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5Laboratoire Dieudonné, Université de Nice Sophia-Antipolis, France.
6National Center for Atmospheric Research,

P.O. Box 3000, Boulder, CO 80307, USA.
7Laboratory for Atmospheric and Space Physics,

University of Colorado, Boulder, CO 80303, USA.

It is shown how suitably scaled, order-m moments, D±
m, of the Elsässer vorticity fields in three-

dimensional magnetohydrodynamics (MHD) can be used to identify three possible regimes for so-

lutions of the MHD equations with magnetic Prandtl number PM = 1. These vorticity fields are

defined by ω± = curlz± = ω ± j, where z± are Elsässer variables, and where ω and j are, respec-

tively, the fluid vorticity and current density. This study follows recent developments in the study

of three-dimensional Navier-Stokes fluid turbulence [Gibbon et al. Nonlinearity 27, 2605 (2014)].

Our mathematical results are then compared with those from a variety of direct numerical simula-

tions (DNSs) which demonstrate that all solutions that have been investigated remain in only one

of these regimes which has depleted nonlinearity. The exponents q± that characterize the inertial

range power-law dependencies of the z± energy spectra, E±(k), are then examined, and bounds are

obtained. Comments are also made on : (a) the generalization of our results to the case PM 6= 1

and (b) the relation between D±
m and the order-m moments of gradients of magnetohydrodynamic

fields, which are used to characterize intermittency in turbulent flows.

PACS numbers: 47.27.Ak, 52.30.Cv, 47.27.ek, 02.30.Jr

I. INTRODUCTION

Intermittency is widespread in nature : its char-

acterization is a central problem in turbulence [1–

9], in nonequilibrium statistical mechanics, in the

production and storage of wind and solar energy,

and the behaviors of market crashes, and of several

critical phenomena [10, 11]. It has also been stud-

ied extensively in fluid turbulence [1, 3–9] and in

magnetohydrodynamic (MHD) turbulence [12–17],

often by using order-p structure functions of fields

such as the velocity and, in MHD, the magnetic

field. An example is the (longitudinal) velocity (u)

structure function,

Sp(r) ≡ 〈[δu(r)]p〉 ,

δu(r) ≡ [u(x+ r)− u(x)] · r̂ , (1)

which scales as

Sp(r) ∼ rζp (2)

for ηd ≪ r ≪ L, where ηd is the dissipation length

scale below which viscous dissipation is significant,

L is the large length scale at which energy is in-

jected into the fluid, and the multiscaling expo-

nents ζp, which are nonlinear, monotone increasing

functions of p, characterize the intermittency [1].

Simple scaling is obtained if ζp depends linearly on

p, as in the phenomenological approach (K41) of

Kolmogorov [18].

To determine ζp is a challenging task [5, 6, 9],

which is especially difficult for time-dependent

structure functions [19, 20] or MHD turbu-

lence [12–17]. Therefore, we explore other signa-

tures of intermittency. For three-dimensional (3D)

fluid turbulence Refs. [21–23] have introduced a

new way of analyzing direct numerical simulations

(DNSs) to obtain fresh insights into suitably scaled

(see below), order-m moments Dm of the vorticity

ω = ∇× u. These studies show the following: (a)

on theoretical grounds, three regimes, I, II, and III,

are possible, with the Dm ordered in different ways
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(Fig. 1, Ref. [23]); but (b) only regime I is observed

in a wide variety of DNSs [22, 23]. Regime I has

sufficiently depleted nonlinearity so that a global

attractor exists, provided the solutions remain in

this region, as they do in all the DNSs examined

so far from this point of view.

The analog of the above theoretical framework

is developed for the case of 3D MHD turbulence.

Then the behaviors of D±
m are examined – the 3D

MHD counterparts of Dm in [22, 23] – in a va-

riety of DNSs, which have been carried out inde-

pendently by different groups, to obtain new in-

sights into the depletion of nonlinearity here. It

is found that 3D MHD turbulence is like its fluid-

turbulence counterpart inasmuch as all solutions

remain in only one regime, with depleted nonlinear-

ity, in a large variety of DNSs. The implications

of our results are also examined for the exponents

q± that characterize the power-law inertial range

dependencies of the energy spectra E±(k) of the

Elsässer variables on the wave number k.

The remainder of this paper is organized as fol-

lows. In §II the MHD equations are introduced

and our numerical methods are summarized. §III

contains the mathematical analysis of these equa-

tions. §IV is devoted to the energy spectra that

emerge from these calculations. §V contains the

principal conclusions of the paper. The technical

details of some of our calculations have been rele-

gated to Appendices A, B and C.

II. MODEL AND NUMERICAL METHODS

A. The equations in Elsässer variables

The velocity u and magnetic field b can be com-

bined into the Elsässer variables

z± = u± b . (3)

Then the incompressible 3D MHD equations are

(∂t + z∓ · ∇)z± = ν+∇
2z± + ν−∇

2z∓

− ∇P + f± , (4)

where ∇ · z± = 0, P is the total pressure, ν± =
1
2 (ν ± η), and ν and η are, respectively, the kine-

matic viscosity and the magnetic diffusivity, whose

ratio yields the magnetic Prandtl number PM =

ν/η. The two forcing functions, f±(x), are de-

fined by

f±(x) = fu ± fb . (5)

which are absent in decaying MHD turbulence.

j = ∇× b is the current density. The mean mag-

netic field B0 in zero in our simulations. The fol-

lowing notation will be used for spatial and tem-

poral averages :

〈·〉V = L−3

∫

V

· dV , (6)

〈·〉T = T−1

∫ T

0

· dt , (7)

with the L2-spatial norm represented by

‖ · ‖2 =

(
∫

V

| · |2 dV

)1/2

. (8)

The Taylor-microscale Reynolds number RΛ is de-

fined as

RΛ = urmsν
−1

(

〈

u2 + b
2
〉

V
〈

ω2 + j2
〉

V

)1/2

, (9)

with urms the root-mean-square velocity. Our

DNSs of the 3D MHD equations use a periodic cu-

bic box and a pseudo-spectral method [12–16] with

large-scale initial conditions, and in some cases,

forcing (Table I ). All our numerical simulations

are fully de-aliased.

For ideal 3D MHD (i.e., ν± = 0, f± = 0) the

invariants are the energies

E± = 1
2 〈z± · z±〉V = ET ±HC (10)

together with the magnetic and cross helicities

HM = 〈A · b〉V , HC = 〈u · b〉V , (11)

where the vector potential A is related to b by

b = ∇×A , (12)

and the total energy is

ET = 1
2 〈u · u+ b · b〉V

= Eu + Eb . (13)

The relative rates of cross and magnetic and cross

helicity are also defined as

σm = cos(A, b) , σC = cos(u, b) , (14)

with |σc,m| ≤ 1. These represent the degree to

which the fields are aligned and they are also mea-

sures, global or point-wise, of the strength of non-

linearities in MHD.
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By defining the two combinations of the vorticity

and the current as

ω± = ω ± j , (15)

it is shown in Appendix A that ω± evolve accord-

ing to (with PM = 1)

(∂t + z∓ · ∇)ω± − ω∓ · ∇z± − ν∆ω± (16)

= ω∓ × ω± +

3
∑

i=1

∂iz
± × ∂iz

∓ +∇× f± .

The two terms on the right-hand side stem from

the equation for the current; the labels i = 1, 2,

and 3 refer, respectively, to x, y, and z.

In the ideal case, the constraints that follow

from conservation laws involve mixed (u, b) cor-

relators [24, 25]. In the absence of a strong uni-

form magnetic field B0, magnetic fluctuations at a

scale comparable to that of the system, BL, play

a role equivalent to that of B0 for the small scales,

provided there is sufficient scale separation, i.e., for

high-Reynolds-number flows. It has been argued in

[14] that measurable anisotropy develops for scales

smaller than the Taylor scale based on BL. There-

fore, the inertial-range energy spectrum can be of

either Kolmogorov (K41) or Iroshnikov-Kraichnan

(IK) forms, depending on the cross correlation. Di-

mensional analysis gives

ζIKp = p/4 , (17)

if the model of Iroshnikov and Kraichnan (IK) [26,

27] is used and σC = 0 ; or

ζK41
p = p/3 , (18)

if K41 [16, 18] is used. Appendix B discusses some

of these scaling arguments in a phenomenonogical

manner. Moreover,

E±(k) ∼

{

k−3/2 (IK)

k−5/3 (K41) .
(19)

Some models [28, 29] and DNS results [16, 30, 31]

indicate that the departure from linear scaling, be

it of the IK or K41 forms, is stronger in 3D MHD

turbulence than in 3D Navier-Stokes (NS) turbu-

lence, which suggests a depletion of nonlinearity

by virtue of the tendency of alignment or anti-

alignment of u and b [32, 33].

B. Description of runs

Table I contains the parameters for the runs an-

alyzed in this paper. All runs have been performed

in three dimensions by using periodic boundary

conditions, no imposed external magnetic field and

a magnetic Prandtl number PM of unity, except for

the pm-runs ; no modeling of the small scales is em-

ployed. For the sd-runs (spin-down) the Reynolds

number is varied. The initial condition for the

spin-down runs sd is the three-dimensional Orszag-

Tang vortex [34], with added phase shifts to set

σC ≃ −0.21 initially. The Aa-Ae runs are high-

resolution forced runs [35, 36], with a constant ve-

locity and magnetic forcing for which all the modes

in the first two Fourier shells are kept constant.

From the Aa to Ae runs, the resolution increases

with the Reynolds number. The tg-runs are forced

in both the velocity and induction equations. In

these runs, the four-fold symmetries of the Taylor-

Green vortex extended to MHD are implemented.

Moreover, the three runs have different resulting

energy spectra (IK, K41, and k−2), although they

have the same ideal invariants but with different

cross-correlations [37]. Finally, the pm runs have

a fixed viscosity, but variable magnetic diffusivi-

ties and thus allow for extending the analysis to

the case of PM 6= 1 (see [16]).

III. MATHEMATICAL ANALYSIS

The generalization of the analysis of Refs. [22,

23] for the 3D NS equations is now described in

the case of the 3D MHD equations. The relevant

partial differential equations (PDEs) in Elsässer

variables are (4) and (16). Two spatially and tem-

porally averaged velocities, U±, based on z±, are

defined as

U±2 = L−3
〈

‖z±‖22
〉

T
. (20)

In turn, the U± allow us to define two Reynolds

numbers

Re± = LU±/ν . (21)
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TABLE I: Parameters for our direct numerical simulations. kmax = N/3 is the maximum resolved wavenumber at

grid resolution N (the standard 2/3 de-aliasing rule). ΛT and RΛ are defined in (9). σC and σM are the relative

rates of cross-helicity and magnetic helicity, respectively. λ± are the parameters extracted from the data for high

m (subscript max) and low m (subscript min) (See Fig.2, column 3).

Run N RΛ ΛT PM σC σM λ+
min λ+

max λ−

min λ−
max

sd1 128 14 0.27 1 −0.27 −0.22 1.096 1.158 1.101 1.169

sd2 256 21 0.20 1 −0.27 −0.23 1.103 1.165 1.116 1.186

sd3 512 30 0.15 1 −0.27 −0.24 1.111 1.171 1.129 1.197

sd4 768 45 0.11 1 −0.26 −0.24 1.121 1.184 1.141 1.206

Aa 512 35 0.098 1 0.019 0.003 1.049 1.150 1.049 1.156

Ab 1024 54 0.074 1 0.017 0.004 1.057 1.197 1.060 1.195

Ac 2048 120 0.036 1 0.011 Data Not Available 1.076 1.167 1.076 1.176

Ad 2048 161 0.027 1 0.009 Data Not Available 1.074 1.168 1.073 1.157

Ae 4096 341 0.014 1 0.010 Data Not Available 1.070 1.163 1.072 1.174

tgi 1024 100 0.066 1 0 0 1.121 1.196 1.117 1.197

tga 1024 83 0.084 1 0 0 1.161 1.202 1.138 1.202

tgc 1024 110 0.056 1 ∼ 0.05 0 1.084 1.183 1.089 1.175

pm01 512 240 0.14 0.1 0.122 0.0047 1.078 1.238 1.078 1.234

pm02 512 140 0.10 1.0 0.075 0.0049 1.070 1.171 1.069 1.160

pm03 512 80 0.06 10 0.226 0.0077 1.053 1.149 1.052 1.158

The Reynolds numbers are based on average veloc-

ities, while two Grashof numbers Gr± are based on

the forcing functions f±(x), namely,

Gr± = L3/2‖f±‖2/ν
2 . (22)

For the class of forcing functions spectrally concen-

trated around a single length-scale (ℓ = L for the

purposes of this paper), a relation exists between

Gr± and Re± for solutions of (4) that has been

derived through the method of Doering-Foias [38]

(see Appendix C) where it has been shown that

Gr± ≤ cRe± (Re∓ + 1) , Gr± ≫ 1 . (23)

The main variables used in this paper are L2m-

norms of the vorticity field, defined in such a way

that each has the dimension of a frequency :

Ω±
m(t) =

(

L−3

∫

V

|ω±|2mdV

)1/2m

. (24)

By Hölder’s inequality, the Ω±
m are naturally or-

dered such that

Ω±
1 ≤ Ω±

m ≤ Ω±
m+1 . (25)

If a signal has no intermittency, then the Ω±
m will

be packed close together, whereas a strongly inter-

mittent signal will cause them to spread out widely.

The following scaling was first introduced in work

on the 3D Navier-Stokes equations [21–23] and will

be followed here :

D±
m =

(

̟−1
0 Ω±

m

)αm
, (26)

where the exponent αm is defined as

αm =
2m

4m− 3
, (27)

and where ̟0 = νL−2 is the box frequency. The

αm-scaling comes from symmetry considerations.

The ordering of the Ω±
m in (25) does not necessarily

hold for the D±
m as αm is decreasing with respect

to m. The D±
m are the main variables to be used.

Under the assumption that (4) has a solution we

now look at the evolution of D±
1 :
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1
2̟

−1
0 Ḋ±

1 ≤ −L−1̟−2
0

∫

V

|∇ω±|2dV + L−3̟−3
0

∫

V

∣

∣ω± ·
(

ω∓ · ∇z±
)∣

∣ dV

+ L−3̟−3
0

3
∑

i=1

∫

V

∣

∣ω± ·
(

∂iz
± × ∂iz

∓
)∣

∣ dV +Gr±D
±1/2
1 . (28)

To estimate the first nonlinear term in (28) we write (1 < m < ∞)
∫

V

∣

∣ω± ·
(

ω∓ · ∇z±
)
∣

∣ dV ≤

∫

V

∣

∣ω±
∣

∣

2m−3
2(m−1)

∣

∣ω±
∣

∣

1
2(m−1)

∣

∣ω∓
∣

∣

2m−3
2(m−1)

∣

∣ω∓
∣

∣

1
2(m−1)

∣

∣∇z±
∣

∣ dV

≤ c1,m

(
∫

V

|ω±|2 dV

)
2m−3

4(m−1)
(
∫

V

|ω±|2m dV

)
1

4m(m−1)

(29)

×

(
∫

V

|ω∓|2 dV

)
2m−3

4(m−1)
(
∫

V

|ω∓|2m dV

)
1

4m(m−1)
(
∫

V

|ω±|2m dV

)1/2m

.

Note that the sum of the five exponents in the latter expression is unity. For the last term we have

invoked the inequality[49], which requires a Riesz transform in its proof, namely ,

‖∇z±‖2m ≤ c2,m‖ω±‖2m , (30)

provided 1 ≤ m < ∞. Then (29) becomes

L−3̟−3
0

∫

V

∣

∣ω± ·
(

ω∓ · ∇z±
)∣

∣ dV ≤ c3,m
[

D±
1

]

2m−3
4(m−1)

[

D±
m

]
1

2αm(m−1)

×
[

D∓
1

]

2m−3
4(m−1)

[

D∓
m

]
1

2αm(m−1)
[

D±
m

]
1

αm .

≤ c3,m
[

D±
1

]

2m−3
4(m−1)

[

D±
m

]

2m−1
2αm(m−1)

×
[

D∓
1

]

2m−3
4(m−1)

[

D∓
1

]
1

2αm(m−1) . (31)

As in the 3D Navier-Stokes equations, this estimate of the nonlinearity is too strong for the dissipation

terms. However, what was observed in computations of the 3D Navier-Stokes equations is that it displays

numerically much weaker behavior than the estimate equivalent to (31) [23]. This can be measured by

numerically tracking Dm in terms of D1, the equivalent of which for 3D MHD is[50] :

D±
m ≤

[

D±
1

]A±
m,λ , (32)

where, for 2 ≤ m ≤ 9, A±
m,λ is defined as

A±
m,λ =

mλ± + 1− λ±

4m− 3
. (33)

In effect, λ± is a fitting parameter for the maxima in time. An explanation why such a relation should

hold can be found in [39]. The range of values of λ± have been determined numerically (see Fig. 2 and

Table I). By inserting (32) into (31) it is found that

L−3̟−3
0

∫

V

∣

∣ω± ·
(

ω∓ · ∇z±
)
∣

∣ dV ≤ c4,m
[

D±
1

]

χ±
m(2m−1)+m(2m−3)

4m(m−1)
[

D∓
1

]

χ∓
m+m(2m−3)

4m(m−1) . (34)

Next, the second nonlinear term in (28) is considered where (30) is used. From this, it is found that the

estimate for the right-hand side of (34) is the same as in (29), apart from the constant c5,m :

3
∑

i=1

∫

V

∣

∣ω± ·
(

∂iz
± × ∂iz

∓
)
∣

∣ dV ≤ c5,m

(
∫

V

|ω±|2
)

2m−3
4(m−1)

(
∫

V

|ω±|2m
)

1
4m(m−1)

(35)

×

(
∫

V

|ω∓|2
)

2m−3
4(m−1)

(
∫

V

|ω∓|2m
)

1
4m(m−1)

(
∫

V

|ω±|2m
)1/2m

.
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Converting this into the D±
m gives the same right-hand side as in (34) but with a constant c2,m. Taking

all these terms together, (28) becomes

1
2̟

−1
0 Ḋ±

1 ≤ −L−1̟−2
0

∫

V

|∇ω±|2dV + c6,m
[

D±
1

]

χ±
m(2m−1)+m(2m−3)

4m(m−1)
[

D∓
1

]

χ∓
m+m(2m−3)

4m(m−1) +Gr±D
±1/2
1 . (36)

To handle the coupled nature of the ±-variables we define

X = D±
1 +D∓

1 and E0 = max
t

(

E+, E−
)

(37)

and the two bounded dimensionless energies are defined by E± = ν−2L−1
∫

V
|z±|2 dV . By adding the

±-equations and using the depletion formulae (32) and (33), a differential inequality is found for X(t)

1
2̟

−1
0 Ẋ ≤ −

X2

2E0
+ c6,mX1+ 1

2λ
±−(λ±−λ∓)/4m + 2max (Gr+, Gr−)X

1/2 . (38)

Note that when λ± = λ∓ = λ, as in the Navier-Stokes case, then the exponent of the nonlinear term

reduces to 1 + 1
2λ, as it should.

Without the use of the numerically observed de-

pletion in (32), standard methods in analysis leads

to a term ∝ X3 in Eq.(38) (see Ref. [23] for the NS

case), which does not lead to a control over the so-

lutions at large times. However, provided λ± and

λ∓ satisfy

1 + 1
2λ

± −
(λ± − λ∓)

4m
< 2, (39)

an ‘absorbing ball’ for X exists because E0 is

bounded above. This ball has finite radius (de-

pending on the upper bound on E0) into which so-

lutions are drawn if initial conditions are set out-

side the ball, and which cannot escape if initial

conditions are set inside. (39) can be rewritten as

λ± < 2 + ǫ±m, (40)

where ǫ±m = (λ± − λ∓)/2m, which is a small num-

ber. Subject to the constraints on λ± in (40), the

ball is such that the z± are L2-bounded, and thus

so are u and b. Additionally, the control of X that

(38) affords (an H1-bound) is also enough to prove

its compactness. This ball is thus the global at-

tractor which governs the long-time dynamics of

the PDEs.

The natural, 3D-MHD analogs of Fig. 1 in

Ref. [23] are the schematic plots of D+
m versus D+

1

and D−
m versus D−

1 in Fig. 1, which show three

regimes. For regular solutions, we must have

1 ≤ λ± ≤ 2 + ǫ± , (regime I) . (41)

The ǫ±-term has been left off the figure as it is

small and can take either sign. When

2 + ǫ± ≤ λ± < 4 , (regime II) (42)

there is depletion, but not enough to control solu-

tions; and, finally, when

λ± ≥ 4 , (regime III) (43)

then D±
m ≥ cmD±

1 . However, any initial data set in

this region would be pathological as it would have

to be prepared as a very large spike in ω± in which

the L∞-norm is much larger than the L2-norm. In

the NS-case, it can be shown that solutions are reg-

ular in regime III, but no more than algebraically

increasing because of the forcing [39]. Our DNS

FIG. 1: (Color online) Schematic plots of D±
m versus

D±

1 showing the three regimes in 3D MHD (see text).

The additive term ǫ± in (41) has been omitted because

it is small and can take either sign. The values of λ±

in Table I lie only just above the lower bound λ± = 1.

Solutions are regular in regime I but not in regime II.

To start in regime III requires unphysical initial data.

data indicate that regime I (1 ≤ λ± ≤ 2 + ǫ±) is

obtained in 3D MHD for all the solutions we have

studied.
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In Fig. 2 representative results from four of our

DNSs are given. The first column of Fig. 2 con-

tains log-log (base 10) plots of the energy spectra

E(k) versus k. Most of these energy spectra show

power-law forms in the inertial range with an ex-

ponent that is consistent with the K41 value −5/3.

However, this exponent is consistent with the IK

value −3/2 for run-tgc ; and it is −2 for run-tgi.

We find that these exponents can depend on the

values of σC and σM , which are given in Table I.

The second column of Fig. 2 has plots of A+
m(t)

versus t, from which A+
m,λ is determined (plots

for A−
m(t) versus t are similar), which follow from

D+
m(t). The region where the data lie do not fol-

low exactly the contour boundary curves of Fig. 1.

The λ± have been determined as in Ref. [23] for

the 3D-NS equations. λ±
m are defined to be those

values that have been computed from Eq. (33) for

A±
m,λ. A check has shown that our data are reli-

able up to m = 10 ; note the ordering of the A±
m,λ

is the same for all our runs.

In the third column of Fig. 2, plots of λ±
m versus

m are given, in the range 2 ≤ m ≤ 9, for which

good-quality numerical data have been obtained.

From these plots λ± has been found from the min-

imum over m of λ±
m. In general, 1 ≤ λ± ≤ 4;

however, in all our DNSs, 1 ≤ λ± ≤ 2, i.e., our

solutions lie in regime I.

IV. SPECTRA

A. How to estimate the spectrum for the 3D

MHD-Elsässer system

The method of Doering and Gibbon [40] is now

followed which explains how to estimate average

length scales and a corresponding spectrum based

on ideas in [1]. It is necessary to define a set of

time-averaged inverse length scales[51]

〈

L2κ±2
2,1

〉

T
=

〈

L2‖∇ω±‖22dV

‖ω±‖22

〉

T

=

〈

L−1̟−2
0

∫

V
|∇ω±|2dV

D±
1

〉

T

, (44)

where the labelling of the subscripts is based on the number of derivatives on z±. Dividing (36) by D±
1

and time averaging, we find[52]

〈

L2κ±2
2,1

〉

T
≤ c6,m

〈

[

D±
1

]

(χ±
m−m)(2m−1)

4m(m−1)
[

D∓
1

]

χ∓
m+m(2m−3)

4m(m−1)

〉

T

≤ c6,m
〈

D±
1

〉

(χ±
m−m)(2m−1)

4m(m−1)

T

〈

D±
1

〉

χ∓
m+m(2m−3)

4m(m−1)

T . (45)

Secondly, it is necessary to estimate
〈

D±
1

〉

T
by us-

ing the energy inequality version of (4)

1
2

d

dt
‖z±‖22 ≤ −ν‖ω±‖22 + ‖z±‖2‖f

±‖2 . (46)

By time averaging, converting into a dimensionless

form, and using (23), it is found that
〈

D±
1

〉

T
≤ Gr±Re± ≤ cRe2± (Re∓ + 1) . (47)

Moreover, by introducing the definitions, the first

of which is the Elsässer analog of the Taylor micro-

scale,

κ±2
1,0 =

‖ω±‖22
‖z±‖22

, κ±4
2,0 =

‖∇ω±‖22
‖z±‖22

, (48)

and adapting ideas in [40], (46) gives

〈

L2κ±2
1,0

〉

T
≤ Re± . (49)

Then it is easily shown that

〈

Lκ±
2,0

〉

T
≤
〈

L2κ±2
2,1

〉1/4

T

〈

L2κ±2
1,0

〉1/4

T
, (50)

and so from (44), (49) and (47), in which only the

dominant term has been kept, it is found that

〈

Lκ±
2,0

〉

T
≤ c6,mRe

σ±
m

± (Re∓ + 1)
ρ∓
m , (51)
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FIG. 2: (Color online) Representative results from our DNSs: total energy spectra (first column), temporal

evolution of A+
m (second column) and values of λ±

m (third column). The rows correspond to different runs :

a) decaying 3D MHD turbulence ; b) forced, statistically steady 3D MHD turbulence ; c) forced, statistically

steady 3D MHD turbulence with imposed Taylor-Green symmetries and d) forced, statistically steady 3D MHD

turbulence with PM = 0.1. For parameters see Table I.

where, with χ±
m = (m− 1)λ± + 1,

σ±
m =

λ± + 1

4
+

(

λ∓ − λ±

8m

)

, (52)

ρ∓m =
(2m− 1)λ∓ + λ±

16m
. (53)

Thus, (52) can be written as

〈

Lκ±
2,0

〉

T
≤ cRe

λ±+1
4

± Re
λ∓

8
∓ , (54)

where the factor of unity has been ignored in the

large Re±-limit and the limit of large m has been

taken. Then the problem is whether it is possible

to consider Re+ and Re− as independent variables

or not. The simplest way is to note that

‖z±‖2 ≤ ‖v‖22 + 2‖v‖2‖b‖2 + ‖b‖22

≤ 2
(

‖v‖22 + ‖b‖22
)

= 4Etot. (55)

Defining a global Reynolds number as

Re = L
√

2Etot/ν , (56)

(54) gives

〈

Lκ±
2,0

〉

T
≤ cRe

λ±+1
4 +λ∓

8 . (57)
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FIG. 3: (Color online) Plots versus RΛ of
〈

D+
m

〉

st.av.
,

for the runs Aa-Ae (pentagrams) and its decaying-

MHD analog, for the runs sd1-sd4 (circles), where we

use the value of D+
m at the time at which the energy

dissipation rate ǫ reaches its first maximum [16]. See

Table I for additional information about these runs.

Now the implications of these results are examined

for energy spectra derived in (57). By assuming

isotropy and the power-law Ansätze

E±(k) =

{

Ak−q± , L−1 ≤ k ≤ k±c ,

0, k > k±c ,
(58)

the identification (see Appendix B and [1])

〈

Lκ±
2,0

〉

T
∼ (Lk±c )

1− q±−1
4 ∼ Re

5−q

4(3−q) , (59)

allows us to find an inequality relation between q±

and λ±.

q± ≥ 3−
4

2λ± + λ∓
≥

5

3
, (60)

which excludes the IK exponent 3/2, at least in the

absence of intermittency. However, full isotropy

has been assumed at all scales and the limit Re →

∞ when comparing (57) and (59). Furthermore,

(59) implicitly assumes E+ = E−. In general, this

relation is modified leading to a set of inequali-

ties for the q± that do not exclude IK (last two

equations in Appendix B). In fact, IK is excluded

only if correlation is neglected. This is consistent

with the fact that run-tgc (see Fig. 2 and Table

I) produces an IK scaling because it has a non-

zero cross-correlation. It is known that in the pres-

ence of cross correlations between the velocity and

magnetic field (HC 6= 0), different indices arise

for the energy spectra of the two Elsässer fields,

z± (see, e.g., [41] and references therein), a result

that persists in the case of weak MHD turbulence,

as shown through wave-turbulence developments

[42]. The mathematical analysis as well as the nu-

merical simulations presented in this paper, all put

on firm ground that indeed HC plays a crucial role

in determining the distribution of energy among

scales.

In Fig. 3 plots of 〈D+
m〉st.av. versus RΛ have been

displayed, where the angular brackets now indi-

cate the average over the statistically stationary

turbulent state ; we present data (pentagrams in

Fig. 3) from the runs Aa-Ae (Table I). Circles in-

dicate decaying-MHD data points (runs sd1-sd4);

here we use the value of D+
m at the time at which

the energy-dissipation rate ǫ reaches its first max-

imum [16]. The order-m moments of gradients,

or gradmoments, of hydrodynamic fields have been

used to investigate Nelkin scaling [43–45], i.e., the

power-law dependence of the gradmoments on the

Reynolds number Re in the case of fluid turbu-

lence; the Nelkin-scaling exponents ξm can be re-

lated to the structure-function exponents ζm [43–

45]. Our vorticity moments are upper bounds for

gradmoments of the Elsässer variables (see (30)).

If these bounds are saturated, then the exponents,

which can be extracted from the plots of Fig. 3,

should be related to the Nelkin exponents for 3D

MHD turbulence. A more detailed exposition of

such scaling in 3D MHD has been deferred to an-

other study.

In liquid metals, as well as in the solar photo-

sphere, PM is very small. It can also be very large

as, e.g., in the interstellar medium. Our mathe-

matical analysis is not valid if PM 6= 1 because ν−
can become negative for PM ≤ 1. However, our

DNS results in Fig. 3 show that plots for PM = 0.1

(bottom row) are similar to their counterparts for

PM = 1 (top three rows). Furthermore, at least for

a fixed value of ν, Table I shows that the values of

λ±
m are comparable to their PM = 1 counterparts ;

these values of λ± decrease marginally as PM is

increased.

V. CONCLUSIONS

Our work, which builds upon the studies of

Refs. [22, 23, 46] for fluid turbulence, provides

new insights into the depletion of nonlinearity in

3D MHD turbulence and its intermittency. In

particular, we have introduced the scaled mo-

ments D±
m, and then obtained inequalities contain-

ing D±
m and D±

1 ; these inequalities specify three

possible regimes. In essence, it has been found

that 3D MHD turbulence is similar to its fluid-

turbulence counterpart insofar as all solutions that
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have been investigated have remained in only one

regime (regime I), which displays depleted nonlin-

earity (Fig. 1). Moreover, under the assumption

of isotropy our results lead to the inequality (60)

for the spectral exponents q±. In fact, the inequal-

ity (30) can relate D±
m and the order-m moments

of gradients of the magnetohydrodynamic fields ;

such moments can then be used, along with a suit-

able generalization of Nelkin scaling [43–45] for 3D

MHD turbulence, to relate slopes of plots like those

in Fig. 3 to the multiscaling exponents of Elsässer-

field structure functions. We conclude that 3D

MHD appears to have more nonlinear depletion

than fluid turbulence, because the values of λ± are

lower than those for their fluid-turbulence coun-

terparts ; this can be attributed to Alfvén waves

weakening the nonlinear eddies.
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Appendix A: Vorticity and current equations

The following four identities have been used for vectors D and Q (not necessarily divergence-free) :

∇× [∇×D] = ∇[∇ ·D]−∇2D

∇[D ·Q] = D × [∇×Q] +Q× [∇×D]

+ D · ∇Q+Q · ∇D

∇ · [D ×Q] = Q · ∇ ×D −D · ∇ ×Q

∇× [D ×Q] = Q · ∇D −D · ∇Q . (A1)

The equation for the vorticity is derived straightforwardly :

(∂t + u · ∇)ω = ω · ∇u+ b · ∇j − j · ∇b . (A2)

By using D = u× b in the above identities (with ∇ ·D 6= 0), we obtain the equation for the current

∂tj = ∇
[

∇ · [u× b]−∇2[u× b]
]

, (A3)

which, upon expansion, leads to :

∇[∇ · [u× b]] = ω · ∇b+ b · ∇ω − b×∇2u+ ω × j − u · ∇j − j · ∇u+ u×∇2b− j × ω (A4)

−∇2[u× b] = −∇2u× b− u×∇2b− 2Σi∂iu× ∂ib . (A5)
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So the equation for the current (note the cancellations in the ∇2 terms) is:

(∂t + u · ∇)j − ω · ∇b− b · ∇ω + j · ∇u− 2ω × j = −2Σi∂iu× ∂ib , (A6)

an expression already written in [47]. For the curl of the Elsässer field ω+ = ω + j, (with ± symmetry

for ∂tω
−), (A6) and (A2) reduce to (16)

(∂t + z− · ∇)ω+ = ω− · ∇z+ + ω− × ω+ +Σi∂iz
+ × ∂iz

− . (A7)

Note that the geometry term 2ω×j in the equation

for the current density does not appear in the vor-

ticity equation; also, it is weak for almost-aligned

current and vorticity (or ω±) [34, 48]. The equa-

tions (A7) for the temporal evolution of ω± fol-

low immediately from the above. Note also that

ω− × ω+ = 2ω × j does not affect the point-wise

production of ω±, whereas the second term can

create current density ; here the labels i = 1, 2,

and 3 refer respectively to the x, y, and z deriva-

tives. Finally note that, for a flow evolving towards

strong local correlations between the velocity and

magnetic field (z+ = 0 or z− = 0), this extra term

is weak.

Appendix B: Phenomenological argument for

fluids and MHD

In the fluid case, the total energy and dissipation

can be written in terms of the energy spectrum

with spectral index q as

U2 =

∫ kc

k0

Ak−q , ǫ = ν

∫ kc

k0

Ak2−q , (B1)

with the dimension of A as [A] = [ǫa][Lb]. One

finds straightforwardly a = 2/3, b = [5 −

3q]/3, so b = 0 for q = 5/3, as expected.

This leads to a cut-off wavenumber kc/k0 =

[ǫν−3]1/[3(3−q)] k
−4/[3(3−q)]
0 , or in terms of the

Reynolds number,

Re = UL/ν = ǫ1/3L4/3ν−1 , Lkc = Rex,

x = [3− q]−1 , (B2)

with k0 = 2π/L.

In MHD, one can follow the weak-turbulence IK

prescription (remaining in the isotropic framework

for simplicity). Then, A = [ǫB0]
cLd, where B0 is a

large-scale strong (quasi)-uniform magnetic field;

so c = 1/2, d = [3− 2q]/2. This leads to

kc/k0 = [ǫB−1
0 ν−2]1/[2(3−q)] k

−3/[2(3−q)]
0 ; (B3)

or, in terms of the Reynolds number,

Re = UL/ν = [ǫB0L
5]1/4ν−1 , (B4)

with

Lkc = rx Rex, x = [3− q]−1 ,

r =
U

B0
<< 1 , (B5)

which is a hypothesis that is compatible with the

wave-turbulence assumption. Thus, with the in-

troduction of the factor r, the scale dependence of

the cut-off wavenumber with Reynolds number is

the same for fluids and MHD.

This phenomenological argument can be repro-

duced in the more general case when the veloc-

ity and magnetic fields are correlated, i.e., with

E+ 6= E−. This results in a condition between the

indices q± of the E± spectra, namely q+ + q− = 3

within the IK framework with, as before for the un-

correlated flows, q+ = q− = 3/2 (see [47] for an in-

troduction). Two-point closure computations and

two-dimensional numerical simulations find q+ 6=

q− at high correlations, but the three-dimensional

case remains open. As in the preceding case of un-

corrected MHD, we make the assumption that the

± integral scales are both comparable to the box

size L.

After some algebra along the same lines as be-

fore, one finds that the dissipative wave numbers

for the E±(k) spectra are equal both to k+ = k− =

kc = ǫ/[ν2B0]
1/3, as in the zero-correlation case,

or :

Lkν = [z+0 /B0]
1/3[z−0 /B0]

1/3Re
1/3
+ Re

1/3
− , (B6)

with Re± = z±0 L/ν, and we have assumed that the

magnetic Prandtl number is equal to unity so that

ν = η = ν+ = ν−. Writing

E±(k) = A±(ǫ, B0, L)k
−q± ,

A±(ǫ, B0, L) = ǫa±B
b±
0 Lc± , (B7)



12

it is readily found that, under the assumption that

b+ + b− = −3(a+ + a−) + 4 = 1 (B8)

(so that E+(k)E−(k) ∼ [ǫB0]k
−3), and that

c+ + c− = −3 + (3− q+) + (3 − q−) , (B9)

then

Lkc ∼
ǫ

[ν2B0]

1
(3−q+)+(3−q−)

L
3

(3−q+)+(3−q−) , (B10)

or, in terms of the Reynolds numbers Re±,

Lkc ∼ [[z+0 /B0][z
−
0 /B0]]

1
(3−q+)+(3−q−)

× [Re+Re−]
1

(3−q+)+(3−q−) . (B11)

Finally, this phenomenological relation can be used

as in the non-correlated case to establish the upper

bounds of spectral indices. In this case one finds

that

[1− 1
4 (q+ − 1)]

(3− q+) + (3− q−)
≤ min

{

λ+ + 1

4
;
λ−

8

}

,

(B12)

and similarly

[1− 1
4 (q− − 1)]

(3− q+) + (3− q−)
≤ min

{

λ− + 1

4
;
λ+

8

}

,

(B13)

with 1 < q± < 3 and 1 + λ±/2 < 2 using equa-

tion (40). These results are to be contrasted with

the uncorrelated case obtained in the Kolmogorov

framework. It is possible to show that in the cor-

related case the IK spectrum q± = 3/2 cannot be

excluded.

Appendix C: The Doering-Foias Gr± −Re±

relation for MHD

Following Doering and Foias [38] the forcing

function f±(x) is split into its magnitude F± and

its “shape” φ± such that

f±(x) = F±φ±(ℓ−1x), (C1)

where ℓ is the longest length scale in the force and

is taken to be ℓ = L for convenience in the rest of

the paper. On the unit torus Id in d-dimensions,

φ is a mean-zero, divergence-free vector field with

the chosen normalization property

∫

Id

∣

∣∇−1
y φ±

∣

∣

2
ddy = 1 . (C2)

L2-norms of f± on I
d are

‖∇Nf±‖22 = C±
N ℓ−2NLdF±2, (C3)

where the coefficients C±
N , which refer to the shape

of the force but not its magnitude, are

C±
M =

∑

n

|2πn|2N |φ̂
±

n |
2 . (C4)

Various bounds exist such as (among others)

‖∇∆−Mf±‖∞ = D±
MFℓ2M−1 . (C5)

The energy dissipation rate ǫ is

ǫ± =

〈

νL−d

∫

V

|∇z±|2 dV

〉

= νL−d
〈

H±
1

〉

.

(C6)

In terms of F±, the Grashof number in (22) be-

comes (ℓ = L)

Gr± = F±ℓ3/ν2 . (C7)

Following the procedure in [38] (pg 296 equation

(2.9)), we multiply (4) by (−∆−M )f± and inte-

grate to obtain

d

dt

∫

Id

z± · [(−∆−M )f±] dV = ν

∫

Id

∆z± ·
[

(−∆−M )f±
]

−

∫

Id

z∓ · ∇z± ·
[

(−∆−M )f±
]

dV

+

∫

Id

f± ·
[

(−∆−M )f±
]

dV . (C8)
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Now if we integrate all the terms by parts, and take the time average, we get

〈

L−d

∫

Id

∣

∣∇−Mf±
∣

∣

2
dV

〉

≤ ν

〈

L−d

∫

Id

∣

∣z± · (−∆−M+1)f±
∣

∣ dV

〉

+

〈

L−d

∫

Id

∣

∣z∓ · [∇[(−∆−M )]f ] · z±
∣

∣ dV

〉

. (C9)

Thus, after a Schwarz inequality, (C9) turns into

c0F
±2ℓ2M ≤ c1νF

±ℓ2M−2U± + c2ℓ
2M−1F±U±U∓ . (C10)

By using (C7), in the limit Gr± → ∞, (C10) becomes

Gr± ≤ c (Re± +Re±Re∓) . (C11)
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[50] The simple Hölder inequality Ω±

1 ≤ Ω±
m translates

to D
±αm/2
1 ≤ D±

m which, in turn, implies that the

lower bound D
±αm/2
1 is equivalent to λ± = 1.

[51] For technical reasons [40], an additive term should

be included in both the denominator and numer-

ator in (44) to take account of the forcing term in

(36), but as this makes a negligible contribution it

will be dropped.

[52] As a check we note that if χ+

m,λ = χ−

m,λ = mλ +

1−λ, as it does in the pure 3D Navier-Stokes case

[23], then the sum of the exponents on the right

hand side of (45) is 1
2
λ, as it should.


