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TWO SPINNING WAYS FOR PRECESSION DYNAMO

L. CAPPANERA1, J.-L. GUERMOND2, J. LÉORAT3 AND C. NORE1

Abstract. It is numerically demonstrated by means of a magnetohydrody-

namic code that precession can trigger dynamo action in a cylindrical con-

tainer. Fixing the angle between the spin and the precession axis to be 1
2
π,

two limit configurations of the spinning axis are explored: either the sym-

metry axis of the cylinder is parallel to the spin axis (this configuration is

henceforth referred to as the axial spin case), or it is perpendicular to the spin
axis (this configuration is referred to as the equatorial spin case). In both

cases, the centro-symmetry of the flow breaks when the kinetic Reynolds num-
ber increases. Equatorial spinning is found to be more efficient in breaking the

centro-symmetry of the flow. In both cases, the average flow in the reference

frame of the mantle converges to a counter-rotation with respect to the spin
axis as the Reynolds number grows. We find a scaling law for the average

kinetic energy in term of the Reynolds number in the axial spin case. In the

equatorial spin case, the unsteady asymmetric flow is shown to be capable
of sustaining dynamo action in the linear and nonlinear regimes. The mag-

netic field is mainly dipolar in the equatorial spin case while it is is mainly

quadrupolar in the axial spin case.

1. Introduction

The idea that precession can be an efficient mechanism to generate the Earth’s
magnetic field through dynamo action has long been debated (see for example [1]).
Observations of some planetary dynamos could contribute to resolve this issue but
definite evidence is still lacking [2]. Despite the lack of astrophysical evidence,
precession has nevertheless recently attracted the attention of the experimental dy-
namo community since this mechanism has the potential to generate large scale
fluid motions without requiring any pump or impellers. For example, an ambitious
project at the DREsden Sodium facility for DYNamo and thermohydraulic studies
(DRESDYN) [3] consists of building a precession-driven MHD (MagnetoHydroDy-
namics) experiment running at large magnetic Reynolds numbers. The device will
be a large cylinder of diameter and height equal to 2 metres. It will be filled with
liquid sodium and will undergo rotation about its symmetry axis and precession
about another axis (which can be the equator). The planned maximum rotation
and precession frequencies are 10 Hz and 1 Hz, respectively, leading to a magnetic
Reynolds number of a few hundreds. Even though numerical simulations of the
Dresden experiment with very large kinetic Reynolds numbers (at least 106) are
out of reach with present day computers, we think that numerical simulations are
useful complements and can shed some light on specific aspects of this experiment.

Because of the large computing resources required, it is only recently that preces-
sion driven dynamos have been numerically explored: see [4] for dynamos in spheres
and [5] for dynamos in spheroids. Since neither spheres nor spheroids are convenient
for large-scale experiments, it is instructive to investigate whether similar results

1



2 L. CAPPANERA1, J.-L. GUERMOND2, J. LÉORAT3 AND C. NORE1

can be obtained in cylindrical containers. Many experiments have been conducted
in cylinders with varying aspect ratios, various angles between the precession and
the spin axis (always assumed to be the symmetry axis) and varying ratios of pre-
cession to spin frequencies (see e.g. [6, 7, 8, 9]). An increasing number of numerical
studies have been performed as well; see for instance [10, 11, 12, 13, 14, 15]. With
the exception of [10], all the works referred to above have been mainly devoted to
hydrodynamic studies. In [10] we have studied the dynamo capabilities of a cylinder
spinning around its symmetry axis and precessing at a strong rate around an axis
perpendicular to the symmetry axis. (This configuration is henceforth called axial
spin case in the rest of the paper.)

The main motivation of the present paper is to present new hydrodynamic and
magnetohydrodynamic results in a precessing cylinder in order to inform precession-
driven dynamo experiments. The first objective is to investigate the influences (both
hydrodynamics and magnetohydrodynamics) of the angles between the symmetry
axis, the spin axis and the precession axis. The second objective is to investigate
the magnetohydrodynamic effects of the electric conductivity and magnetic perme-
ability of the side walls and lid walls of the container. Being limited in computer
resource, we only test two extreme configurations, namely the axial spin case as
in [10], and the equatorial spin case where the symmetry axis and the precession
axis are both perpendicular to the spinning axis. We investigate which of these two
configurations is the most efficient in breaking the centro-symmetry and which one
gives the lowest dynamo threshold.

The paper is organized as follows. Section §2 describes the numerical setting
and the two configurations that are used in the paper to apply the rotation and
the precession, namely the axial and the equatorial spin forcings. SFEMaNS, the
magnetohydrodynamic code that we use in all our computations, is briefly described
in appendix §A.1. Section §3 presents hydrodynamic studies in relation with the
precession-driven experiment at the DRESDYN facility. A large range of kinetic
Reynolds numbers is explored for the axial spin case. Simulations at Reynolds
numbers as high as 15000 are done by using the entropy viscosity stabilization
method summarized in appendix §A.2. The two spinning strategies for precession
forcing are investigated and compared. Equatorial spinning is observed to be more
efficient to break the centro-symmetry of the flow than axial spinning. Section §4
contains new results of dynamo action in the axial spin case with varying properties
of the vessel walls. It is shown that using lateral walls made of copper helps the
dynamo effect. It is also numerically demonstrated in this section that precession
can generate dynamo action in the equatorial spin case. But, although centro-
symmetry is more easily broken by equatorial spinning than by axial spinning, it
is observed that the critical magnetic Reynolds for the axial spin configuration is
lower than for the equatorial spin case. Section §5 contains a discussion of our
results and concluding remarks.

2. Numerical setting

Let us consider a cylindrical vessel C of radius R, height L and center of mass O.
The vessel contains a conducting fluid and is embedded in a non-conducting media
(air, vacuum, etc.). The container rotates about the so-called spin axis passing
through O and aligned with the unit vector es; the spinning angular velocity is
constant and equal to Ωses. The cylinder is also assumed to precess about a
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second axis passing through O and aligned with the unit vector ep forming an
angle α with es (0 < α < π) (see figure 1). The precession vector ep is fixed
in a Galilean reference frame, i.e., the laboratory frame. The constant precession
angular velocity is Ωpep. We use the cylindrical coordinate system centered at O
for the computations. The Oz axis is the line passing through O and parallel to the
axis of the cylinder; the Oz axis is oriented by choosing a unit vector ez. The origin
θ = 0 of the angular coordinate (0 ≤ θ < 2π) is the half plane passing through O
and spanned by ez and ep (axial spin case, see below) or spanned by ez and es
(equatorial spin case). The third coordinate, denoted r, is the distance to the Oz
axis.

Let R and U = RΩs be the reference length and velocity scales, respectively. The
fluid density, ρ, is assumed to be constant and the reference pressure scale is P :=
ρU2. The magnetic permeability and the electric conductivity of the conducting
fluid are constant, µ0 (equal to the vacuum permeability) and σ0 respectively. These
quantities are used as reference magnetic permeability and electric conductivity,
respectively. The reference scale for the magnetic induction is chosen so that the
reference Alfvén speed is 1, i.e., B := U

√
µ0ρ.

Six parameters govern the flow: the aspect ratio of the container L/R, the
precession angle α (angle between the spin axis es and the precession axis ep),
the spin angle (angle between the symmetry axis ez and the spin axis es), the
precession rate ε = Ωp/Ωs (ratio of the precession and spin angular velocity, also
called the Poincaré number), the kinetic Reynolds number Re = R2Ωs/ν (where ν
is the kinematic viscosity) and the magnetic Reynolds number Rm = µ0σ0R

2Ωs.
Note that Re is in fact the inverse of the Ekman number.

We start by fixing the ratio of the height of the cylinder to its radius, L/R, to be
equal to 2, since this is the non-resonant aspect ratio that has been chosen for the
DRESDYN experiment. In passing, we refer to [14, 15] for interesting hydrodynamic
studies on resonant aspect ratios. Choosing the precession axis orthogonal to the
spin axis (i.e., α = π/2) and the precession rate ε = 0.15, we are left with two limit
configurations: one called axial spin for which the spin angle is 0 and the symmetry
axis of the cylinder remains fixed in the precessing frame and another one called
equatorial spin for which the spin angle is π/2 and the symmetry axis rotates in
the precessing frame (see figure 1). In the axial spin case, the wall speed is tangent
to the wall and only the viscous stress at the wall drives the flow, whereas, in the
equatorial spin case, the flow is put into motion by the pressure at the wall and is
therefore inertially driven.

The non-dimensional set of equations can be written in two frames of reference.
For the axial spin case, the computations can be performed in the precessing frame
since the geometry of the container is fixed in this frame; the equations are then
written as follows:

∂tu + (u·∇)u + 2εep×u + ∇p =
1

Re
∆u +

[
∇×

(
B

µr

)]
×B,(2.1)

∇·u = 0,(2.2)

∂tB = ∇×(u×B)− 1

Rm
∇×

(
1

σr
∇×

(
B

µr

))
,(2.3)

∇·B = 0,(2.4)
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(a) (b)

Figure 1. Schematic representation of the axial spin (a) and the
equatorial spin (b) configurations in the laboratory frame.

where u, p, and B are the velocity field, the reduced pressure including the cen-
trifugal term, and the induction field, respectively, and σr and µr are the relative
conductivity and permeability of the various materials. The spin axis coincides
with the symmetry axis i.e., es = ez and the precession axis ep = ex is fixed in
the precession frame. The term depending on ε on the left-hand side of (2.1) is
the Coriolis acceleration. The no-slip boundary condition on the velocity field is
written as follows in the precession frame of reference: u|∂C = reθ, i.e., u = eθ at
r = 1 and u = reθ at z = ±1.

To avoid dealing with moving boundaries in the equatorial spin case, the compu-
tations are performed in the reference frame of the walls of the container (henceforth
called the mantle frame); the momentum equation is then written as follows:

(2.5) ∂tu + (u·∇)u + 2Ω(t)×u + ∇p =
1

Re
∆u +

[
∇×

(
B

µr

)]
×B− dΩ

dt
×r.

where es = ex is fixed in this frame and ep rotates around es. Hence, the Coriolis
acceleration on the left-hand side depends on the total angular velocity Ω(t) =
ex + εep(t) = ex + ε(sin(t)ey + cos(t)ez) and the term −dΩdt ×r on the right-hand
side is the so-called Poincaré force. The no-slip boundary condition on the velocity
field is written u|∂C = 0, i.e., u = 0 at r = 1 and u = 0 at z = ±1.

3. Hydrodynamic study

In this section we examine the above two configurations in the hydrodynamic
regime, i.e., we set B = 0. The only control parameter is Re. At low Reynolds num-
ber, the flow is centro-symmetric for both cases, meaning that u(r, t) = −u(−r, t);
it is steady for the axial spin case and it is unsteady for the equatorial spin
case. Loss of centro-symmetry is observed at large Reynolds numbers. The loss
of centro-symmetry is monitored by inspecting the symmetric and antisymmetric
components of the velocity field: us(r, t) = 1

2 (u(r, t) − u(−r, t)) and ua(r, t) =
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1
2 (u(r, t) + u(−r, t)). All the computations have been done on centro-symmetric
grids, but centro-symmetry has not been otherwise enforced.

3.1. Energy scaling with Reynolds number in the axial spin case. We
solve equations (2.1)-(2.2) with B = 0 for the axial spin case. Recall that the
computations for this configuration are done in the precession frame. We start our
investigations with a Navier-Stokes run at Re = 1200 as in [10]. The initial velocity
field in the precessing frame is the solid body rotation: u0 = ez×r. The axial
circulation induced by precession is monitored by recording the time evolution of the
normalized total kinetic energy K(t) = 1

2

∫
C u2(r, t) dV/K0, where K0 = 1

2

∫
C u2

0 dV
is the kinetic energy of the initial solid body rotation. This computation is the
same as in [10], where it was shown that the time evolution of the total kinetic
energy exhibits doubly periodic oscillations. To enrich the dynamics we increase
the Reynolds number as reported in figure 2. To save computing time, we restart
computations at higher Re by using velocity fields obtained at smaller Re. Note
that the rotation period is 2π in our units. Surprisingly the time-averaged kinetic
energy of the flow decreases with the forcing intensity (characterized by Re at ε
fixed).
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Figure 2. (Color online) Time evolution of the total kinetic en-
ergy K(t) in the precession frame for different Reynolds num-
bers as indicated: (a) DNS at Re = 1200, 2000, 3000, 4000; (b)
DNS computation at Re = 4000 and LES computations at Re =
4000, 7500, 10000, 15000.

We perform Direct Numerical Simulations (DNS) for Re ≤ 4000, and we use a
stabilization method with similar spatial and time resolution for Re ≥ 4000, (see
appendix §A.2 for details on this method). The parameters for the stabilization
method (LES in short) are tuned on at Re = 4000. Figure 2b shows the kinetic en-
ergy computed with DNS at Re = 4000 for 0 ≤ t ≤ 300 (same results as in figure 2a
shifted in time); the results for 300 ≤ t ≤ 430 are obtained with LES at Re = 4000.
The dynamical behaviour of both simulations is similar; this computation validates
our LES technique and the chosen stabilization constants which are henceforth kept
constant at higher Re numbers.

The range of Reynolds numbers that we have explored using our LES method
is wide enough to suggest a scaling law for the time-averaged kinetic energy, K,
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as a function of the Reynolds number Re for the precession rate ε = 0.15. To
substantiate this claim we show in figure 3a the time-averaged kinetic energy K as
a function of Re. Values for Re < 1200 are extracted from our previous article [10].
The log-log representation of the data suggests that the energy scales like K '
Re
−0.48 in the range Re ∈ [400, 15000] (see figure 3b), which in turn suggests the

following scaling law for the temporally averaged velocity u ' Re
−1/4 = Ek

1/4

(where Ek is the Ekman number). This scaling predicts that the average flow
vanishes at large Re in the precession frame. Therefore it should be a solid body
motion about the rotation axis in the mantle frame with angular velocity Ω = −ez
(it is a counter-rotation with respect to the spin rotation).

The vanishing of the velocity in the precession frame has been observed in the
ATER experiment [7]. The nearly rigid-body rotation in the mantle frame has been
discussed in [12], where it is called geostrophic flow. It is shown therein that both
the amplitude and the volume occupied by the geostrophic flow grow gradually as
ε increases from 0.075 to 0.25 at Re = 2523, see e.g. [12, Fig.4(a)] (at Re = 104 in
the units from [12]).
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Figure 3. (Color online) Total (time-averaged) kinetic energy K
in the precession frame as a function of the Reynolds number Re:
(a) in linear scale and (b) in log-log scale with the fit Re

−0.48.

The Poincaré number being fixed ε = 0.15, it is possible to verify whether
the global energy damping is uniform when the Reynolds number increases by
inspecting the velocity at sample points in the computational domain. The three
velocity components, averaged in time and in azimuth, at 9 grid points are shown
in Table 3 in the appendix §A.3 for Re = 1200 and Re = 4000. All the velocity
components are small compared to the wall speed, and the amplitude of most of
them indeed diminishes when Re increases.

More graphic representations are needed to follow other flow features. For in-
stance, figure 4 shows the formation of boundary layers as Re increases; the highest
values of the axial velocity are more and more localized near the lateral wall as Re

grows. The central part of the flow is nearly static and all the small scales, highly
intermittent, are pushed towards the wall.

For all the Reynolds numbers, we observe a central S-shaped vortex deformed
by the precession and connected to the walls through viscous boundary layers (see
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(a) (b) (c)

Figure 4. (Color online) Snapshots of contours of the axial veloc-
ity in the equatorial plane in the precession frame: (a) at t = 302
and Re = 1200, (b) at t = 235 and Re = 4000 and (c) at t = 850
and Re = 15000.

figure 5). The vorticity lines are more entangled and the central part of the vortex
is more aligned with the x-axis (the precession axis) as Re increases.

(a) (b)

Figure 5. (Color online) Streamlines of the instantaneous vortic-
ity field (in red/dark grey) from a perspective point of view and
contours of the axial velocity in the equatorial plane: (a) Re = 1200
and (b) Re = 15000.

The tendency to alignment with the precession axis is also apparent on the
time-averaged velocity and vorticity fields as displayed in figure 6. A similar three-
dimensional structure has been observed in [16] in simulations of a precessing sphere
in the axial spin case at ε = 0.1 and Re = 104. The origin of this structure
is attributed therein to a pair of large-scale energetic vortex tubes (see figure 16
in [16]). For a precessing cylinder, this structure is the trace of the S-shape vortex
observed at all Reynolds numbers.

We can now interpret the scaling K ' 1/
√
Re as follows. The wall-localization

observed above as Re → +∞ suggests that the kinetic energy is concentrated in a
small layer of thickness δ on the lateral wall (within the volume 2πRδH). Hence
K ' πR(ΩR)2δH gives δ/R ≈ 1/

√
Re, which is reminiscent of the usual thickness

of a viscous boundary layer.

3.2. Equatorial spin forcing. We solve (2.5) with B = 0 for the equatorial spin
case. Recall that the computations for this configuration are done in the mantle
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(a) top view, 1200 (b) side view, 1200 (c) top view, 4000 (d) side view, 4000

Figure 6. (Color online) Streamlines of the mean velocity field
(in yellow/light grey) and of the mean vorticity field (in red/dark
grey) in the precession frame. Illustrated are 100 streamlines for
u with endpoints distributed uniformly on the Ox axis and 20
streamlines for ∇×u with endpoints distributed uniformly on a
sphere of radius 0.2: (a-b) Re = 1200 and (c-d) Re = 4000.

frame. We now normalize the total kinetic energy by the kinetic energy of the
solid rotation about the equatorial axis ex. We set E⊥0 = 1

2

∫
C(u
⊥
0 )2 dV , where

u⊥0 = ex×r, and we define the normalized total kinetic energy in the mantle frame
E⊥(t) := 1

2

∫
C u2 dV/E⊥0 , the asymmetric kinetic energy E⊥a (t) := 1

2

∫
C u2

a dV/E⊥0
and the asymmetry ratio r⊥a (t) := E⊥a (t)/E⊥(t).

Figure 7a shows the time evolution of the total kinetic energy in the mantle frame.
The kinetic energy rapidly increases with Re for moderate Reynolds numbers and
then seems to saturate at large Reynolds numbers. The time evolution of the
asymmetry ratio is shown in figure 7b for three different Reynolds numbers. The
asymmetry ratio fluctuates in time and the flow is clearly asymmetric for Re ≥ 1000.
The asymmetry ratio seems to saturate around 6% at large Reynolds numbers.
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Figure 7. (Color online) Time evolution of (a) the total kinetic
energy E⊥(t) and (b) the asymmetry ratio r⊥a (t) = E⊥a (t)/E⊥(t)
in the mantle frame at different Reynolds numbers Re in the equa-
torial spin case.
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3.3. Comparison between equatorial and axial spin forcing. In order to
compare the efficiency of the energy injection of the two precession techniques
we perform a change of reference frame for the axial spin case. Let u(r, t) be the
velocity field obtained in the axial spin case, we then define u‖(r, t) := u(r, t)−ez×r.
The field u‖(r, t) is the mantle frame representation of the velocity field obtained in
the axial spin case. It is now reasonable to compare u‖(r, t) with the velocity field
obtained in the equatorial spin case, since both fields are represented in the mantle
frame. We consequently define E‖ = 1

2

∫
C(u
‖)2 dV/K0, this choice of normalization

will become clear below. Note that the normalization of E‖ and K is the same, but
E‖ and E⊥ are normalized differently. To summarize, E‖ is the normalized kinetic
energy in the mantle frame for the axial spin case and E⊥ is the normalized kinetic
energy in the mantle frame for the equatorial spin case. For example, we display
the time evolution of the kinetic energy of the axial spin case at Re = 1200 in the
two reference frames in figure 8a.
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Figure 8. (Color online) (a) Time evolution at Re = 1200 of the
kinetic energy K(t) in the precession frame as in figure 2a and of
the transformed kinetic energy E‖(t) in the mantle frame for the
axial spin case. (b) Comparison of the kinetic energy in the mantle
frame for the axial and the equatorial spin cases at Re = 1200.

We plot in figure 8b the normalized kinetic energy of the two configurations in
the mantle frame at Re = 1200. Note that both the time-averaged value of the
kinetic energy and the fluctutations are larger in the equatorial spin case than in
the axial spin case.

We show in figure 9a the spectrum of K (axial forcing) and E⊥ (equatorial forc-
ing) with respect to the azimuthal Fourier modes at some time. The computations
are done at Reynolds number Re = 1200. Note that the equatorial spin case needs
twice Fourier modes as much as the axial spin case, therefore the computations are
more demanding. We show in figures 9b and 9c snapshots of instantaneous vorticity
and velocity fields in the precession frame for the axial spin case and in the mantle
frame for the equatorial spin case. We observe different features in the two flows:
the spin axis case displays a deformed S-shape vortex approximately contained in a
meridian plane and the velocity field is localized near the side wall; the equatorial
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(a) Energy spectra (b) axial spin case (c) equatorial spin case

Figure 9. (Color on line) Comparison between the axial and
equatorial spin cases: kinetic energy azimuthal spectra as a func-
tion of the azimuthal mode m (a) and snapshot at Re = 1200 of the
vorticity field lines (red/dark grey) and contours of the axial veloc-
ity component in the equatorial plane: (b) axial spin case (same
as figure 5a in the precession frame), (c) equatorial spin case (in
the mantle frame).

spin case shows no coherent vortical structure, and the small-scales of the velocity
are localized near the wall.
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Figure 10. (Color on line) Comparisons between the axial and
equatorial spin cases in the mantle frame: (a) time-averaged ki-
netic energy E‖ and E⊥ as a function of Re; (b) time-averaged

asymmetry ratio E
‖
a/E‖ and E⊥a /E

⊥ as a function of Re.

We compare in figure 10a the time-averaged values of the total kinetic energies
E‖, E⊥ as a function of Re. We have seen in §3.1 that at large Re the velocity
(in the axial spin case) in the mantle frame tends to a nearly rigid body rotation
about the spin axis ez. The normalized time-averaged kinetic energy E‖ approaches
the value 1 in this frame, (whence the normalization by K0 chosen above). In the
laboratory frame, this motion corresponds to a nearly rigid rotation about the static
precession axis. In the equatorial spin case, we observe that the kinetic energy E⊥

(computed in the mantle frame) seems also to converge to the value 1. An easy way



TWO SPINNING WAYS FOR PRECESSION DYNAMO 11

to visualize the flow in the mantle frame is to choose the meridian plane (x = 0)
orthogonal to the spin axis. Figure 11 shows the velocity field for Re = 1200 and
Re = 4000 at two arbitrary times in the meridian section (x = 0). Although the
boundary conditions require that the velocity vanishes on the container walls, we
observe that the flow speed is maximal close to the walls and even exceeds the
wall speed in the inertial frame. The cylinder spins counter-clockwise about the
x-axis, but the rotation of the bulk flow appears to be clockwise in the (x = 0)
plane, meaning that the viscous and pressure forces exerted by the moving walls
fail to drive the fluid at the spin rate. This fact has already been observed in the
ATER experiment [7] at much higher Re. The green isoline ux = 0 crosses the
meridian plane, showing a clear spatial separation between positive and negative
values, which suggests that the flow undergoes in the mantle frame a global rotation
around an axis roughly coinciding with the isoline ux = 0. We have verified that
this line rotates with time approximately at angular velocity Ω = −ex in the plane
(Oy,Oz) (data not shown), as does the precession axis. The exact position of the
precession axis depends on the initial phase at the beginning of each simulation.

These pictures confirm that at ε = 0.15 and for both driving cases, when Re is
large enough, the flow in the mantle frame experiences a nearly solid body rotation
around the spin axis with an angular velocity opposite to the spinning angular
velocity; therefore in the laboratory frame, the largest scales of the flow are close
to a nearly solid body rotation around the precession axis.

(a) Re = 1200 (b) Re = 4000

Figure 11. (Color on line) Equatorial spin case: flow in the man-
tle frame, in the meridian plane (x = 0) orthogonal to the spin
axis, at Re = 1200 and Re = 4000. The black arrows represent
the 2D velocity field (uy, uz) in the plane (x = 0), and the contour
levels show the ux component in this plane. The green line shows
the contour level ux = 0.

There are however important differences between the flows induced by the two
forcings. For example, the centro-symmetry is lost at Re & 800 in both cases
but the asymmetry ratio increases faster in the equatorial spin case than in the

axial spin case; the ratio r⊥a /r
‖
a is larger than three at large Reynolds numbers (see

figure 10b). The equatorial spin case is therefore more efficient in breaking the
centro-symmetry than the axial spin case.
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We finally propose to take another perspective on this problem by looking at the
time-averaged flows over several turns. Figure 12 shows the time-averaged velocity
and vorticity fields at Re = 1200 for the axial and equatorial spin cases. This figure
reveals a rather structured large-scale flow for the axial spin case while no coherent
feature is apparent in the equatorial spin case.

(a) axial spin (b) equatorial spin

Figure 12. (Color on line) Time-averaged velocity field at Re =
1200 for the axial and equatorial spin cases: vorticity field lines
(red/dark grey), contours of the axial velocity component in the
equatorial plane and isosurface of |u|2: (a) axial spin case (with
|u|2 at 0.3% of maximum in the precession frame), (b) equatorial
spin case (with |u|2 at 70% of maximum in the mantle frame).

Based on the phenomenological argument that dynamo action is favored by sym-
metry breaking, it could be anticipated from the above observations that the equa-
torial spin case would generate dynamo action at a lower threshold than the axial
spin case. However, it is shown in section 4.2 that this intuitive argument is incor-
rect.

4. Dynamo action

We now investigate the MHD regime, where Re and Rm are the two control
parameters. The nonlinear MHD simulations use a small magnetic seed field as
initial data or restart from a state computed at neighboring parameters. As al-
ready observed for spherical and spheroidal dynamos, dynamo action occurs after
symmetry breaking of the flow when the magnetic dissipation is small enough, i.e.
for magnetic Reynolds numbers Rm above a critical value Rcm(Re).

4.1. Axial spin case.

4.1.1. Reminder from [10]. In [10], we have explored a large range of the kinetic
and magnetic Reynolds numbers and found dynamo action for Re = 1200 and
Rm ≥ Rcm ≈ 775 when the solid walls of the vessel are assumed to be insulating. The
growing magnetic field that is observed rotates in the precession frame of reference
and is dominated by the m = 2 mode: as shown in figure 13b, the magnetic field
lines show a mainly quadrupolar structure in the vacuum when seen from the top
of the cylinder.
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(a) ’insulating’ case in perspective (b) ’insulating’ case from the top

Figure 13. Snapshot at Re = 1200, Rm = 2400 for the ’insulat-
ing’ case showing vorticity field lines (red lines inside the cylin-
der) and magnetic field lines colored by the axial component [yel-
low (green) for positive (negative) hz component]: (a) perspective
view, (b) from the top of the cylinder (in the precession frame).
From [10].

We now present in the rest of this section new results obtained when using
conducting or ferromagnetic walls of relative thickness w = 0.1 at different places.
The relative conductivity of these additional walls is chosen to be that of copper
i.e., σr = 4.5 (and µr = 1) or the relative magnetic permeability is taken to be that
of soft iron [17], i.e., µr = 65 (and σr = 1).

4.1.2. Numerical results with thick conducting walls. We study the influence of the
conducting walls with σr = 4.5 and µr = 1. We keep Re = 1200 and vary Rm to find
the dynamo threshold, i.e., when the growth rate of the magnetic energy is zero.
We define four cases as follows. We call ’insulating’ case the configuration studied
in [10], the ’side’ case corresponds to adding conducting walls on the cylindrical side
of the vessel, the ’lid’ case corresponds to adding conducting walls at the top and
bottom of the vessel, and the ’wall’ case corresponds to adding conducting walls
everywhere.

We first show in figure 14a a series of dynamo simulations done with Rm =
300, 400 and 900 for the ’side’ case. The figure shows the time evolution of the
magnetic energy M(t) =

∫
Ωc

1
2B2/µ0µrdV where Ωc is composed of the fluid do-

main and the walls. We start the Rm = 900 run with a magnetic seed and integrate
long enough to get a decrease or an increase of M . Dynamo action occurs when
M(t) is an increasing function of time as is the case for Rm = 900 and Rm = 400 but
not for Rm = 300. The initial velocity and magnetic fields for the runs at Rm = 400
are the velocity and the magnetic fields obtained from the run at Rm = 900 at time
t = 47. For Rm = 300, we restart from Rm = 400 at time t = 107. Linear in-
terpolation of the growth rates gives an estimate of the critical magnetic Reynolds
number Rcm ≈ 365 for the ’side’ case.
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Figure 14. Conducting walls: (a) Time evolution of the magnetic
energy M(t) in the conducting fluid at Re = 1200 and various
Rm as indicated (in lin-log scale) for the ’side’ case; (b) Growth
rates of the magnetic field energy as a function of Rm for various
configurations. The values are for Re = 1200 and the thickness
of either conducting wall type is taken as 0.1R, with a relative
conductivity σr = 4.5 and relative magnetic permeability µr = 1.

(a) From the top for the ’lid’ case (b) From the top for the ’side’ case

Figure 15. Conducting walls: Snapshots at (a) Re = 1200, Rm =
1000 for the ’lid’ case and (b) Re = 1200, Rm = 900 for the ’side’
case showing vorticity field lines (red lines inside the cylinder) and
magnetic field lines colored by the axial component [yellow (blue)
for positive (negative) hz component].

We perform two other series of simulations and collect the growth rates in fig-
ure 14b. The thresholds areRcm(′side′) ≈ 365 < Rcm(′wall′) ≈ 650 < Rcm(′insulating′) ≈
775 < Rcm(′lid′) ≈ 965. We observe that the ’lid’ walls are highly detrimental to
the dynamo action whereas adding the conducting ’side’ walls helps it. This phe-
nomenon is reminiscent to the results found in [18, 19] for the von Kármán Sodium
experiment.
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Note that when using walls with the same conductivity as the liquid (i.e., σr = 1
as in [20]), the smallest threshold is also obtained for the ’side’ case, and the cor-
responding critical magnetic Reynolds number is Rcm ≈ 550. This observation sug-
gests that increasing the conductivity of the side wall reduces the dynamo threshold.

Conducting walls enable currents to loop on longer scales but also lead to dif-
ferent growing magnetic field structures (see figure 15). The ’lid’ configuration and
the ’insulating’ configuration lead to a mainly quadrupolar magnetic field while
the ’side’ case gives rise to a mainly equatorial dipolar magnetic field. The ’wall’
configuration shows an oblique dipolar magnetic field (data not shown).

4.1.3. Numerical results with thick Ferromagnetic walls. We now study the influ-
ence of the ferromagnetic walls with µr = 65 and σr = 1. We keep Re = 1200
and vary Rm to find the threshold, i.e., when the growth rate of the magnetic
energy is zero. We define four cases as before. We call ’insulating’ case the con-
figuration studied in [10], the ’side’ case corresponds to adding ferromagnetic walls
on the cylindrical side of the vessel, the ’lid’ case corresponds to adding ferro-
magnetic walls at the top and bottom of the vessel, and the ’wall’ case corre-
sponds to adding ferromagnetic walls everywhere. We perform linear dynamo sim-
ulations and collect the growth rates in figure 16a. The thresholds obtained are
Rcm(′insulating′) ≈ 775 < Rcm(′side′) ≈ 800 < Rcm(′wall′) ≈ 840 < Rcm(′lid′) ≈ 880.
We observe that adding ferromagnetic walls increases the threshold in all the cases.
In the ’wall’ case the magnetic energy is dominated by the m = 1, 2 modes and the
growing magnetic field is an equatorial dipole (see figure 16b).
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(a) Growth rates vs. Rm

(b) Snapshot for the ’wall’ case
with µr = 65

Figure 16. Ferromagnetic walls: (a) Growth rates of the mag-
netic field energy as a function of Rm for various configurations.
The values are for Re = 1200 and the thickness of either ferro-
magnetic wall type is taken as 0.1R, with a relative conductivity
σr = 1 and relative magnetic permeability µr = 65. (b) Snapshot
at Re = 1200, Rm = 1000 for the ’wall’ case showing vorticity field
lines (red lines inside the cylinder) and magnetic field lines colored
by the axial component [yellow (blue) for positive (negative) hz
component]. View from the top.

Although a predictive explanation of the dependence on σr and µr of the dynamo
threshold is still lacking at the present time, the impact of the nature of the walls
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seems crucial for the design of experimental fluid dynamos. For conducting walls,
the increase of Rcm from the ’side’ case to the ’lid’ case suggests to diminish the
influence of the lid by lowering its conductivity: for example, it would be interesting
to consider an inner lateral copper layer attached to the outer stainless steel shell of
the dynamo vessel in the DRESDYN precession experiment. In any configuration
ferromagnetic walls seem to be detrimental to the dynamo action.

4.2. Equatorial spin case. We now want to test if the equatorial spin case with a
higher level of asymmetric energy is more efficient for dynamo action than the axial
case. For that purpose, various MHD runs are performed at Re = 1200 for different
values of the magnetic Reynolds numbers Rm as in [10]. The onset of dynamo action
is monitored by recording the time evolution of the magnetic energy in the conduct-
ing fluid, M(t). Two types of simulations are done: linear dynamo runs are first
performed by imposing B = 0 in equation (2.5), i.e., the retroaction of the Lorentz
force on the velocity field is disabled; then the Lorentz force is restored to observe
the nonlinear saturation and the full system of equations (2.2),(2.3),(2.4),(2.5) is
solved.

4.2.1. Linear regime. A first series of linear dynamo simulations is done with Rm =
1200, 2000 and 2400. The time evolution of M(t) is shown in figure 17a. The
initial velocity field and magnetic field for the runs at Rm = 2000 and 2400 are
the velocity and the magnetic fields obtained from the run at Rm = 1200 at time
t = 282. Dynamo action is declared to occur when M(t) is an increasing function
of time for large times with a positive growthrate (as is the case for Rm = 2400).
Linear interpolation of the growthrates gives the critical magnetic Reynolds number
Rcm ≈ 2130 at Re = 1200, i.e., the critical magnetic Reynolds number is almost three
times larger than that in the axial spin case (see section 4.1.1).
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Figure 17. Equatorial spin case: Time evolution of the magnetic
energy M(t) in the conducting fluid (a) in the linear regime from
t = 275 at Re = 1200 and various Rm as indicated (in lin-log scale)
and (b) in the nonlinear regime.

4.2.2. Nonlinear regime. To observe the nonlinear saturation, we use as initial data
the velocity and magnetic fields from the linear MHD run at t = 323 for Rm = 2400
(see figure 17a). The amplitude of the initial magnetic field is multiplied arbitrarily
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by 200 to reach saturation faster; the initial velocity field is kept unchanged. Fig-
ure 17b shows that M(t) decreases rapidly over a time period corresponding to one
turnover time, i.e., until t = 329, and begins to oscillate thereafter. After restart-
ing the MHD run at t = 357 with Rm = 2000 and running it until t = 405, we
observe that M(t) decreases with time. After restarting the MHD run at t = 355
with Rm = 1200 and running it until t = 387, we observe that the dynamo dies
in a short time lapse. A snapshot of the vorticity and the magnetic field lines at
Re = 1200 and Rm = 2400 is shown on figure 18. Vortex lines are connected to the
walls through viscous boundary layers. The magnetic energy is dominated by the
azimuthal modes m = 1, 2, 3 and the magnetic field lines exhibit a complex shape.

(a) from the side (b) from the top

Figure 18. (Color on line) Equatorial spin case: snapshot in the
mantle frame at t = 395 at Re = 1200 and Rm = 2400 of the vor-
ticity field lines (grey/red) and the magnetic field lines colored by
the axial component (light grey/yellow for positive axial magnetic
field component and black/blue for negative axial magnetic field
component). (a) The view is seen from the side (Ox is the spin
axis, Oz the precession axis), (b) from the top.

5. Conclusion

Using numerical simulations, we have extended the scope of precession forcing in
hydrodynamic and magnetohydrodynamic regimes by assuming that the symmetry
axis of a cylindrical container does not coincide necessarily with the spin axis.
To reduce the parameter space, we have fixed the Poincaré number, the ratio of
precession to spin rotation, to ε = 0.15, and we have chosen a container length
equal to its diameter. We have considered equatorial spin forcing besides the more
conventional axial spin case, with a spin axis orthogonal to the precession axis. In
the axial spin case, the kinetic energy in the precession frame decreases when the
Reynolds number increases. The kinetic energy scales like Re

−0.48, which suggests
that the most energetic scales are concentrated in a viscous boundary layer. Thus
the conclusion of the numerical simulations that there is inhibition of the spin
motion is in agreement with the experimental observations [7] made at Reynolds
numbers hundred times larger than the ones computed in the present paper. In the
precession frame, the azimuthal speed decreases rapidly from the wall in the viscous
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boundary layer, while a 3D bulk flow involving axial velocities is formed. In the
mantle frame, kinetic energy appears to increase with the Reynolds number, since
the bulk flow is nearly in counter-rotation with respect to the container frame.

Using equatorial spin forcing, the kinetic energy increases with the Reynolds
number in the mantle frame, indicating that the flow also tends to the rotation
opposite to the spin motion. This fact suggests that the precession acts efficiently
against the inertial forcing by the moving walls. At Re = 4000, for example, the
kinetic energy is close to 90% of that of the solid body spin motion.

The inhibition of the flow spin may be explained as the consequence of an al-
ternating spin direction: at two moments separated by a half period of precession,
the directions of the container spin are opposite in the laboratory frame. While
nobody would be surprized that a purely oscillating spin leads to no mean flow
motion, we have confirmed that the same result carries over for the two limit spin
angles, with a precession rate of 0.15 and Re ≤ 15000. This picture suggests a more
general conjecture, to be verified numerically and experimentally for any container
geometry: for a sufficient effective Poincaré number (equal to the perpendicular
projection of the precession frequency w.r.t. the spin axis) and in the limit of large
Reynolds numbers, the precession forcing leads to a solid body rotation in the bulk
flow, with a concentration of viscous dissipation in the boundary layers.

In the perspective of dynamo action, the asymmetry ratio saturates at rather
low values, although different in the axial spin case (around 1.8%) and in the
equatorial spin case (around 6%). Contrary to what could be expected from these
results, the critical magnetic Reynolds number is found to be lower for the axial spin
configuration than for the equatorial spin case. This result contradicts the intuition
that wall-normal stress would enhance symmetry breaking and would favor dynamo
action. Inspection of the flows at Re = 1200 reveals different features like more
small-scales in the equatorial spin case with a less coherent large-scale flow.

Our results of varying wall properties of a cylinder precessing in the axial spin
configuration are encouraging for the optimization of the critical magnetic Reynolds
number for the planned experiment at DRESDYN, where magnetic Reynolds num-
bers as large as 700 are expected to be reached: it could be interesting to add an
inner copper layer inside the stainless steel container. The question of self-excitation
in a real precession experiment is far from being settled though.

Appendix A

A.1. SFEMaNS code. All the hydrodynamic and MHD computations reported
in this paper have been done with a code called SFEMaNS. This code uses a hybrid
spatial discretization which involves spectral and finite elements. In a nutshell we
use a Fourier decomposition in the azimuthal direction such that the problem for
each Fourier can be approximated independently (modulo the computations of non-
linear terms) for each the meridian plane. We use Hood-Taylor continuous Lagrange
elements for the pressure and the velocity, i.e., piecewise linear polynomials for the
pressure and piecewise quadratic polynomials for the velocity field. The method
is third-order accurate is space for the velocity. For the magnetic part, the algo-
rithm solves the problem using the magnetic induction, B, in the conducting region
(after standard elimination of the electric field) and the scalar magnetic potential
in the insulating exterior. The fields in each region are approximated by using
H1-conforming Lagrange elements, with a technique to control the divergence of B
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in a negative Sobolev norm that guarantees convergence under minimal regularity
(see details in [21], [22, §3.2], [23]). The coupling at the conductor/insulator inter-
face is done by using an interior penalty method. SFEMaNS has been thoroughly
validated on numerous manufactured solutions and against other MHD codes (see
e.g. [24, 25, 26, 27]).

A.2. Stabilization method. For Reynolds numbers beyond a few thousands,
large gradients, which produce even smaller scales by the action of nonlinearity,
are not correctly represented by the mesh due to lack of computational resources.
Energy that should have been dissipated accumulates at the grid scale. A stabiliza-
tion method that handles this problem has been implemented in SFEMaNS. This
method, called entropy viscosity, was developed by J.-L. Guermond et al. [28], [29],
and consists of adding a local artificial viscosity made proportional to the residual of
the kinetic energy equation. This artificial viscosity induces a diffusion proportional
to the energy imbalance which allows the unresolved scales to be better accounted
for.

Let us now give some technical details on the computation of the entropy viscos-
ity. We consider a mesh Kh of the domain composed of a collection of cells K with
local mesh-size hK . We introduce a time-step τ > 0 and set φn = φ(nτ) for any
time-dependent function φ. Then we define the residual of the momentum equation
as follows:

ResnNS =
un − un−2

2τ
+ (un−1 ·∇)un−1 − 1

Re
∆un−1 + ∇pn−1 − fn−1,(A.1)

where f takes into account the Coriolis, Poincaré and Lorentz forces depending of
the problem setting (axial or equatorial spin cases). This residual is computed at
each time step and over every mesh cell. The local artificial viscosity is defined on
each cell K by:

νnR|K =
h2
K‖ResnNS · un‖L∞(K)

‖un‖2L∞(Ω)

.(A.2)

The quantity νnR|K is expected to be as small as the consistency error in smooth

regions and to be large in the regions where the PDE is not well resolved. To avoid
excessive dissipation and to be able to run with CFL numbers of order O(1), we
define the entropy viscosity as follows:

νnE|K = min
(
cmaxhK‖un‖L∞(K), ceν

n
R|K

)
,(A.3)

where cmax ∈ (0, 1
2 ] and ce ∈ (0, 1] are tunable constants. Technical details about

the tuning of cmax and ce are given in section 2.7 of [28]. Thus defined, the entropy
viscosity is high-order in smooth regions and is first-order in regions with large
gradients.

To illustrate the behavior of the LES method, we compare in figure 19a the
kinetic energy from the DNS and LES computations that have been done for the
hydrodynamic study of the axial spin case at Re = 4000, see section §3.1. The
relative differences on the kinetic energies of the DNS and LES computation are
less than 2%. We show in figure 19b the energy spectrum at final time of the DNS
and LES computations at Re = 4000. It is clear that the entropy viscosity tech-
nique reproduces correctly the energy spectrum of the DNS computation, thereby
validating our LES approach.
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Figure 19. Comparisons between DNS and LES results at Re =
4000 in the hydrodynamic regime. (a) Evolution of total kinetic
energy K(t) (zoom from figure 2b), (b) kinetic energy spectrum at
final time as a function of the Fourier modes (0 ≤ m ≤ 31 with
DNS and 0 ≤ m ≤ 23 with LES).

For completeness we show in Table 1 the spatial and time resolutions that have
been used in the hydrodynamic study of the axial spin case at Re ≥ 4000, as
reported in Section §3.1. We show also in this table the total CPU time (in hours)
on a IBM x3750 for one rotation period, (i.e., wall clock time multiplied by the
number of processors used). Note that the MHD runs are a little over 6 times more
expensive than the hydrodynamic runs.

Re DNS/LES τ NF hbdy hint CPU time

1200 DNS 2.10−3 32 0.0125 0.0125 85

4000 DNS 10−3 32 0.008 0.024 200

4000 LES 10−3 24 0.0125 0.05 40

7500 LES 10−3 32 0.008 0.04 60

10000 LES 10−3 48 0.008 0.04 135

15000 LES 5.10−4 64 0.005 0.02 2800

Table 1. Space and time resolutions used for the DNS and LES
hydrodynamic computations in the axial spin case. NF is the num-
ber of complex Fourier modes, τ the time step, hbdy the pressure
mesh size near the walls of the cylinder and hint the pressure mesh
size along the axis r = 0 (the velocity field is approximated with
cells twice smaller). The last column corresponds to the total
CPU time on a IBM x3750 (in hours) for one rotation period.

We show in table 2 the typical spatial and time resolutions that have been used
in the equatorial spin simulations. The total CPU time (in hours) that is reported
corresponds to one rotation period. The computations have been done on a IBM
x3750 machine.
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Re Rm DNS/LES τ NF hbdy hint CPU time

1200 - DNS 7.5 10−4 64 0.01 0.02 500

4000 - LES 3.10−4 64 0.008 0.04 2000

1200 2000 DNS 4.10−4 64 0.01 0.02 1800

Table 2. Space and time resolutions used for the DNS and LES
computations in the equatorial spin case. When Rm is not in-
dicated, only Navier-Stokes integration is performed. NF is the
number of complex Fourier modes, τ the time step, hbdy the pres-
sure mesh size near the walls of the cylinder and hint the pressure
mesh size along the axis r = 0 (the velocity field is approximated
with cells twice smaller). The last column corresponds to the
total CPU time on a IBM x3750 (in hours) for one rotation period.

A.3. Mean velocity components. We report in Table 3 time and azimuthal
averages of the velocity field at various positions in the precession frame for the
axial spin case. The computations have been done at Re = 1200 and Re = 4000.
We observe that the amplitude of most of the components is small compared to
unity, which is the wall speed in the precession frame, and decreases in absolute
value when Re increases. Note the change of sign of the averaged azimuthal velocity
when passing from Re = 1200 to Re = 4000.

positions radial velocity azimuthal velocity axial velocity
z r Re = 1200 Re = 4000 Re = 1200 Re = 4000 Re = 1200 Re = 4000
-0.7 0.25 -0.0117 -0.0067 0.0637 -0.0279 -0.1081 0.0010

0.5 -0.0115 -0.0051 0.0795 -0.0406 -0.0622 -0.0145
0.75 -0.0075 -0.0031 0.1225 0.0028 0.0050 -0.0094

-0.45 0.25 -0.0278 0.0040 0.0670 -0.0302 -0.0683 0.0059
0.5 -0.0393 -0.0052 0.0700 -0.0574 -0.0490 -0.0069
0.75 -0.0330 -0.0078 0.1053 -0.0198 0.0040 -0.0050

0 0.25 -0.0176 -0.0008 0.0815 -0.0515 -0.0007 0.0020
0.5 -0.0321 0.0044 0.0588 -0.0787 0.0003 -0.0003
0.75 -0.0307 0.0006 0.0876 -0.0225 0.0003 -0.0014

Table 3. Time and azimuthal average of the velocity field at var-
ious positions in the precession frame for the axial spin case at two
illustrative Reynolds numbers.
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mond. Electromagnetic induction in non-uniform domains. Geophys. Astrophys. Fluid Dyn.,
104(5):505–529, 2010.

[23] A. Bonito, J.-L. Guermond, and F. Luddens. Regularity of the Maxwell equations in hetero-

geneous media and Lipschitz domains. Journal of Mathematical Analysis and applications,
408(2):498–512, December 2013.



TWO SPINNING WAYS FOR PRECESSION DYNAMO 23
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