, we see excellent agreement between MD re-
sults and the effective model, and the usual DH screening
model fails for moderate coupling.

C. Viscosity Coefficient

We now turn to macroscale mixing. When a high-
density fluid is accelerated by a low-density fluid, an
interfacial fingering instability known as the Rayleigh-
Taylor instability (RTI) occurs [65–68]. In an imperfect
ICF capsule, small-scale perturbations between the ab-
lator and fuel layers can grow to large amplitudes and
potentially result in a turbulent state. In a simple fluid
model, in which the amplitude of the interfacial pertur-
bation is given by h, the growth of instability can be
approximately modeled as

dh

dt
= αh, (69)

FIG. 12. Comparison of our EB solution of the interdiffusion
coefficient to MD data from [64]. Two models for the effective
screening length are used: total (red, dashed) and effective
(blue, solid).

where the growth rate α is a function of the physical
properties of the plasma and the forces. The simplest
model for the growth rate α0(k) is given by

α0(k) =
√
Agk, (70)

where A = (ρ1 − ρ2)/(ρ1 + ρ2) is the Atwood number
in terms of the two fluid densities ρ1 and ρ2, g is the
acceleration, and k is the wavenumber of the interfacial
disturbance. This formulation of RTI does not include
the effects mentioned in the previous section; however,
Duff, Harlow, and Hirt [69] developed a model for in-
stability growth that includes both diffusive and viscous
corrections. In the absence of diffusion, they employ the
approximate result

αν =
(
Agk + ν2k4

)1/2 − νk2, (71)

where ν = (η1 + η2)/(ρ1 + ρ2) is the mean kinematic
viscosity in terms of the densities and viscosities of each
material. As is well known, viscosity generally suppresses
instability growth at shorter length scales, and this is
increasingly true for larger viscosities. Similarly, when
the effects of diffusion are included, the total growth rate
becomes

ανD =
[
Agk/ψ + ν2k4

]1/2 − (ν +D) k2, (72)

where ψ is a known function of A, k, and D [69]. Thus,
accurate values of the material viscosities and diffusivities
are needed to understand and model RTI growth rates.
Because diffusion can be slow, mixing is often dominated
by fluid instabilities, in which case we can characterize
the impact of transport on RTI by scaling the growth
rate (71) by (70) to obtain

α(k)

α0(k)
=

√
1 + ν̃2k̃3 − ν̃k̃3/2, (73)
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where ν̃ = ν/νe is in terms of νe, the viscosity com-

puted using the electron screening length, and k̃ =
k/(Ag/νe)

1/3. Framed this way, we can examine the role
of viscosity in terms of different choices for the effective
potential, using

η =
5T

8Ω
(22)
ii

=
5
√
miT

5/2

16
√
πZ4

i e
4K22(g)

. (74)

Alternatively, the reduced viscosity is given by

η∗ =
5
√

3π

36Γ5/2K22(g)
, (75)

where η∗ = η/(mnωpa
2). Note that K22(g) can be

thought of as an effective Coulomb logarithm for viscos-
ity, as

ln Λη ≡ 2K22(g), (76)

for which the numerical results above can be used. Given
that the cross section σ(2)(v) must be used for this trans-
port process, the CL with an impact parameter cutoff and
a thermal velocity analogous to (15) is given by

ln Λ
(2)
hyp =

1

2

[
ln

(
1 +

4

g2

)
+

4

4 + g2

]
. (77)

This illuminates the important point that different CLs
must be used for different transport processes. Even
within the binary framework of the EB approach, the
collision integrals clearly change, as indicated by the in-
dices (n,m). Generally, the effective Coulomb logarithm
associated with the index pair (n,m) can be expressed in
terms of the function (43) as

ln Λ(n,m) =
4Knm(g)

n(m− 1)!
. (78)

Our results are shown in Fig. (13), where we plot the
dimensionless viscosity η∗ versus Γ for the three values
of κ = {1, 2, 3}. We compare MD results from [70] to
the EB predictions using the total and effective screen-
ing lengths. Once again, we see much better agreement
using (28) relative to the total DH screening length. In
the case of viscosity, we see especially poor agreement
for very strong coupling, and this behavior differs from
that observed with the other coefficients presented above.
This failure can be traced to the fact that the Boltzmann
equation is incapable of describing correlations in systems
poorly modeled by the ideal gas equation of state and bi-
nary collisions. However, in the regimes most relevant
to HED materials, for which the viscosity is large, the
agreement between the MD and EB results is very good.

D. Thermal Conductivity

The transport coefficients discussed above are associ-
ated with particle and momentum transport. Equally im-
portant is the transport of heat (or temperature/energy).

Short-pulse laser-target interactions are an important
class of applications in which large amounts of energy
are rapidly absorbed in a small region of a target. These
applications include laser ablation of metals [71], ICF
[72, 73], and x-ray laser deposition [74]. When heat-
ing is rapid, there may be little mass motion, and the
full set of Eqs. (45-47) may not be needed. Under such
circumstances, only (47) is needed; such a model that
includes radiation absorption is given by the electron-
ion two-temperature model (TTM) [15, 75, 76], which
includes the coupled energy equations

∂Te
∂t

=
1

Ce
∇ · (Ke∇Te) +

1

τie
(Ti − Te) + Srad, (79)

∂Ti
∂t

=
1

Ci
∇ · (Ki∇Ti) +

1

τie
(Te − Ti), (80)

which are a variant of coupled nonlinear reaction-
diffusion equations for the electron and ion temperatures.
In this TTM, it is assumed that the radiation is ab-
sorbed into the electrons only and is included through
the source term Srad(t). More advanced versions of the
TTM replace the ion temperature equation (80) with a
full MD description [71]. More complete models used for
ICF include the full set of hydrodynamic equations [73],
as in (45)-(47), but also include an additional radiation-
diffusion equation. The thermal conductivities Ke and
Ki for the electrons and ions, respectively, obviously play
a key role in the distribution of energy in these models.
(The temperature relaxation term is discussed elsewhere
[25, 40].)

Here, we focus on the ion thermal conductivity, as our
approach is most applicable to ionic transport; the gen-
eral conclusions will apply to electron heat conduction,
as well, which can be treated with a cross-section cal-
culation for attractive quantum scattering [77]. The EB
thermal conductivity is given by

K =
75T

32miΩ
(22)
ii

=
75T 5/2

64
√
πmiZ4

i e
4K22(g)

, (81)

which is in terms of the same collision integral Ω
(22)
ii as

the viscosity (to this order), and thus the ratio (propor-
tional to the Prandtl number) is independent of details
of the collisions. Alternatively, the reduced conductivity
is given by

K∗ =
25
√

3π

48Γ5/2K22(g)
, (82)

where K∗ = K/(mωpa
2
i ). Our results are shown in

Fig. (14) for various values of Γ and κ. We also show
a fit to previous MD data [78] as a solid black line; a
dashed black line is used to denote regions in which the
fit is an extrapolation of the MD data. Our numerical
result has a different scaling with Γ at weak coupling, re-
vealing a transition of behavior in the moderate coupling
regime; MD fits obtained in the strongly coupled regime
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FIG. 13. The dimensionless viscosity η∗ = η/(mnωpa
2) is shown for κ = {1, 2, 3} using the MD data of Donko and Hartmann

(black triangles) [70] and the EB approach with both the total screening length (red, “EB (tot)”) and the effective screening
length of (28) (blue, “EB (eff)”). The effective screening length result agrees well with the MD data for Γ < 10 at κ = 1 and
for even larger values of Γ as κ increases, to nearly Γ ∼ 100 with κ = 3.

FIG. 14. The dimensionless thermal conductivity K∗ is shown versus Γ for four values of κ = {0.1, 1, 2, 3}. The EB result using
(28) is shown as a solid blue line. A fit to MD results [78] is shown in black; we use a solid line for the fit over the Γ range
where MD results contributed to the fit and a dashed line in the range where the fit is extrapolated, revealing the large error
associated with extrapolating MD results to weak coupling. For this transport coefficient, the MD fit provides much less of a
validation than for the others.

should not be extrapolated. As with the viscosity, our re-
sults do not capture the thermal-conductivity minimum;
however, as we mention above, when values of the trans-
port coefficients are very small, they are relatively less
important to the overall hydrodynamics, so this does not
represent a serious limitation. Importantly, the MD data
does not exist at sufficiently small couplings to validate

the model in the same way as the other transport coeffi-
cients discussed above. This suggests the need for further
MD studies of thermal conductivity, which is notoriously
difficult to compute [79].

It is important to note that heat conduction, because it
involves a larger velocity moment, can become non-local
[80] when there is a steep gradient, thereby obviating
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the form of the TTM given above. Under such circum-
stances, however, our approach can still be used to give
approximate results in nonlocal kernel models, such as
models of heat flux of the form [80, 81]

q(z) =

∫
dz′ G(z, z′) qlocal(z

′), (83)

where G(z, z′) describes the non-locality and qlocal is a
local approximation. The local flux, given by Fourier’s
Law, could employ the thermal conductivity coefficient
described in the present work; however, additional work
in this area is warranted, especially for the electron-ion
scattering case.

VI. EFFICACY OF THE EFFECTIVE BINARY
APPROACH

The effective Boltzmann approach based on (B1) and
(18) cannot describe the collective dynamics of a many-
body system. In the LB branch of Fig. (1), dynam-
ical effective potentials are of the form v(k)/ε(k, ω),
where ε(k, ω) is the frequency-dependent dielectric re-
sponse function; such effective potentials incorporate hy-
drodynamic waves and flows, as well as finite-velocity
effects. For example, in the effective potential approach
of Grabowski et al. to describing stopping power [27],
a finite-velocity correction to the effective potential was
essential. Because a static effective potential used in a
Boltzmann (CE) approach cannot easily handle many-
body dynamics, we wish to estimate the importance of
such effects, which we do in the context of the self-
diffusion coefficient. (See App. (B) for further details
of the Boltzmann approach.)

We begin by noting that the Boltzmann equation ef-
fectively describes very short-time scattering events; the
derivation of the Boltzmann equation, as with most colli-
sion operators, assumes a Bogolyubov separation of time
scales between the one- and two-body distribution func-
tions. Moreover, the randomization (“Stosszahlansatz”)
incorporated into the boundary conditions of the colli-
sion process results in a Markov process. Taken together,
this predicts a simple exponential decay of the VACF.
Modifying the force law, as in the choice of the effective
potential, does not impact these properties of the Boltz-
mann equation. Thus, the appearance of non-Markovian
features reveals a breakdown of the effective Boltzmann
approach, and this breakdown is readily observed in the
MD results. We have computed the VACF over a wide
range of the (Γ,κ) parameter space and have examined
its decay properties. These results are summarized in
Figs. (15) and (16). In Fig. (15), we show the Yukawa
phase diagram with three regions shaded. In the lower
(green) region, the VACF decays monotonically to zero.
For very weak coupling, the decay is visibly exponen-
tial, although a ballistic behavior at early time becomes
observable as the effective coupling is increased. One
expects that the EB approach would model this regime

quite well. In the middle (blue) region, the VACF is al-
ways positive at early times (ωpt < 30) but exhibits an
onset of oscillations: the decay is no longer monotonic,
revealing a feature not well described using a Boltzmann
approach. The collective dynamics are occurring on the
same time scale as the collision itself. As we have seen in
the previous section, we get reasonable agreement in this
regime, perhaps because the decay is “similar enough”
to the simpler exponential decay. We have defined the
boundary between these two regions as being the point at
which the first oscillation in the VACF has a zero deriva-
tive, and an approximate representation of this boundary
in the range κ ∈ [0, 2] is given by

Γosc ≈ 5.97 + 1.93κ+ 1.16κ2 + 1.44κ3. (84)

Because the modulated decay region occurs for modest
values (Γ > 5.97) of the Coulomb coupling, it only im-
pacts transport when the transport coefficients are mod-
est to small. Finally, in the top (purple) region, we
have the so-called “caging” regime, in which the VACF
changes sign, indicating a reversal of the direction of
the ion. Caging implies quite strong coupling, as each
particle is temporarily trapped by the cage formed by
its (several) neighbors, a phenomenon clearly incapable
of being described appropriately by considering binary
cross sections. As seen in the previous section, the effec-
tive Boltzmann approach shows significant deviations in
this regime. However, for transport described by (45)-
(47), the transport coefficients are relatively small in
this regime, and their utility and accuracy are not of
paramount importance. We have defined the onset of
the caged regime as the point at which the first oscilla-
tion in the VACF becomes negative, and an approximate
representation of this boundary in the range κ ∈ [0, 2] is
given by

Γcage ≈ 34.1 + 17.1κ2 − 13.6κ3 + 5.39κ4. (85)

Next, in Fig. (16), we examine the same properties in
more detail to reveal additional ways in which the Boltz-
mann picture begins to fail. Here, we show the VACF
itself as a function of time for several values of Γ and,
without loss of generality, for fixed κ = 1. Note that this
plot is on a log-log scale in which power laws appear as
straight lines. The top two curves (blue and green) decay
exponentially for small Γ, consistent with the Boltzmann
picture. However, for Γ & 10, the decay not only exhibits
inflections but also begins to form a slowly decaying tail.
This tail broadens as the coupling increases. We also
show a dashed line consistent with a decay of ∼ 1/t3/2,
which is the the so-called “long-time tail” [82]. Our re-
sults indicate a transition to the long-time tail around
Γ & 10, but always in the presence of oscillations.

While the interaction within the EB formalism is inher-
ently static, it is possible to modify the effective screening
length to incorporate finite-velocity effects. The effective
interactions between ions will become more Coulomb-like
at higher velocities, as the screening background is un-
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FIG. 15. Variation in functional forms of the VACF. In the left panel, the Yukawa phase diagram for three different behaviors
is shown: the bottom (green) region is exponential decay, the middle (blue) region is the modulated decay regime in which
oscillations in the VACF begin to arise, and the top (purple) region is the caged regime. In the right panel, we show several
characteristic VACFs across the phase diagram corresponding to the (κ,Γ) values of (0.5, 70), (1, 20) and (1.5, 5), respectively.

FIG. 16. Transition from exponential decay to algebraic t−3/2

decay versus coupling. Several VACFs on a log-log scale are
shown for fixed κ = 1 and various values of Γ. Note that the
top two curves show exponential decay, and this decay is faster
than the dashed t−3/2 line. However, near Γ ∼ 10, the decay
remains mostly exponential but with important modulations
at later times. At Γ = 20, the VACF has well-defined minima
and decays very slowly at late time, a behavior that increases
for large Γ.

able to respond as quickly. Zwicknagel et al. [83] sug-
gested the following form to modify the ionic screening

length:

λi(v) =

(
1 +

(
v

vi

)2
)1/2

λi, (86)

where we have defined the thermal velocity of the ith

species as vi = (2T/mi)
1/2, although this is not a

unique choice. As shown by Grabowski et al. [27],
the modification (86) yields surprisingly good agreement
when predicting dynamical properties such as stopping
power. The resulting velocity-dependent effective screen-
ing length will then take the form

λeff(v) =

(
1

λ2
e

+
∑
i

1

λ2
i

(
1

1 + v2/v2
i + 3Γi

))−1/2

.

(87)

It is important to note that this quantity can no longer
be applied to the fits (C22-C24) and must instead be
used in the momentum-transfer cross sections first be-
fore calculating the collision integrals due to the velocity
dependence. We examine the implications of a velocity-
dependent screening length in Fig. (17), where we show
the ratio of the dynamically screened cross section using
(87) and its static counterpart (i.e. λeff(v = 0)) as a func-
tion of v/vi for a range of Γ. One expects the dynamical
effects to be negligible at low velocities; however, these
effects are small at high velocities, as well. This latter
behavior occurs because the screening length itself has
little impact on the cross section in this regime. Indeed,
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FIG. 17. The impact of a velocity-dependent screening length
λ(v) on the first-order cross section is shown by taking the
ratio of the dynamically screened cross section using λeff(v)

(denoted σ
(1)
ds ) to that using only the static λeff as a function

of v/vi. The ratios are calculated at κ = 0.5 for the values
Γ = {0.5, 1, 2, 5, 10}. Deviations are greatest for v ∼ vi and
increase for larger coupling values.

it is only when v ∼ vi that dynamical effects are great-
est, and these effects on the cross section are greater for
larger coupling values.

Once the momentum-transfer cross sections are com-
puted with (87), the collision integrals can be recalcu-
lated to determine the effects of dynamic screening on
the transport coefficients. In Fig. (18), we show the ra-
tios of the dynamically screened self-diffusion and viscos-
ity to their static counterparts. As we can see, dynamic
screening can reduce each coefficient on the order of 10%
when Γ ∼ 1 and κ is small. However, for systems with
strong electron screening (large κ), the effects of dynamic
ion screening are negligible for all coupling strengths.

VII. CONCLUSIONS AND OUTLOOK

Ionic transport in dense, HED plasmas, including self-
diffusion, interdiffusion, viscosity, and thermal conduc-
tivity, has been described using an effective potential ap-
proach in the context of the CE solution of the Boltz-
mann equation. We have focused on the weak-screening
and moderate-coupling regimes where transport can play
an important role in HED experiments. For practical use,
we have formulated an effective potential that is of the
screened Coulomb (Yukawa) form, which allows detailed
numerical solutions to be reduced to simple fits valid over
wide ranges of parameter values. Fits have been pro-
vided for both the intermediate velocity-dependent cross
sections and the thermally averaged collision integrals,
allowing one to easily obtain the near-equilibrium ionic
transport coefficients or perform integrals over the cross

FIG. 18. The ratio of the dynamically screened self-diffusion
(top) and viscosity (bottom) coefficients to their static coun-
terparts as a function of coupling Γ for κ = {0.5, 1, 1.5, 2}.
Note that for weaker screening (smaller κ), the dynamical
correction can be significant.

section weighted by a non-Maxwellian distribution. Our
approach has greatly extended the numerical methods
needed to compute the collision integrals, and our results
are more accurate over a wider range of parameter values
and considerably simpler to use than those of Paquette
et al. [5]. A brief overview of how our results can be
used to model HED plasmas is shown in the diagram in
Fig. (19). In our analysis, we have also connected the ef-
fective Boltzmann approach to the simpler CL approach
and have detailed the natures of the approximations that
are required to obtain specific CL models. Interestingly,
while there is a convergence of the EB approach to the
simpler CL models at weaker coupling, we find that the
convergence is extremely slow and poorly behaved, as
shown in Fig. (4).

We have validated our results with new MD simula-
tions for the self-diffusion coefficient and find the EB
model to be quite predictive over the ranges of Γ and
κ of importance to HED experiments, thereby validating
our model for the effective potential. In particular, we
find that the effective screening length (28) yields excel-
lent agreement between the theoretical model and MD
results. We have also compared our predictions for the
other transport coefficients to MD results from the lit-
erature and have found similarly good agreement in the
weak to moderate coupling regimes where the coefficients
are large. As expected, the EB approach deviates from
the MD results at larger coupling, and for certain coeffi-
cients (i.e. η and K), the EB model is unable to predict
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FIG. 19. Diagram outlining the algorithm to calculate trans-
port properties using the fits of this work. The calculation be-
gins with a determination of the atomic structure of the pos-
sibly partially ionized mixture, followed by a determination
of the relevant plasma properties (electron screening length,
ion screening length) to obtain the effective screening length.
This can then be used to compute transport coefficients either
near equilibrium (right branch) or using cross-sections and a
non-Maxwellian distribution (left branch).

their respective minima; however, this regime is difficult
to achieve experimentally, and the coefficients are near
their minimum values in this regime, as well.

We have also explored the limitations of the EB ap-
proach in detail. The behavior of the VACF was ex-
amined across the liquid portion of the Yukawa phase
diagram in the (Γ, κ) space. We have delineated several
regimes wherein the VACF exhibits qualitatively differ-
ent behaviors. In the first regime, the decay of the VACF
is close to exponential (defined as purely monotonic), and
the Boltzmann equation would be a reasonable approxi-
mation. In the next regime, the decay was modulated but
always positive, and in the final regime, caging (anticorre-
lations in the velocity) was observed. In fact, many other
types of behavior are possible (e.g., the first minimum is
positive, but the second is not); however, these possibili-
ties are beyond the scope of this work. Surprisingly, the
EB model performs well in much of the modulated decay
region despite being unable to capture the presence of
these modulations. Next, we also examined the assump-

tion of static screening in the effective potential. Be-
cause the velocity of the ions will be distributed well be-
low, near and well above the thermal velocity, dynamical
screening could play a role. Using an effective, velocity-
dependent screening length that has been shown to be
very successful for stopping power [27], we found small
(∼ 10%) changes in the transport coefficients, suggesting
that the use of the static, effective screening lengths in
(28) is justified to that level of accuracy.

This work can be extended in several ways. First,
other ionic transport coefficients, such as those for ther-
mal diffusion and mixture viscosities [47], could be con-
sidered. Second, the EB model, and our extension to
include velocity-dependent screening, could be examined
with LB approaches, in which the dynamical long-range
screening is treated more rigorously. Third, we have
not treated the various transport processes that involve
electron scattering, such as thermal conductivity and
electron-ion temperature relaxation, as in (47) and (80);
such scattering requires a quantum treatment.

ACKNOWLEDGMENTS

This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under Contract DE-AC52-07NA27344
and by Los Alamos National Laboratory under Contract
DE-AC52-06NA25396. The authors would like to thank
Lisa Murillo for her detailed editing of the document,
Julie Stern for her early contributions to this work, and
William Cabot, Jeff Greenough, Jeff Haack and George
Zimmerman for very useful feedback on the manuscript.
This document is LA-UR-16-20725 (LANL) and LLNL-
JRNL-681618 (LLNL).

Appendix A: Mean Ionization States in Partially
Ionized Mixtures

In our effective potential approach, the effective screen-
ing length λeff plays a central role; however, another key
input is the ionic charge. Throughout this work, the
quantity Zie represents either the nuclear charge in a
fully ionized plasma or the mean ionization state (MIS)
in a partially ionized plasma. In the latter case, an ion-
ization model is required to appropriately separate free
electrons that weakly interact with the nuclei and those
with strong interactions that are bound. By doing so, the
strongly interacting bound states are treated as a com-
pact charge density near the nucleus, while the remaining
free states are treated using an appropriate linear screen-
ing model [84].

A wide range of MIS models has been developed, and
detailed comparisons among many of these models can
be found in [85]. The simplest model that includes both
thermal and pressure ionization is the so-called Thomas-
Fermi (TF) model, first developed by Feynman et al. [86],
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which can be readily implemented as an average atom
model where the electronic structure ne(r) about a sin-
gle, central nucleus in a charge-neutral, spherical cell is
calculated for a particular ionic number density and tem-
perature. The effects of ionic density, such as pressure
ionization, enter through the choice of the radius of the
cell as ai. The MIS can be defined in terms of the value
of the normalized electron density evaluated at the ion-
sphere radius, ZTF = Znuc − 4

3πa
3
ine(ai), where Znuc is

the bare nuclear charge. Despite its facile prescription,
this TF model can be fairly accurate over a wide range
of parameters [85].

To avoid the expense of computing the atomic struc-
ture within a hydrodynamics code, an approximate fit
to the function ZTF(ni, Znuc, Te) was given in [87], which
we repeat for convenience and completeness in Table (II).
In comparison with the original description [87], we have

α1 = 14.3139 α2 = 0.6624
R = ni/(ZnucNA) k0 = 3.323× 10−3

T0 = TeZ
−4/3
nuc k1 = 0.9718

Tf = T0/(1 + T0) k2 = 9.26148× 10−5

A = k0T
k1
0 + k2T

k3
0 k3 = 3.10165

B = − exp(k4 + k5Tf + k6T
7
f ) k4 = −1.7630

C = k7Tf + k8 k5 = 1.43175
Q1 = ARB k6 = 0.31546

Q = (RC +QC1 )1/C k7 = −0.366667
x = α1Q

α
2 k8 = 0.983333

ZTF = Znucx/(1 + x+
√

1 + 2x)

TABLE II. Fit and coefficients from [87] for the Thomas-
Fermi mean-ionization model. The Avagadro constant is
NA = 6.02214 × 1023, Znuc is the nuclear charge number,
the ionic number density ni is in units of (1/cm3), and the
electron temperature is in units of eV .

simplified the implementation of the fit by only requir-
ing the ionic number density rather than both the mass
density and atomic mass of the species.

The TF model has the additional advantage of being
fairly straightforward to implement in multi-component
systems. Using reasoning similar to that used in
Sec. (III B), the MIS of each species must be calculated
as Zi = ZTF(V −1

i , Znuc,i, Te), where Vi is the volume
of the ion sphere associated with the ith species in the
presence of the other species. To calculate each reduced
volume, we set Vi/Zi = Vj/Zj for every pair of species;
this is consistent with the TF model of [86], which as-
sumed that the free-electron density is uniform beyond
the ion sphere. Finally, the volumetric constraint of∑
i niVi = 1 is required for completeness. As an exam-

ple, a two-component system would require the solution

of the equations

Z1 = ZTF(V −1
1 , Znuc,1, Te), (A1)

Z2 = ZTF(V −1
2 , Znuc,2, Te), (A2)

n1V1 + n2V2 = 1,
V1

Z1
=
V2

Z2
. (A3)

Simple iterative methods can be used to rapidly converge
to a solution of this system.

Appendix B: Transport Coefficients

The plasma transport coefficients can be derived using
a variety of methods, and here we provide a more detailed
background for the approach we employ. In this work,
we base our results on an effective Boltzmann approach
[27, 28, 34, 40], in which we build upon the Boltzmann
equation, which includes strong scattering through a nu-
merical cross section, by capturing long-range screening
effects through an effective potential to incorporate both
branches of kinetic theory shown in Fig. (1). Such an
approach yields a convergent kinetic model for all of the
transport coefficients needed in a hydrodynamic descrip-
tion of a dense plasma.

The effective Boltzmann approach is described through
a set of coupled Boltzmann equations for each species j
of the form

∂

∂t
fj + v · ∇fj +

Fext
j

mj
· ∇fj =

∑
l

Cjl[fj , fl], (B1)

Cjl[fj , fl] =

∫∫
dv′dΩ gI(g, θ)

(
f ′jf
′
l − fjfl

)
. (B2)

Here, Fext
j is any external force, g = |v−v′| is the relative

velocity, Ω is the solid angle, the primes denote functions
of v′, and the differential cross section is defined as

I(g, θ) =
b

sin(θ)

db

dθ
. (B3)

As we detail in Sec. VI, such a kinetic model makes
several assumptions. While strong scattering is well de-
scribed through the cross section (B3), the cross section is
only a well-defined quantity for binary collisions in which
the initial and final states are distinct and separated, as
in (B2); note that the time evolution of the scattering
event does not appear in Boltzmann descriptions. For ex-
ample, if Fextj were to include a Vlasov contribution, the
resulting dynamical fluctuations could not modify (B3)
in any simple way, as is also discussed in Sec. (VI).

As written for Coulomb systems, (B1) is famously di-
vergent; this difficulty is eased via the use of an effec-
tive potential, as in (18). The cross section in this effec-
tive potential is obtained from (3) and (5). Given this
scheme, the relevant coefficients remain to be generated.
The standard procedure [47] is the CE expansion, which
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yields a solution of (B1) that can be used to construct hy-
drodynamic moments and, importantly, closed-form ex-
pressions for the fluxes associated with these moments.
This method proceeds by using a method of successive
approximations for the distribution functions fj ,

fj =
1

ε
f

(0)
j + f

(1)
j + εf

(2)
j + · · · , (B4)

where ε is an ordering parameter. The lowest-order solu-
tion f (0) can be shown to be a local, drifting Maxwellian.
In turn, higher-order corrections can be systematically
obtained by substituting the full CE expansion (B4)
into the Boltzmann equations (B1). From the relevant
fluxes computed using the solution (B4), leading-order
expressions for the transport coefficients can be obtained.
For transport processes associated with single-component

systems, we have

D =
3T

8nmiΩ
(11)
ii

, (B5)

η =
5T

8Ω
(22)
ii

, (B6)

K =
75T

32miΩ
(22)
ii

, (B7)

which are the self-diffusivity, viscosity and thermal con-
ductivity, respectively. For transport processes associ-
ated with systems of multiple components, the coeffi-
cients become increasingly complicated, as a linear set
of equations must be inverted. In a binary mixture, we
have

Dij =
3T

16nµijΩ
(11)
ij

, (B8)

ηtot =
x2
iRi + x2

jRj + xixjR′ij
x2
iRiη

−1
i + x2

jRjη
−1
j + xixjRij

, (B9)

Ktot =
x2
iQiKi + x2

jQjKj + xixjQ′ij
x2
iQi + x2

jQj + xixjQij
, (B10)

kT ≡
DT

Dij
=

5xixjC(xiSi − xjSj)
x2
iQi + x2

jQj + xixjQij
, (B11)

with the coefficients

A =
Ω

(22)
ij

5Ω
(11)
ij

, B =
5Ω

(12)
ij − Ω

(13)
ij

5Ω
(11)
ij

, C =
2Ω

(12)
ij

5Ω
(11)
ij

− 1, E =
T

8MiMjΩ
(11)
ij

, (B12)

Pi =
Mi

ηi
E =

Ω
(22)
ii

5MjΩ
(11)
ij

, Pij = 3(Mi −Mj)
2 + 4MiMjA, (B13)

Qi =Pi(6M2
j + 5M2

i − 4M2
i B + 8MiMjA), Q′ij =

15E [Pi + Pj + (11− 4B − 8A)MiMj ]

2(mi +mj)
, (B14)

Qij =2PiPj + 3(Mi −Mj)
2(5− 4B) + 4MiMjA(11− 4B), Ri =

2

3
+
Mi

Mj
A, (B15)

Rij =
4A

3MiMjE
+
E

2ηiηj
, R′ij =

4

3
+
E

2ηi
+
E

2ηj
− 2A, Si = MiPi −Mj [3(Mj −Mi) + 4MiA] , (B16)

where the mass ratios are Mi = mi/(mi + mj), and
the number density ratios are xi = ni/(ni + nj) [47].
Here, the coefficients Dij , ηtot, Ktot and kT are the inter-
diffusivity, total viscosity, total thermal conductivity and
the thermal diffusion ratio, which is the ratio of the
thermal diffusion coefficient (DT ) to the inter-diffusivity.
Higher-order corrections can also be obtained (see, e.g.,
[33, 47]), but they are usually very small.

The general problem of transport is made complex
by both the introduction of more complex phenomena

and mixtures [88, 89]. In the former category, plasmas
may contain magnetic fields, electric fields [10], gravi-
tational fields, relativity, radiation, multiple ionization
states, multiple temperatures, and so on. For example,
sedimentation in white dwarfs [90] and neutron stars [91]
involves impurities in strongly coupled mixtures in elec-
tric and gravitational fields; in fact, the structure of the
flux equations, as in (62), has coupling corrections be-
yond what appear in the transport coefficients themselves
[91, 92]. Mixtures cause additional complexities due to
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couplings among the various continuity and momentum
equations, which require potentially large matrix inver-
sions [93–97]. It is thus impossible to express generalized
coefficients without specifying the physical model; how-
ever, in most cases the transport equations are formu-
lated in terms of the binary coefficients we present here.

Appendix C: Numerical Evaluation of Integrals

To reduce the dimension of parameter space, it is use-
ful to non-dimensionalize the spatial scale of the problem.
While several length scales are present, the ideal choice
is the screening length λ, as it does not contain any vari-
ables of integration (e.g., the impact parameter). We
therefore introduce the dimensionless parameters

r → λr, ρ =
b

λ
, w2 =

µλ

2ZiZje2
v2, (C1)

where we have assumed a finite value for λ. In the
case λ = 0, there is no interaction, and thus the triv-

ial result θij = σ
(k)
ij = Ω

(k,l)
ij = 0 is obtained. Alterna-

tively, as λ → ∞, we recover the Coulomb interaction,
which yields the scattering angle (8). The corresponding
momentum-transfer cross sections will diverge as b→∞;
however, truncating this upper limit with the screening
length yields the finite forms (9-10).

1. Scattering-Angle Integral

In the transformed variables (C1), the scattering angle
takes the form

θij(ρ, w) = π − 2ρ

∫ ∞
r0

r−1dr√
r2 − ρ2 − w−2re−r

, (C2)

where r0 still satisfies the the zero of the denominator.
This integral is improper because of both this singularity
at the lower limit and the infinite upper limit. We wish
to circumvent these issues for numerical reasons and thus
introduce the variable s = (1− r0/r)

1/4 to yield

θij(ρ, w) = π −
∫ 1

0

8γs3ds√
1− γ2(1− s4)2 − u(s)

, (C3)

u(s) =
1− s4

w2r0
exp

(
−r0

1− s4

)
, γ =

√
1− e−r0

w2r0
. (C4)

We can examine the large-angle scattering limit by ap-
proximating u(s) ≈ u0(s) = (1 − s4)e−r0/(w2r0), which
gives the scattering angle

θ0(γ) = π + 2 sin−1

(
γ2 − 1

γ2 + 1

)
. (C5)

Adding and subtracting this limiting solution to (C2)
yields the more rapidly converging integral

θij(ρ, w) =

∫ 1

0

8γs3ds√
1− γ2(1− s4)2 − u0(s)

−
∫ 1

0

8γs3ds√
1− γ2(1− s4)2 − u(s)

− 2 sin−1

(
γ2 − 1

γ2 + 1

)
. (C6)

Given the broad range of parameters, we used an adap-
tive integration scheme in which quadrature points were
doubled upon each iteration until the desired convergence
was achieved. The treatment of the distance of closest
approach r0 will be addressed in the next subsection.

2. Cross-Section Integrals

The momentum-transfer cross sections now take the
form

σ
(n)
ij (w, λ) = 2πλ2φn(w), (C7)

φn(w) =

∫ ∞
0

dρ ρ [1− cosn(θij(ρ, w))] . (C8)

To integrate over ρ, we must continually calculate the
distance of closest approach r0 from the implicit relation
r2
0 = ρ2 + r0e

−r0/w2. We can simplify the parameter
space by first writing ρ = ρ(r0, w) and introducing the
integration variable z = (r0 − rc)1/p, where rc is defined
through the simpler implicit relation rc = e−rc/w2, and
the parameter p can be changed depending on the stiff-
ness of the integrand. Equation (C8) can now be written
as

φn(w) = p

∫ ∞
0

dz zp−1f(z, rc) [1− cosn (θij)] , (C9)

with f(z, rc) = zp + rc +
zp + rc − 1

2w2 exp(zp + rc)
. (C10)

While the upper bound is still infinite, the integrand was
found to decay sufficiently fast enough to allow for a trun-
cated domain. As with (C6), we employed a similar adap-
tive integration scheme.

It can be shown that φn(w) will take on asymptotic
forms

φn(w) ∼ n

w4
ln (w) (C11)

for w � 1, and

φn(w) ∼ An ln2
(
w2
)

+A′n ln
(
w2
)

+A′′n (C12)

for w � 1. The values of the above coefficients for the
low-w limit were found numerically to be

A1 = 0.47871, A′1 = 2.7935, A′′1 = 15.944, (C13)

A2 = 0.32020, A′2 = 1.0479, A′′2 = 7.8182. (C14)
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With these asymptotic forms in mind, we have con-
structed a suitable fit that obeys each limit, respectively:

φn(w) ≈

{
φsc
n (w), w < 1

φwc
n (w), w > 1

, (C15)

where the “strongly coupled” component is given by

φsc
n (w) =

c0 + c1 ln(w) + c2 ln2(y) + c3 ln3(w)

1 + c4 ln(w)
, (C16)

and the “weakly coupled” component is given by

φwc
n (w) =

n

2w4
ln
(
1 + w2

)
P (w), (C17)

P (w) =

[
d0 + d1 ln(w) + d2 ln2(w) + ln3(w)

d3 + d4 ln(w) + d5 ln2(w) + ln3(w)

]
. (C18)

By next minimizing the magnitude of the relative error
between the fit and the numerical calculations while still
maintaining C1-continuity of the overall function (par-
ticularly at w = 1), we have obtained values of these
coefficients for which maximal deviations from (C8) are
on the order of 10−3 near w ≈ 16 (but are usually under
10−5). The coefficients for (C16) and (C18) are presented
for n = {1, 2} in Table III.

n 1 2
c0 0.30031 0.40688
c1 −0.69161 −0.86425
c2 0.59607 0.77461
c3 −0.39822 −0.34471
c4 −0.20685 −0.27626
d0 0.48516 0.83061
d1 1.66045 1.05229
d2 −0.88687 −0.59902
d3 0.55990 1.41500
d4 1.65798 0.78874
d5 −1.02457 −0.48155

TABLE III. Coefficients for fits (C16-C18) of the reduced
cross sections (C8).

3. Collision Integrals

Finally, we turn to the collision integral expressed in
terms of the transformed variables as

Ω
(n,m)
ij =

√
2π

µij

(ZiZje
2)2

T 3/2
Knm(g), (C19)

Knm(g) ≡ gm
∫ ∞

0

dw e−gw
2

w2m+3φn(w), (C20)

where g =
ZiZje

2

λT
. (C21)

The integration of (C20) was performed over three inter-
vals, where an intermediate range of w ∈ [10−7, 102] used
numerically calculated values of φn(w) with cubic spline
interpolation, and asymptotic limits of φn(w) were used
outside this range. Once Knm(g) was calculated for each
index pair (n,m), the numerical values were used to gen-
erate fitting functions. For optimal accuracy, we divide
these fits into two regions as

Knm(g) ≈

{
Kwc
nm(g), g < 1

Ksc
nm(g), g > 1

, (C22)

where the weakly coupled component is given by

Kwc
nm(g) = −n

4
(m− 1)! ln

(
5∑
k=1

akg
k

)
, (C23)

and the strongly coupled component is given by

Ksc
nm(g) =

b0 + b1 ln(g) + b2 ln2(g)

1 + b3g + b4g2
. (C24)

As with (C15-C18), the coefficients were determined by
minimizing the magnitude of the relative difference be-
tween the fit and the numerical calculations while main-
taining C1-continuity of the overall function (particularly
at g = 1). This optimization yields deviations from (C20)
on the order of 10−2, where these deviations are maxi-
mized around g ≈ 2, and the coefficient values are pre-
sented in Table IV for the (n,m) pairs relevant to first-
order CE theory.

(n,m) (1, 1) (1, 2) (1, 3) (2, 2)
a1 1.4660 0.52094 0.30346 0.85401
a2 −1.7836 0.25153 0.23739 −0.22898
a3 1.4313 −1.1337 −0.62167 −0.60059
a4 −0.55833 1.2155 0.56110 0.80591
a5 0.061162 −0.43784 −0.18046 −0.30555
b0 0.081033 0.20572 0.68375 0.43475
b1 −0.091336 −0.16536 −0.38459 −0.21147
b2 0.051760 0.061572 0.10711 0.11116
b3 −0.50026 −0.12770 0.10649 0.19665
b4 0.17044 0.066993 0.028760 0.15195

TABLE IV. Coefficients for fits (C23-C24) of the reduced col-
lision integrals.
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