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We present new Nusselt-number (Nu) measurements for slowly-rotating turbulent thermal con-
vection in cylindrical samples with aspect ratio Γ = 1.00 and provide a comprehensive correlation of
all available data for that Γ. In the experiment compressed gasses (nitrogen and sulfur hexafluride)
as well as the fluorocarbon C6F14 (3M FluorinertTM FC72) and Isopropanol were used as the con-
vecting fluids. The data span the Prandtl-number (Pr) range 0.74 < Pr < 35.5 and are for Rayleigh
numbers (Ra) from 3× 108 to 4× 1011. The relative heat transport Nur(1/Ro) ≡ Nu(1/Ro)/Nu(0)
as a function of the dimensionless inverse Rossby number 1/Ro at constant Ra is reported. For
Pr ≈ 0.74 and the smallest Ra = 3.6 × 108 the maximum enhancement Nur,max − 1 due to ro-
tation is about 0.02. With increasing Ra, Nur,max − 1 decreased further, and for Ra & 2 × 109

heat-transport enhancement was no longer observed. For larger Pr the dependence of Nur on 1/Ro
is qualitatively similar for all Pr. As noted before, there is a very small increase of Nur for small
1/Ro, followed by a decrease by a percent or so, before, at a critical value 1/Roc, a sharp transition
to enhancement by Ekman pumping takes place. While the data revealed no dependence of 1/Roc
on Ra, 1/Roc decreased with increasing Pr. This dependence could be described by a power law
with an exponent α ≃ −0.41. Power-law dependences on Pr and Ra could be used to describe the
slope S+

Ro
= ∂Nur/∂(1/Ro) just above 1/Roc. The Pr and Ra exponents were β1 = −0.16 ± 0.08

and β2 = −0.04± 0.06 respectively. Further increase of 1/Ro led to further increase of Nur until it
reached a maximum value Nur,max. Beyond the maximum, the Taylor-Proudman (TP) effect, which
is expected to lead to reduced vertical fluid transport in the bulk region, lowered Nur. Nur,max was
largest for the largest Pr. For Pr = 28.9, for example, we measured an increase of the heat transport
by up to 40% (Nur−1 = 0.40) for the smallest Ra = 2.2×109, even though we were unable to reach
Nur,max over the accessible 1/Ro range. Both Nur,max(Pr,Ra) and its location 1/Romax(Pr,Ra)
along the 1/Ro axis increased with Pr and decreased with Ra. Although both could be given by
power-law representations, the uncertainties of the exponents are relatively large.

I. INTRODUCTION

In addition to being of major fundamental interest in
fluid mechanics, thermal convection in a rotating refer-
ence frame has been a topic of research for many years
because it occurs in many geo- and astro-physical sys-
tems. Important examples occurring in nature include
atmospheric flows in solar planets [see, for instance, Ref.
[1]], convection in an outer portion of the sun [2] which
determines the temperature on Earth, and the flow of
conducting material in Earth’s outer core which gener-
ates the magnetic field that protects us from cosmic ra-
diation [3].

Studies of thermal convection in the laboratory or in
numerical simulations use or consider a fluid which is
confined by a cold horizontal plate from above and a
parallel warm plate from below. This system is known as
Rayleigh-Bénard convection or RBC [for a general intro-
duction to RBC, see for instance [4, 5]; for more detailed
reviews see e.g. [6–8] and references therein]. The verti-
cal temperature difference across the sample is expressed
in dimensionless form by the Rayleigh number Ra (see
Eq. 3 below). For sufficiently large Ra the fluid flow is
turbulent [9–13] and the heat transport, expressed in di-
mensionless form as the Nusselt number Nu (see Eq. 8
below), is strongly enhanced by the fluid motion. In
this case, most of the temperature drop across the sam-
ple takes place within two thin thermal boundary layers

(BLs), one below the top and the other above the bot-
tom plate [14–17], while the temperature in the bulk of
the sample, even though vigorously fluctuating, remains
nearly constant in the time average (see, however, Refs.
[18–22] for more detailed descriptions). In the bulk there
are large-scale flow structures (the “large-scale circula-
tion” or LSC) in addition to the fluctuations on a wide
range of smaller scales [23]. In the case of a sample with
height L close to its diameter D the LSC takes the form
of a single convection roll with up flow and down flow
along the side wall on opposite sides. The LSC has a
dynamic characteristic of a stochastically driven system
[24, 25]. The circulation plane of the LSC diffuses az-
imuthally, driven by the small-scale fluctuations. The
LSC amplitude varies irregularly in time, and occasion-
ally undergoes a cessation where it briefly vanishes com-
pletely. All the work discussed in the present paper is
about turbulent convection in a cylindrical sample with
aspect ratio Γ ≡ D/L = 1.00.

Rotating a sample of turbulent RBC about its vertical
axis at an angular frequency Ω introduces a host of inter-
esting new phenomena (for a recent review, see [26]). In
dimensionless form Ω is usually expressed by the inverse
Rossby number 1/Ro (see Eq. 6) or the inverse Ekman
number 1/Ek (see Eq. 7), both of which are proportional
to Ω. Constant rotation affects the flow field, and thus
Nu, because it couples to the velocity and thereby intro-
duces the Coriolis force. It also introduces a centripetal
force, but this is often neglected in a theoretical analysis
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and experiments tend to be designed so as to minimize
its influence.
Rotation stabilizes the pure conduction state and thus

leads to an increase of the critical Rayleigh number
Rac(Ω) for the onset of convection [27–32]. For some-
what larger Ra this stabilizing influence is reflected in a
reduction of the heat flux when the rotation rate is in-
creased at constant Ra > Rac. However, when Ra is large
enough for the convection to be turbulent, slow rotation
(small 1/Ro or 1/Ek) at constant Ra leads to an enhanced
Nu [29, 30, 33]. We shall describe this phenomenon in
terms of the relative Nusselt number

Nur = Nu(1/Ro)/Nu(0) . (1)

It is believed that this enhancement is due to Ekman
pumping that occurs when thermal plumes that emerge
from the thermal boundary layers are turned into vortices
by the Coriolis force; these vortices pump hot or cold
fluid from the bottom or top boundary layers into the
bulk regions [29].
A remarkable recent experimental discovery was that

the heat-flux enhancement does not occur for arbitrar-
ily small rotation rates. Rather, 1/Ro has to exceed a
critical value 1/Roc before Ekman pumping sets in [34].
At 1/Roc there is a transition between two different tur-
bulent states, one without and the other with Ekman
vortices. The value for 1/Roc depends on Γ and the ex-
perimental data suggest that it vanishes as Γ tends to-
ward infinity, thus leaving the unbounded state without
this transition [34, 35]. A Ginzburg-Landau like model
was developed that explains the transition as a result of
the influence of the lateral boundaries on the vortex for-
mation inside the fluid [36, 37]. In this model, the tran-
sition is a forward bifurcation, causing a discontinuity of
the slope

SRo = [∂Nur/∂(1/Ro)] (2)

at 1/Roc.
Above 1/Roc the heat transport first increases linearly

with 1/Ro, but as 1/Ro becomes larger SRo decreases
and eventually becomes negative, thus leading to a max-
imum of Nur(1/Ro) at constant Ra and Pr. Qualitatively
this phenomenon is due to a competition between Ekman
pumping (which enhances Nu) and the stabilizing influ-
ence due to the Taylor-Proudman (TP) effect (see e.g.
Ref. [38]) which tends to suppress vertical velocity gradi-
ents and thereby introduces temperature gradients in the
bulk and reduces Nu. The state of the system in the pa-
rameter range where Nur > 1 because Ekman pumping
is more effective than TP suppression often is referred to
as buoyancy-driven turbulence. The current investigation
focusses on this parameter range.
It had been thought that above 1/Roc Nur(1/Ro) at

constant Ra evolves smoothly with increasing 1/Ro in
the buoyancy-driven regime without any further transi-
tions. However, recently it was discovered [39] that there
actually is a sequence of transitions where SRo changes

discontinuously while, within the resolution of the exper-
iment, Nur remains continuous. Between these transi-
tions Nur is well approximated by a linear dependence
on 1/Ro. For modest Ra the slope changes at the transi-
tions are not very large and were not easily recognized in
the data; but at Ra = O(1011) and larger the transitions
became quite obvious. For the analysis of the present pa-
per we shall not take the transitions beyond 1/Roc into
consideration and focus only on the dependence on Ra
and Pr of 1/Roc, of the slopes S−

Ro
and S+

Ro
immedi-

ately below and above 1/Roc, and of the height Nur,max

and location 1/Romax along the 1/Ro axis of the maxi-
mum of Nur.

With further increase of 1/Ro the system enters a
rotation-dominated regime where the TP suppression of
the heat transport is larger than the Ekman-pumping en-
hancement (i.e. Nur < 1) [see e.g. Refs. [29–31, 33, 40–
42]]. When 1/Ro becomes even larger (but Ra is large
enough for the system to remain in a turbulent state),
one finds the so-called geostrophic flow regime where Nur
is diminished to values well below one and where the
Coriolis force is balanced by pressure gradients [see e.g.

Refs. [41–44]]. While this regime is of exceptional inter-
est in geophysics, astrophysics, atmospheric science, and
oceanography, it is difficult to reach experimentally and
beyond the scope of the present paper.

There is no uncertainty about the existence of the
above-mentioned regimes; but many details are still un-
clear, as for example the influence of Pr on the heat-
transport enhancement at small 1/Ro. Here we con-
sider large Ra and small rotation rates and investigate
the heat-transport enhancement in this buoyancy-driven
regime. A great deal of work already had been done on
this problem using experiments (e.g. Refs. [37, 45–50])
and direct numerical simulations (DNS) (e.g. Refs. [34,
51, 52]); our measurements add to the understanding of
the Pr and Ra dependences of the observed phenomena.
Our analysis of all the available data for Γ = 1.00 pro-
vides a unified interpretation.

We found that 1/Roc is, within the uncertainty of the
data, independent of Ra and decreases with increasing
Pr. This Pr dependence can be described by the power
law 1/Roc ∝ Prα with α ≃ −0.41. The slope S−

Ro of

Nur just below 1/Roc is negative and has a tendency to
become more so with increasing Ra, but the data are not
good enough to warrant a description in terms of a power
law. The initial slope S+

Ro
immediately above 1/Roc is

positive and decreases slightly with increasing Pr and
Ra. The data can be represented well by a power law of
the form S+

Ro ∝ Pr−0.16
· Ra−0.04. The maximum heat-

transport enhancement Nur,max decreases with increas-
ing Ra at constant Pr, and the decrease can be described
by the power law Nur,max ∝ Raδ2 with δ2 = −0.35.
With increasing Pr at constant Ra Nur,max increases.
Although the data are not so definitive, we assumed also
for the Pr-dependence a power law Nur,max ∝ Prδ1 , but
the fitted exponent value δ1 ≈ 0.65 is subject to a large
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uncertainty. For Pr = 28.9 and Ra = 2.2 × 109 we mea-
sured an increase of the heat transport by as much as
40%, even though our accessible range of 1/Ro was not
sufficient to actually reach the maximum. In contrast,
for Pr= 0.74 the heat transport increased by not more
than 2% for the smallest Ra, and no enhancement could
be measured for larger Ra.
In the next section we define the relevant dimensionless

parameters needed to describe this system. After that,
in Sec. III, we describe the general features of the heat-
transport enhancement by using previous measurements
taken with water (Pr = 4.38) and published in Ref. [47].
We then briefly describe the experimental apparatus in
section IV. Section V presents measurement results and
data analysis. The paper ends with a summary and dis-
cussion where we present our present understanding of
the observed phenomena in the weakly rotating regime.

II. RELEVANT PARAMETERS

Investigating thermal convection is usually done in
cylindrical vessels of diameter D and height L that are
terminated by a warm plate of temperature Tb from the
bottom and a colder plate at temperature Tt from above.
If the temperature difference ∆T = Tb−Tt is sufficiently
small, fluid properties can be assumed to be constant
throughout the cell and the system is described by the
Boussinesq equations [53–55]. In these equations, two
dimensionless control parameters occur. They are the
Rayleigh number

Ra =
αg∆TL3

νκ
(3)

and the Prandtl number

Pr =
ν

κ
. (4)

Here α, κ and ν denote the isobaric thermal expansion
coefficient, the thermal diffusivity, and the kinematic vis-
cosity of the fluid. These properties are evaluated at the
mean temperature Tm = (Tb + Tt)/2. The gravitational
acceleration is g. For a cylindrical sample a third relevant
parameter is the aspect ratio

Γ ≡ D/L. (5)

The value of Ra for which the flow becomes turbulent
depends on Pr. An increase of Pr stabilizes the flow, i.e.
the transition to turbulence is shifted to larger values of
Ra [9–11, 13]. All measurements considered in this paper,
including those at the larger Pr values, are done in the
fully turbulent regime.
From the definitions of Ra and Pr we see that the first

measures the thermal driving of the flow (i.e., the ratio
between the buoyancy and the damping forces), while the
second indicates whether thermal diffusion or viscosity is
the main reason for the damping of the flow.

When the sample rotates around its vertical axis, the
angular rotation frequency Ω (in rad/s) is an additional
control parameter that can be varied. There are several
dimensionless parameters that can be used in the gov-
erning equations to express the effect of Ω. Here we shall
use the Rossby number

Ro =

√

αg∆T/L

2Ω
, (6)

which describes the ratio between the buoyant and Cori-
olis forces and the Ekman number

Ek =
ν

ΩL2
= 2Ro ·

√

Pr

Ra
(7)

which compares the viscous with the Coriolis force.
While either of these two numbers is sufficient to describe
the system, one or the other may be more appropriate de-
pending on parameter values and issues of interest. Fol-
lowing the convention of recent previous publications, we
shall use the inverse Rossby number 1/Ro and the inverse
Ekman number 1/Ek because these are proportional to
Ω.
An important global property usually investigated is

the heat flux from the bottom to the top plate as ex-
pressed by the dimensionless Nusselt number

Nu =
QL

Aλ∆T
. (8)

This quantity relates the overall heat-current density
Q/A to the purely conductive heat flux λ∆T/L that
would occur without convection. Here, λ is the thermal
conductivity of the fluid.
In Eq. 2 we already defined the slope SRo of

Nur(1/Ro). Below we shall also use the slope

SEk = [∂Nur/∂(1/Ek)]Ra. (9)

From Eq. 7 one sees that

SEk = 2SRo
√

Pr /Ra . (10)

III. GENERAL FEATURES OF THE HEAT

TRANSPORT AS A FUNCTION OF 1/Ro

Before proceeding to the new results of the present
investigation, we provide an overview of the differ-
ent ranges of heat-transport enhancement in rotating
buoyancy-driven turbulent convection and review the ex-
tent to which the various encountered phenomena are
understood.
Figure 1 shows typical data sets [47] for Nur as a func-

tion of 1/Ro for Pr = 4.38 at constant Ra. Figures 1 (a)
and (b) show data for a relatively small Ra = 2.2 × 109

and Figs. 1 (c) and (d) display measurements for the
larger Ra = 1.8×1010. For (a) and (c) a linear horizontal
scale was used, while (b) and (d) are displayed on log-
arithmic horizontal scales in order to show more clearly
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the dependences at small 1/Ro. One sees that Nur is not
a monotonic function of 1/Ro, and that the slope SRo
(see Eq. 2) changes with (1/Ro). For both Ra, one can
identify three ranges, separated by vertical dashed lines
and marked by roman numbers in Figs. 1(b,c,d).
At small Ra and 1/Ro, Nur remains nearly constant

and very close to one with increasing 1/Ro [range I
in Fig. 1 (b)]. In range II Nur increases as 1/Ro in-
creases. From a Ginzburg-Landau-like model, we know,
that the transition between range I and II at 1/Roc is
sharp (see Sec. I and [36, 37]) and the increase of Nur
beyond it is initially (locally) linear. At larger 1/Ro the
slope decreases and Nur reaches a maximum Nur,max at
1/Romax. Beyond 1/Romax Nur decreases again (range
III).
When with further increase of 1/Ro Nur has decreased

to the point where it is less than one, it eventually enters
the geostrophic regime and thereafter the pure conduc-
tion state where Nur = 1/Nu(0) << 1 and Nu = 1; these
ranges are not under consideration in the current paper.
While the three ranges indicated in Fig. 1(b) are clearly

distinguishable at any Ra, for larger Ra the structure
becomes more complex and we divide the ranges into
subranges. As can be seen in Fig. 1 (c and d), for larger
Ra Nur is only (nearly) constant for very small 1/Ro
and then decreases towards the end of range I. Thus we
define two sub-ranges Ia and Ib. One sees that there is a
reduction of the heat transport due to rotation in range
Ib which, to our knowledge, has not yet been elucidated.
This range extends up to 1/Roc where Ekman pumping
starts and Nur begins to increase.
Remarkably, another seemingly discontinuous change

of the slope SRo is seen in Fig. 1(c) at 1/Ro ≈ 0.8
(marked by an arrow). The same transition becomes
more pronounced for larger Ra and could also be ob-
served in the bulk temperature gradient in the fluid [39].
While in ranges II and III SRo changes smoothly with

increasing 1/Ro when Ra = 2.2×109 [Fig. 1(a and b)], at
larger Ra different regions of essentially constant slopes
are separated by further rather sharp transitions [39].
A similar non-monotonic dependence on 1/Ro was

found as well for several other quantities, such as the
time-averaged LSC temperature-amplitude δ, the LSC
cessation frequency, the rotation rate of the LSC circu-
lation plane, and the temperature gradient near the side
wall of the sample [47].
The reasons for the existence of the different ranges

is understood only partially and mostly qualitatively. In
range I the system does not differ in a major way from
the case of no rotation in the sense that there still exists a
large-scale circulation, and thermal boundary layers are
still located adjacent to the plates and sustain most of
the temperature difference. However, a weak Coriolis
force is acting upon this system. Since in this parameter
range the heat transport is determined primarily by the
thickness of the thermal boundary layers, one might look
for an explanation of the sub-structure of Nur and its
Ra dependence in range I by considering the influence

of the rotation on the boundary layers. This was done
in Ref. [51]; but these authors focussed primarily on the
influence of a weak centripetal force on the BLs (which is
usually neglected in the theory of rotating convection),
and their numerical calculations were for the relatively
small Ra = 4× 107. While they found a gradual increase
of Nur with 1/Ro, their model has not explained the non-
monotonic structure which was found experimentally at
larger Ra and which leads to the two ranges Ia and Ib.

Interesting results of the flow structure were obtained
also in experiments with cylinders of aspect ratio Γ =
1/2 [48]. There, range I is larger and changes of the LSC
properties in this range have been observed, such as the
azimuthal rotation rate of its circulation plane and the
frequency at which the LSC temporarily breaks up into
two rolls, one on top of the other. However, due to the
differences in the LSC structure for Γ = 1 and Γ = 1/2
it is unclear to which extent there is a relationship to the
phenomena discussed here for Γ = 1.00.

Another attempt to understand this range of weak ro-
tation was presented in Ref. [56], which extended the
model of Brown and Ahlers for the flow structure of RBC
without rotation [24, 25, 57] to the rotating case. How-
ever, while that work provided an interesting relationship
between a number of observables, including the frequency
of cessations, the amplitude, and the azimuthal veloc-
ity fluctuations of the LSC, its predictions were based
on model parameters derived from fits to the experi-
mentally determined probability distribution functions of
the LSC temperature-amplitudes (J.-Q. Zhong and G.
Ahlers, unpublished) which already contained the basic
non-monotonic dependence on 1/Ro. Thus we conclude
that even the qualitative features of this range of weak
rotation in region I have not been elucidated so far.

Qualitatively, the heat-transport enhancement for
1/Ro > 1/Roc in range II is attributed to the formation
of vortices close to the top and bottom plates which form
due to the action of the Coriolis force on plumes that are
emitted from the BLs [29]. The vortices pump hot (cold)
fluid from the bottom (top) boundary layer into the bulk
region and thereby enhance the heat transport - a phe-
nomenon referred to as Ekman pumping. The sharp onset
for this effect at 1/Roc is attributed to the influence of
the sidewalls on the formation of these vortices. Experi-
ments and numerical simulations with cylinders of differ-
ent aspect ratios have shown that 1/Roc increases with
decreasing aspect ratio [35–37]. When Γ and/or 1/Ro
are too small, vortices cannot form and heat transport is
not enhanced by Ekman pumping. In analogy to equi-
librium critical phenomena this finite-size effect could be
described well by a Ginzburg-Landau model [36, 37].

With increasing rotation rate at constant Ra, the vor-
tices reach deeper into the fluid and a stronger Corio-
lis force suppresses the turbulent motion via the TP ef-
fect. Therefore, the heat transport decreases with in-
creasing rotation rate in range III. With further increase
of the rotation rate the enhanced Taylor-Proudman ef-
fect suppresses more vertical fluid motion and thus the
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FIG. 1. (Color online). Relative Nusselt numbers Nur as a function of 1/Ro (bottom x-axis) and 1/Ek (top x-axis) for
Pr = 4.38, and Ra = 2.2× 109 [(a) and (b)] and Ra = 1.8× 1010 [(c) and (d)]. The short-dashed vertical lines in (b), (c), and
(d) mark 1/Ro values at which the slope ∂Nur/∂(1/Ro) changes sign, separating different 1/Ro-intervals. The dashed red and
dash-dotted green lines in (c) show fits of linear functions based on data points close to the minimum at 1/Roc. The black solid
lines are fits of Eq. 15 to the data points close to the maximum 1/Romax. The boundary between range I and II corresponds
to a sharp transition at 1/Roc. The arrow in (c) marks a second transition that was recently discovered and discussed in [39].
Plots (b) and (d) show the same data as (a) and (c), but on logarithmic x-axes. The uncertainties of Nur in these plots are
indicated by the scatter of the data points and are smaller than the symbol sizes. The figure is based on data published in
Ref. [47].

heat transport inside the bulk. Instead of the boundary
layers, now the bulk becomes the bottleneck for the heat
transport and Nur < 1.

Eventually the system enters the geostrophic regime,
where pressure gradients are to leading order balanced
by Coriolis-forces (not shown in Fig. 1). Beyond that, at
the highest rotation rates, the conduction state is found
with Nur ≪ 1 and Nu = 1. The range where Nur . 1 is
beyond the scope of the present paper.

IV. EXPERIMENTAL SETUP AND DATA

ANALYSIS

We used cylindrical cells with aspect ratios Γ ≈ 1.
The experiments were done using two different appara-
tus; both were described in previous publications. For
small-Ra measurements, we used the small convection

apparatus (SCA). The design of this apparatus is such
that it can be used with two kinds of convection cells,
one that can sustain high pressures to be used with com-
pressed gases (Pr.1, see e.g., Ref. [58]) and another one
for liquids (Pr> 3, e.g. Ref. [59]). The apparatus was
mounted on a rotating table.



6

Apparatus L (cm) fluid Pr Ra Nu(1/Ro=0)

SCA 9.8 N2 0.74 3.6 × 108 49.9

9× 108 64.7

1.8 × 109 80.3

SF6 0.84 2.3× 1010 164

4.6× 1010 206

9.6 FC72 12.34 5.0 × 109 111

9.0 × 109 131

1.8× 1010 161

2.2× 1010 170

MCA 24.8 water 3.05 1.2 × 109 66.6

8× 109 121

3.62 4.6 × 109 102

4.38 5.7 × 108 53.6

2.2 × 109 81.4

9× 109 124

1.8× 1010 153

6.26 2.7 × 108 43.2

2.2 × 109 80.5

6.41 1.2 × 109 67.2

19.0 FC72 12.34 1.9× 1010 164

4.0× 1010 207

1.0× 1011 273

2.1× 1011 344

24.1 FC72 12.34 4.2× 1011 421

24.8 isopropanol 23.9 2.2 × 109 75.6

9.0 × 109 115

28.9 2.2 × 109 78

9× 109 119.3

1.8× 1010 148

35.6 2.2 × 109 78.6

1.8× 1010 146.1

TABLE I. Overview of the control parameters realized in the
experiments.

For small-Pr experiments the sample cell was filled
with either nitrogen (N2) at 34.5 bars and Tm = 40◦C
or sulfur hexafluoride (SF6) at 15.2 bars and Tm = 30◦C,
resulting in Pr = 0.74 and Pr = 0.84 respectively. The
sample cell was L = 9.84 cm high and had an inside di-
ameter of D = 10.16 cm (resulting in Γ = 1.03). While
the bottom plate was made of copper, the top plate
was a 2.54 cm thick single-crystal sapphire disk which
allowed optical access (not used in the experiments re-
ported here). We note, that although sapphire has a sig-
nificantly lower heat conductivity than copper (i.e., the
bottom plate), its conductivity is still more than three
orders of magnitude larger than that of the working gas.
Thus, assuming the top and bottom boundaries as at
constant temperature is a sufficient approximation. The
sidewall was made of high-tensile-strength stainless steel.
The relatively large heat conductivity of the sidewall

required a relatively large correction. We corrected the
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R
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FIG. 2. (Color online). Overview of all data. The top plot
shows the Ro-Ra parameter space, and the bottom plot shows
the same points in the Ro-Ek parameter space. The data for
Pr = 3.05, 3.62, 4.38, 6.26 and 6.41 were published already in
Ref. [47] but are included in the present analysis.

measured heat transport by subtracting the heat trans-
port measured with an evacuated cell. However, other
effects of sidewall forcing (see Refs. [60, 61]) were ne-
glected. They are of lesser importance in the case where
the conductivity of the sidewall is much larger than that
of the fluid, which is the case here. Further, since we are
interested primarily in the relative change of the heat
transport due to rotation, modest systematic errors due
to the sidewall conductivity do not play an important
role.

When we used the SCA with liquid, the sidewall was
made of Lexan with an inner diameter D = 9.53 cm and
a height L = 9.96 cm (resulting in Γ = 0.96).

We used the Medium Convection Apparatus (MCA) of
Refs. [22, 47, 59] for measurements with liquids. Prandtl-
number values of 23.9, 28.9 and 35.6 were studied us-
ing isopropanol at average temperatures Tm = 50◦C,
40◦C and 30◦C respectively. In these experiments the
height and the diameter of the convection cell were
D = L = 24.8 cm. We also used the fluorocarbon C6F14

(3M FluorinertTM FC72) which yielded an intermediate
Pr = 12.3 (for more information on that fluid see Ref.
[22]). For these measurements Tm was 25◦C. Two sam-
ples, both with Γ = 1.00 but of different physical size,
were used. The smaller one, to be designated MCA-S,
had L = D = 19.0 cm, while the dimensions for the
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larger one (MCA-L) were L = D = 24.1 cm. The side-
walls for the MCA-S and MCA-L were made of Lexan
and Acrylic, respectively. The top and bottom plates of
both cells were made of copper.
Either two (SCA) or four (MCA) thermistors were

placed inside the bottom plate close to its upper sur-
face for temperature measurements. The thermistors
were calibrated against a calibrated platinum thermome-
ter in a separate apparatus before their installation in
the plates. Metal-film electrical heaters were attached at
the undersides of the bottom plates. The heater power
was measured using a four-lead method. The copper
top plate of the MCA cell had an integrated cooling sys-
tem through which a cooling liquid (Ethylene glycol) cir-
culated. The cooling-liquid temperature was set by a
temperature-controlled chiller (NESLAB), such that the
top plate was at the desired temperature Tt. The sap-
phire top plate of the SCA cell was cooled by water circu-
lating over its top surface. The water temperature (and
thus Tt) was controlled using a digital feedback loop. A
small correction was applied for the temperature drop
across the sapphire plate.
The rotating table and an outer structure supporting

electrical and liquid feedthroughs from the laboratory
to the rotating frame were similar for the SCA and the
MCA, as described in detail in an earlier publication [47].
With the liquids used in the present work and various

Tm the range 0.74 . Pr . 35.5 could be covered. The
Rayleigh numbers ranged from 3.6×108 with N2 at Pr =
0.74 to 4× 1011 with FC72 at Pr = 12.3. An overview of
all Pr and Ra values used is shown in Table I.
For most of the experiments, we held Ra and Pr con-

stant, while measuring the heat transport for several dif-
ferent rotation rates (i.e. different Ro or Ek). In Fig. 2,
we show all runs in the Ro-Ra and the Ro-Ek parame-
ter space. Nu data for water (Pr = 3.05, 4.38 and 6.26)
were published before in Ref. [47] and are included in
the figure and in our analysis.

V. RESULTS

A. Nusselt-number measurements

In this section we present new measurements of
Nu(Ra,Pr, 1/Ro) before proceeding, in Sec. VB, to a
global analysis of all available data.

1. Nur for FC72 and Isopropanol – large Pr

Figures 3 and 4 display results for Nur as a func-
tion of 1/Ro for large Pr. The data were taken with
FC72 (Fig. 3, Pr=12.3) and isopropanol (Fig. 4, Pr =
23.9, 28.9, and 35.6). The results for Pr = 12.3 are
qualitatively consistent with those for water (Pr = 4.38)
shown in Fig. 1 (compare also with results for other Ra

and nearby Pr [47]) in that they reveal the three heat-
transport regimes. However, they extend to larger Ra by
more than a decade. The different Nur behaviour in the
different 1/Ro ranges is clear. After a range Ia where Nur
does not change much, Nur decreases (Ib) and reaches a
minimum at 1/Roc. As seen for the water data at smaller
Pr, the transition from range I to range II at 1/Roc is,
within the resolution of the data, independent of Ra. For
1/Ro > 1/Roc Nur increases again in range II. While
the range of 1/Ro covered by the data was not sufficient
to reach a maximum of Nur for Ra=4.16×1010, data at
both smaller and larger Ra did show such a maximum
Nur,max at 1/Romax after which, in range III, Nur de-
creased again. One sees that the largest value of both
Nur,max and 1/Romax is reached for the smallest Ra.
These trends are qualitatively consistent with data ob-
tained using water.
Especially the Nur-data for the two largest Ra show

further rather sharp transitions above 1/Roc. While the
detailed nature of the states above and below these tran-
sitions still needs to be elucidated, this phenomenon was
discussed at length in a previous publication [39].
The trend of a diminishing Nur,max with increasing

Ra of the data for Pr = 12.3 that is shown in Fig. 3
is consistent with previous results for Pr = 5.9, Ra =
4.3×1015 [62] which revealed a slow decrease of Nur with
increasing 1/Ro, without any evidence of a maximum.
Experimental results for isopropanol (Pr=23.9, 28.9,

and 35.5), are shown in Fig. 4. There is a larger heat-
transport enhancement for these larger values of Pr than
was seen at smaller Pr. None of the data extend to
1/Romax where Nur reaches Nur,max. Nevertheless, for
the smallest Ra heat-transport enhancement of up to 40%
was reached, and thus Nur,max is even larger than 1.4.
In general, these data are qualitatively similar to the

water data in Ref. [47]. For larger Ra there is a 1/Ro
range where Nur decreases until it reaches a minimum
(range I), followed by a 1/Ro-range where Nur increases
(range II). Again, we could not observe the maximal Nur
and the change to range III, but we see that the slope
SRo (Eq. 2) decreases with increasing 1/Ro. The rather
abrupt changes of SRo observed for Pr = 12.3 cannot
be seen here. Apparently these sharp transitions become
more noticeable at the larger Ra values.

2. Nur for N2 and SF6 – Pr near one

We show in Fig. 5 the data for Nur as a function of
1/Ro for Pr=0.74 and Pr=0.84. One sees that the heat-
transport enhancement is quite small or absent. For the
smallest Ra (Ra = 3.6 × 108) the increase of Nur at its
maximum is only 2%. A very small enhancement was
observed also in numerical simulations for Ra = 2× 108,
albeit for a cylindrical sample with Γ = 0.5 [63]. Simula-
tions for Γ = 1, Pr = 0.7, and Ra = 108 [52] are shown
in Fig. 5 as black triangles. They agree with our exper-
imental data fairly well. Even a slight enhancement of
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FIG. 3. (Color online). Relative Nusselt numbers Nur for measurements at Pr=12.34 (FC72) and Ra = 1.91 × 1010 (bullets,
blue online), 4.16 × 1010 (squares, red online), 1.00 × 1011 (diamonds, green online), 2.07 × 1011 (up-pointing triangles, black
online), and 4.24 × 1011 (down-pointing triangles, purple online). The right plot shows the same data as the left one, but
zoomed closer to the onset of heat-transport enhancement. The uncertainty of the data is represented by their scatter and
decreases with increasing ∆T (i.e., increasing Ra). For the three largest Ra, the uncertainty is smaller than the symbol size.
Open symbols mark predictions of the maximum heat transport, as explained in Sec. VB 4. Data for Ra = 2.07 × 1011 and
1.00 × 1011 were published already in Ref. [39].

about 1.5% is visible. However, since the enhancement is
represented by only one point, the authors of Ref. [52] ap-
parently considered it an outlier since they stated “. . . no
heat transport enhancement is found for Pr = 0.7 . . . ”.
Similar to experiments at larger Pr, the heat-transport
enhancement is larger for smaller Ra. For Ra ≥ 1.8×109,
no enhancement can be found.

The exact reason for the strongly reduced heat-
transport enhancement at lower Pr is not known. It
was argued that the larger heat diffusion makes Ekman
pumping less efficient for smaller Pr [46, 52]. Warm fluid
that is transported by Ekman pumping across the bot-
tom boundary looses its heat in the horizontal direction
more quickly. While this may enhance the vertical tem-
perature gradient in the bulk, it reduces the gradient in
or near the boundary layers. We also note, that small Pr
indicates small Ekman-layer thicknesses δE .

We also show in fig. 5 the location of the expected
1/Roc (dashed vertical line), as estimated from the
power-law relation between Pr and 1/Roc (see Sec. VB).
No significant change is observed at this position. Note-
worthy is the fact that the initial increase and the max-
imum of Nur seen for small Ra occurs before the esti-
mated 1/Roc. This implies that the enhancement of less
than 2% is not caused by Ekman pumping, but rather
by another still unknown mechanism. We note that the
absence of any signature in Nur at the expected loca-
tion of 1/Roc does not imply the absence of a transition.
Presumably even for small Pr, where Ekman pumping is
too feeble to be noticeable in the heat transport [46, 52],
the formation of Ekman vortices from plumes still takes
place when a critical value of 1/Ro has been exceeded. In
this parameter range one then would have to identify the

transition on the basis of the 1/Ro dependence of other
properties, such as internal temperature gradients [39] or
other local measurements.

B. Dependence of Nur on Pr and Ra

1. Qualitative trends

In this section we examine all available data in order
to learn about the Pr and Ra dependence of Nur. To
this end we show in Fig. 6 three plots, each for a given
Ra, of Nur as a function of 1/Ro for different Pr. The
plots are for Ra = 2 × 109 (top row), 9 × 109 (middle),
and 18× 109 (bottom). The left column shows the whole
available 1/Ro-range on a logarithmic x-axis. The right
column shows only the range 1/Ro ≤ 2 on a linear scale
in order to focus more closely on 1/Roc where the heat-
transport enhancement sets in.
The maximal enhancement Nur,max of Nur is seen

most clearly by eye in the left column. As already ap-
parent from Fig. 4, the largest enhancement occurs for
the two largest Pr of 35.5 (brown up-triangles) and 28.9
(black down-triangles). For these Pr values the rotation
rates 1/Romax at which the heat transport reaches its
maximum could not be reached in the experiment, but
the available data already show an increase of Nur by up
to 40%. In Fig. 6a, there are only two maxima visible (for
Pr = 6.26 and 4.38). It becomes apparent that Nur,max,
as well as its location 1/Romax, increase with Pr. The
same trend is also shown for larger Ra in Fig. 6(c) and (e),
although there Nur,max is smaller. These results are in
general agreement with numerical simulations [52]. Also
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FIG. 4. (Color online). The reduced Nusselt number Nur for isopropanol and Pr = 23.9 (a and b), 28.9 (c and d) and 35.5 (e
and f). The different symbols stand for Ra = 2.2 × 109 (bullets, blue online), 9.0 × 109 (squares, red online) and 1.8 × 1010

(diamonds, green online). The left column [(a), (c), and (e)] covers a wide range of 1/Ro on a logarithmic scale, while the right
column [(b), (d), and (f)] gives more detail at smaller 1/Ro on a linear scale. The uncertainty of the data is represented by the
scatter of the data points. Open symbols in (a), (c), and (e) mark predictions of Nur,max as explained in Sec. VB4.

in agreement is the fact that, for the very low Pr ≃ 1,
there is no or only a very small Nu-enhancement as dis-
cussed above in Sec. VA2.
Looking closer at Fig. 6a, one also sees that there is

a range 0.4 < 1/Ro < 3 over which the slope SRo of
Nur(1/Ro) is independent of or at most weakly depen-
dent on Pr. Over that range all data points within their
scatter collapse onto a single curve. For larger 1/Ro the
data diverge from each other. For Pr ≤ 6.26 they reach
their maxima and decrease afterwards, while for larger Pr
they continue to increase over our 1/Ro range. The seem-
ingly equal slope just above the onset of heat-transport
enhancement can also be seen for larger Ra in Fig. 6(c)
and (e). However, we shall show below that the initial
slope does depend, albeit only weakly, on both Ra and Pr

when analyzed in more detail and over a wider parameter
range.
In this context it is also noteworthy that, for the small-

est Ra (Ra = 2×109) in Fig. 6 and near our largest 1/Ro,
Nur near our largest Pr decreases with increasing Pr (see
brown and black triangles in Fig. 6a). A similar behavior
was found in numerical simulations [52] (see for instance
Fig. 2 of that reference where Nur decreases with increas-
ing Pr for 1/Ro = 10 and Pr & 15). There, they found
for various constant 1/Ro and Ra, optimal Pr for which
Nur was maximal. A direct comparison with the numeri-
cal results is not possible, however, because the DNS was
done at smaller Ra (Ra = 108) than the experiment.
In the following sections we analyze the data sets more

quantitatively and investigate how the (i) onset of heat-
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FIG. 5. (Color online). Reduced Nusselt number for com-
pressed gases. Data show Nur as a function of 1/Ro for Ra =
3.6×108 (bullets, blue online), Ra = 9×108 (squares, red on-
line), Ra = 1.8×109 (diamond, green online), Ra = 2.3×1010

(open circles, brown online) and Ra = 4.6 × 1010 (down tri-
angle, orange online). Data for the three lowest Ra were ac-
quired using nitrogen (Pr = 0.76), the two datasets for the
larger Ra were acquired using SF6 (Pr = 0.84). We also show
data from numerical simulations at Ra = 108 (up-triangles,
black online) from Ref. [46]. The uncertainty of the data is
represented by the scatter of the data points. The dashed
vertical line marks the predicted onset of heat-transport en-
hancement based on the fit shown below in Fig. 7.

transport enhancement at 1/Roc, (ii) the initial slope
SRo, and (iii) the maximal heat-transport enhancement
Nur,max change with Ra and Pr.

2. The onset of heat-transport enhancement

Heat-transport enhancement due to Ekman pumping
sets in at a particular 1/Roc, causing a sharp transition
with a discontinuous slope SRo. There is a small de-
crease of Nur right before 1/Roc (range Ib), leading to
an effective reduction of the heat transport and a local
minimum Nur,min at 1/Roc.
In previous papers [36, 37] it was argued that a sharp

onset at a finite 1/Roc is due to the finite lateral di-
mension of the cylinder. Experimental measurements of
1/Roc for several aspect ratios Γ = D/L indicated that
1/Roc → 0 as Γ → ∞ (i.e. as the diameter D → ∞). A
Ginzburg-Landau-like equation [64] for the vortex den-
sity in a plane in the bulk but close to the thermal
boundary layers, with appropriate boundary conditions,
modeled the phenomenon as a finite-size effect. Consis-
tent with this interpretation of the experimental results,
simulations for the same parameters as the experimen-
tal measurements [36] found that the vortex density in-
creases with 1/Ro when 1/Ro ≥ 1/Roc. Recent vortex-
visualization experiments also showed that the vortex
density has a maximum close to the side wall (although

it vanishes at the wall) when 1/Ro is not too large, sug-
gesting that vortices tend to repel each other [50].
In order to illustrate the transition at 1/Roc, we plot

in Fig. 6(b, d and f) Nur over a limited range of 1/Ro on
linear scales. The data for Ra = 2 × 109 scatter signifi-
cantly for small 1/Ro and thus a precise value of 1/Roc
cannot be obtained. However, for Ra = 2×1010 (Fig. 6f)
the onset at 1/Roc is clearly visible. Here we see that
1/Roc depends on Pr, being smaller for larger Pr.
To quantify the location of 1/Roc, we fit the function

Nur =

{

S−

Ro
/Ro + n ; 1/Ro < 1/Roc

S+

Ro/Ro + (S−

Ro − S+

Ro)/Roc + n ; 1/Ro > 1/Roc
(11)

to the data points close to the onset. In this way we get
not only 1/Roc, but also the slopes S−

Ro and S+

Ro just

below and above 1/Roc and the minimal relative Nusselt
number Nur,min = S−

Ro
/Roc + n which occurs at 1/Roc

[65].
In Fig. 7a we show 1/Roc as a function of Pr on double-

logarithmic scales. The data can be represented by a
straight line and a fit yielded the power law

1/Roc = K1 · Pr
α (12)

with an exponent α = −0.41±0.02 and a coefficientK1 =
0.75 ± 0.02. A very similar behaviour with nearly the
same exponent (within its margin of error) was already
found before [47]. There, however only data acquired
with water as the convective fluid were used, spanning
the rather short Pr interval of 3.05 ≤ Pr ≤ 6.26. To our
knowledge the mechanism that yields the Pr dependence
of 1/Roc remains to be elucidated.
From Fig. 6b it appears that the influence of Ra on

the location of 1/Roc is very weak or absent. In order to
search for a small effect, we plot in Fig. 7b the reduced
form Pr0.41/Roc as a function of Ra so as to remove the
effect of Pr. We see no trend in these data. Thus, within
the resolution of the data Ra has no influence on the loca-
tion of 1/Roc in the range 109 < Ra < 1012, and the co-
efficient K1 in Eq. 12 is within experimental uncertainty
independent of Ra. We note that Eq. 7 then implies that
the transition value of the inverse Ekman number 1/Ekc
is proportional to Ra0.50 and Prα−1/2 = Pr−0.91.

3. The slopes before and after 1/Roc

By fitting Eq. 11 to the data for Nur(1/Ro) near
1/Roc, we also obtained the slopes S−

Ro, S
+

Ro, and the

reduced Nusselt number Nur,min at the onset.

Zhong and Ahlers [47] show plots of S+

Ro
as a function

of Ra and Pr (see fig. 7 of Ref. [47]). They found no
dependence of S+

Ro on Ra, but a seemingly significant

increase with Pr corresponding to a power law with an
exponent of 0.27. However, their data covered only a
small range of Pr and an accurate determination of the
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FIG. 6. (Color online). Comparison of Nur as a function of 1/Ro for different Pr and Ra = 2 × 109 (a and b), 9× 109(c and
d), and 2 × 1010 (e and f). The left column shows the full experimentally accessible range on a logarithmically scaled x-axis.
The right column shows the range 0 < 1/Ro < 2 using a linear x-axis. Different symbols stand for different Pr as explained at
the top of the figure. The horizontal black dashed line marks Nur = 1.Note that different vertical scales were used because of
the different ranges of the data.

Pr dependence thus was not possible. We find that plot-
ting the much more extensive data for S+

Ro that are now

available as a function of Ra or Pr as was done in Ref.
[47] does not reveal an obvious Ra-, or Pr-dependence of
S+

Ro
. A monotonic increase of S+

Ro
with Pr as suggested

in Ref. [47] is not observed.

Until now, we considered the heat-transport enhance-
ment as a function of the inverse Rossby number 1/Ro.

This is useful since 1/Ro is of order unity in the range
were the heat transport is enhanced, and in retrospect
because it leads to a Ra-independent transition. We
could have also considered the inverse Ekman number
1/Ek as the control parameter (top x-axis in Fig. 1). As
mentioned above, the scaling of the critical inverse Ek-
man number at which heat-transport enhancement sets
in (1/Ekc) would then be different. In addition, the slope
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FIG. 7. (Color online). (a): Critical inverse Rossby number as
a function of Pr on a double logarithmic plot. Blue solid line
marks the fitted power law with an exponent α = −0.41. (b):
Reduced critical inverse Rossby number as a function of Ra.
The y-axis is linearly scaled. The x-axis is on a logarithmic
scale.

S+

Ek
(see Eq. 9) of Nur(1/Ek) would also be different.

From Eq. 7 one sees that S+

Ek
= 2S+

Ro

√

Pr /Ra. S+

Ek
has the advantage that it covers almost two orders of
magnitude for our data sets, whereas S+

Ro changes only

by a factor of two. In Fig. 8a we plot S+

Ek
as a func-

tion of Ra. One sees that S+

Ek
decreases monotonically

with increasing Ra. In this double-logarithmic plot a
power-law behavior S+

Ek
∝ Raβ is visible with an expo-

nent β ≃ −0.60. The data points in Fig. 8a are color
coded with respect to their corresponding Pr. We see
that greenish points (large Pr) lie in general above the
fitted straight line while reddish points (low Pr), are be-
low, suggesting that S+

Ek also depends on Pr. In order
to investigate the Pr dependence, we plot in Fig. 8b the
reduced slope S+

Ek
· Ra0.60 versus Pr. This quantity in-

creases with Pr, showing a power-law dependence with
an exponent of about 0.31.

While these two exponents are not yet the best-fit
values, they are good starting parameters for a two-
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FIG. 8. (Color online). (a): The slope of the initial heat-
transport enhancement S+

Ek as a function of Ra in a double
logarithmic plot. (b): The reduced slope S+

Ek · Ra−0.60 as
a function of Pr in a plot with logarithmic x-axis and lin-
ear y-axis. Data points are color coded corresponding to the
other variable (color represents Pr in (a) and log10(Ra) in
(b)). Straight lines are power-law fits to the data.

dimensional non-linear least-square fit of the equation

S+

Ek
= KEkPr

β̃1Raβ̃2 (13)

to the data. This fit yielded β̃1 = 0.34 ± 0.05 and β̃2 =
−0.54± 0.08. Having both exponents, we plot in Fig. 9a

S+

Ek
as a function of Prβ̃1 · Raβ̃2 . We see that all data

points lie on a straight line. A linear fit gives a slope
of KEk = 0.5 ± 0.02 and a negligible intercept of n <

10−6. From this consideration we calculate that S+

Ro
can similarly be expressed as

S+

Ro = KRo · Prβ1Raβ2 . (14)

with β1 = −0.16 ± 0.05 and β2 = −0.04 ± 0.08. Fig-
ure 9b shows S+

Ro
plotted as a function of Pr−0.16Ra−0.04.

Again, the data points follow a straight line, in this case
with a slope KRo = 0.3± 0.05. The scatter seems larger

than it is for S+

Ek
; however, this is merely due to the
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FIG. 9. (Color online). Master curves of the slope of the
initial heat-transport increase S+

Ek (a) and S+

Ro
as a function

of Pr and Ra.

rather small range of S+

Ro which also leads to a larger

uncertainty of KRo.

We note, that the results for β1 and β2 differ from
those found by analyzing only only the water data was
done in Ref. [47] and which yielded S+

Ro = 0.058Pr0.27

(no dependency of Ra). This difference is because we:
(i) used a significantly larger dataset, (ii) analysed the
data in a truly two-dimensional way that takes Ra and
Pr dependency into account, and (iii) analysed the data
first in terms of 1/Ek and later converted S+

Ek to S+

Ro.

The slope right before 1/Roc (S
−

Ro) is shown in fig. 10.

Even though the data scatter significantly, one can see
that S−

Ro
decreases with increasing Ra and increasing

Pr. While S−

Ro is positive for the smallest Ra and Pr

(red bullets), it becomes slightly negative as Ra or Pr
increase. However, a quantitative analysis is difficult and
in particular a separation of the Ra and Pr dependences
was not possible.
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FIG. 10. (Color online). The slopes S−

Ro
before 1/Roc as

a function of Ra (a, color represents Pr) and Pr (b, color
represents log10(Ra)).

Another parameter obtained from fitting eq. 11 to the
data is the Nusselt number at 1/Roc (Nur,min). In or-
der to investigate its dependence on Ra and Pr, we plot
Nur,min in Fig. 11 as a function of Ra (Fig. 11a) and as
a function of Pr (Fig. 11b). We include qualitatively in
each of the plots the dependence on the other variable
using the color code shown to the right of the figures.
One sees that Nur,min depends only very weakly on Ra
and Pr. The largest and the smallest values differ by less
than 2%. There is a general trend of Nurmin to smaller
values as either Ra or Pr increase, but it is difficult to
draw strong conclusions from Fig. 11.

4. Maximum heat-transport enhancement

Above we saw that the maximal heat transport
Nur,max and its location at 1/Romax depend strongly on
Ra and Pr (see e.g. Figs. 1, 3, 4, 6, and also Ref. [47]).
We pointed out already in Sec. VB that (at constant Pr)
Nur,max is smaller for larger Ra and (at constant Ra)
increases with increasing Pr. With increasing Nur,max

1/Romax increases as well and for large Pr it is located
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FIG. 11. (Color online). Nusselt number at 1/Roc (Nur,min)
as a function of Ra (a, color represents Pr) and Pr (b, color
represents log10(Ra)).

beyond the experimentally accessible 1/Ro-range. For
Pr = 12.3 (see Fig. 3), where all data are for relatively
large Ra, Nur shows a well defined maximum only at
Ra = 1.9 × 1010. As Ra increases further, a plateau of
constant or slowly varying Nur develops, with sharp tran-
sitions, involving large changes of the slope SRo, border-
ing the plateau at larger and smaller 1/Ro. Clearly this
behavior does not lend itself to the smooth power-law
representations explored in the present paper.
In order to estimate Nur,max and 1/Romax, we fit the

function

f(x) = a · log(x− x0) + bx+ c ; x = 1/Ro (15)

to the data points close to 1/Romax, adjusting a, x0, b,
and c. Examples of such fits are shown in Fig. 1. Over
a wide range of Ra this function represents the data re-
markable well. It takes the asymmetry of the peak into
consideration while assuring the existence of only a sin-
gle maximum (in contrast to a 3rd order polynomial for
instance). In this way, we can determine 1/Romax and

Nur,max with better accuracy than by just using the data
points with the larges Nur . We appreciate that this pro-
cedure is questionable at very large Ra where the discon-
tinuities of SRo are dominating the shape of Nur(1/Ro).
Since we are mostly interested in the additional heat

transported due to rotation, we focus on Nur,max − 1. It
would be convenient to find a simple power-law represen-
tation

Nur,max − 1 = MRoPr
δ1Raδ2 (16)

of the data. However, plotting Nur,max − 1 as a func-
tion of either Ra or Pr for all data points does not
show a significant trend in either of these plots (not
shown here), and an immediate two-dimensional least-
squares fit of Eq. 16 to the data was not successful
without a good guess at the initial values of the pa-
rameters. Thus, we take an approach similar to that
of Sec. VB 3, i.e. we first plot Nur,max − 1 as a function

of Pr and fit the power law Nur,max − 1 = a1 · Prδ1 to
it. The value of δ1 is then used to create a reduced form
(Nur,max − 1) ·Pr−δ1 , which we plot as a function of Ra.

A similar fit of Nur,max − 1 = a2 · Ra
δ2 gives the expo-

nent δ2 that we again use to plot the first reduced form
(Nur,max − 1) · Ra−δ2 vs. Pr and so on. In this iterative
way, the exponents converge quickly (after 4 iterations)
to δ1 = 0.65, δ2 = −0.35.
Figure 12 shows the results of the last iterations. One

sees that a power-law dependence on Pr and Ra agrees
fairly well with the data. However, while the data cover
two orders of magnitude of Ra, they span less than a
single order of magnitude of Pr. In addition one sees in
Fig. 12a that points for small Pr and for the largest Pr are
below the fitted line, whereas points in between are above
it. Because of this, δ1 is sensitive to the data used in the
fit. Removing the point at the highest Pr=23.9 increases
δ1 by 20%, while δ2 changes by only 5% change.
The above procedure gave excellent initial values for

a direct two-dimensional fit of Eq. 16 to the data. That
fit yielded M̃Ro = 42 ± 27, δ̃1 = 0.80 ± 0.08 and δ̃2 =
−0.35±0.03. Again, while the Pr exponent differs, the Ra
exponent stays unchanged. The reason for the different
results from the two methods is that data points in the
two approaches are weighted differently. In the least-
squares-fit method, every data point has equal weight.
The single point at Pr = 23.9 has little influence since
there is a large cluster of points between Pr = 3 and 6.3.
In the iterative approach the point at Pr = 23.9 gets more
weight and thus the exponent decreases significantly.
We show in Fig. 13 plots of Nurmax as a function

of both, Prδ1 · Raδ2 (blue bullets) and Prδ̃1 · Raδ̃2 (red
squares). As expected, the points follow their corre-
sponding linear master curves. The slopes are found to
be MRo = 64± 2 and M̃Ro = 44± 2, respectively.
The situation for 1/Romax is similar. We applied a

similar iterative method as above to reveal a potential
power-law relationship of the form

1/Romax = NRoPr
ǫ1Raǫ2 . (17)
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FIG. 12. (Color online). (a): Rescaled heat-transport en-
hancement (Nur,max − 1) · Ra0.35 as a function of Pr. Color
of the symbols stands for the log10(Ra). (b): Rescaled heat-
transport enhancement (Nur,max − 1) ·Pr0.65 as a function of
Ra. Color of each symbol represents Pr.
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FIG. 13. (Color online). The maximal heat-transport en-
hancement Nur,max − 1 as a function of Prδ1 ·Raδ2 (blue bul-

lets) and Prδ̃1Raδ̃2 (red squares). The blue solid line and the
red dashed line are linear fits to the data points with slopes
MRo = 64 and M̃Ro = 44.

with ǫ1 = 1.45±0.06 and ǫ2 = −0.17±0.03. This result is
shown in Fig. 14 where the corresponding reduced forms
of 1/Romax are plotted as a function of Pr and Ra. One
sees in Fig. 14a, that Raǫ2/Romax follows nicely a power-
law dependence on Pr. The reduced Pr−ǫ1/Romax as a
function of Ra is plotted in Fig. 14b. There the data also
seem to follow a power law, although the data scatter
significantly more and deviate more from the best fit.
Especially the data point with the largest Ra (1.9×1010),
lies significantly below the fitted line. While this might
be evidence that the Ra-dependence is more complicated
than just a simple power law, the error of this data point
is also rather large; i.e. there is a large uncertainty of
1/Romax.

A direct two-dimensional fit, using the exponents ǫ1
and ǫ2 as starting values, gives very similar exponents
ǫ̃1 = 1.37± 0.05 and ǫ̃2 = −0.18± 0.03.
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In Fig. 15 we plot a master curve of 1/Romax as a func-
tion of Pr1.37 ·Ra−0.18. All data points follow a straight
line with a slope NRo = 21.4 ± 0.5. One sees that the
assumption of a power-law dependence is a good approxi-
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mation. Even the single point at the right top corner still
agrees with the fitted curve. We note, however, that that
particular 1/Romax value is uncertain because it was ob-
tained by an extrapolation of eq. 15 beyond the data used
in the fit; the maximum lies beyond the experimentally
accessible 1/Ro range as seen in Fig. 4a.
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FIG. 15. (Color online). Location of the maximal heat-
transport enhancement 1/Romax as a function of Pr1.37 ·
Ra−0.179. The data follow a linear trend (red solid line) with
slope NRo = 21.4 ± 0.5.

Using the calculated exponents δ1 = 0.65, δ2 = −0.35,
ǫ̃1 = 1.37, and ǫ̃2 = −0.18 and the amplitudes MRo = 64
and NRo = 21.4, we can make predictions of Nur,max

and 1/Romax for the data sets for which we could not
reach 1/Romax in the experiment. These predictions are
plotted in Figs. 3 and 4 as open symbols. Let us consider
first the large-Pr case (Fig. 4). In almost all cases the
predicted Nur,max is reasonable, with the only exception
for Pr = 28.9 and Ra = 2.2 × 109 where the predicted
value is actually smaller than the largest measured value.
For the smaller Pr = 12.34 we see that the prediction is
convincing only for Ra = 4.16 × 1010. It is clearly in
error for Ra & 1011. It is noteworthy that this is the
range where sharp transitions between states, involving
large changes of the slope SRo, are found; these features
clearly are not captured by Eq. 15.

VI. SUMMARY AND DISCUSSION

A. New experimental data

In this paper we report on the heat-transport enhance-
ment due to rotation in buoyancy-dominated turbulent
thermal convection as a function of the Rayleigh num-
ber and the Prandtl number for samples with aspect ra-
tio Γ = 1.00. We added experimental data for small
Pr by making measurements with compressed gasses (N2

with Pr = 0.74 and SF6 with Pr = 0.84), for medium

Pr but exceptionally large Ra by using the fluorocar-
bon FC72 (Pr = 12.3), and for large Pr by using iso-
propanol (Pr = 23.9, 28.9, and 35.5). Together with pre-
vious data acquired with water [47] (3.0 . Pr . 6.4),
all available measurements cover the Rayleigh-number
range 4 × 108 < Ra < 4 × 1011 and values of Pr from
0.74 to 35.5. This large data set makes it possible for
the first time to study quantitatively the influence of Pr
on the heat-transport enhancement in rotating turbulent
Rayleigh-Bénard convection.

B. Three different ranges of 1/Ro

It was shown already [37, 39, 47, 58] that at least three
different ranges of the rotation rate 1/Ro can be ob-
served, with qualitative different slopes SRo (see Eq. 2)
in each of them. These different ranges are illustrated
in Fig. 1. Starting at small 1/Ro, the first (I) is one of
nearly constant heat transport Nur. For large enough
Ra it can be separated into two subranges. In the first
(Ia) Nur increase very slightly, by a few tenths of a per-
cent. It is followed by subrange Ib where Nur decreases
by a percent or so. In range Ia and Ib the turbulent flow
is self-organized into a large-scale circulation consisting
of a single convection roll (LSC). The stochastic dynam-
ics, amplitude, and stability of the LSC are influenced
by Coriolis forces as indicated by previous measurements
[47, 48]. Although one might have thought that the elu-
cidation of phenomena at these smallest rotation rates
should be most accessible to theory, the origin of the two
subranges Ia and Ib, and the dependence of Nur upon
Ra in these ranges, remain unexplained at present.
Range I is followed by a range II where the heat trans-

port increases up to a rather broad maximum. Ranges I
and II are separated by a sharp transition at 1/Roc. The
transition marks the onset of Ekman-vortex formation
due to the action of the Coriolis force on thermal plumes
emitted from the boundary layers. Remarkably, in sam-
ples of finite lateral extent the vortex formation can only
start after a critical value 1/Roc is exceeded. This has
been explained theoretically as a finite-size effect that can
be described by a Ginzburg-Landau model [36, 37]. The
increase of Nur above 1/Roc in range II is understood
to be due to the vortices near the thermal boundary lay-
ers adjacent to the top and bottom plate; these vortices
cause an increased fluid transport by means of Ekman
pumping from the plates across the boundary layers into
the bulk. In this range the LSC is no longer stable. Its
geometry is incompatible with the vortex formation, and
it soon ceases to exist for 1/Ro > 1/Roc.
Range II is followed by range III of decreasing heat

transport. Also ranges II and III divide into subranges
for larger Ra, where SRo has noticeable discontinuities
at several values of 1/Ro. The specific reasons for this
subdivision need further elucidation, but are expected
to be found in transitions between turbulent states with
large-scale structures of different symmetries [39].
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A gradual decrease with increasing 1/Ro in range II of
the slope SRo, and eventually an actual heat-transport
reduction (SRo < 1) in range III, are due to a reduced
vertical fluid transport with increasing 1/Ro, caused by
the Taylor-Proudman (TP) effect. While this qualitative
picture is clear, a quantitative understanding of the heat-
transport enhancement due to Ekman pumping and its
depression due to the TP effect is still lacking.

C. Results of the present data analysis

In the present paper we carried out a correlation of
new as well as previously published data describing the
transitions between range I and II and between II and
III. Within the resolution of the data we found that the
transition between I and II at 1/Roc is independent of
Ra and decreases with Pr (see Fig. 7). The decrease can
be described by a power law with an exponent α = −0.41
(Eq. 12). It is very surprising that 1/Roc is independent
of Ra over three decades. That means, that the onset
of the formation of vortices close to the boundaries does
not depend on the thermal driving. However we note that
an alternative choice for the dimensionless rotation rate,
like the inverse Ekman or the Taylor number for exam-
ple, would cause a Ra dependence of the corresponding
critical values 1/Ekc (see Eq. 7) and Tac . To our knowl-
edge there is as yet no theoretical explanation of the Pr
dependence and the Ra independence of 1/Roc.

We determined the initial slope S+

Ro just above 1/Roc
by fitting a linear function with a discontinuous deriva-
tive (Eq. 11) to data points in ranges I and II but close
to 1/Roc. The initial slope S+

Ro
just above 1/Roc was

essentially independent of Ra and depended only weakly
upon Pr (see Fig. 9). This weak dependence, and the
limited data range especially for Pr, made it difficult
to determine power-law exponents from a straight for-
ward least-squares fit. It was easier to determine the Ra
and Pr dependence of the slope S+

Ek
derived from the

dependence of Nur on the Ekman number Ek (Eq. 9).
The results of this analysis could be transformed back to
yield the power-law dependence S+

Ro ∝ Prβ1Raβ2 with

β1 ≃ −0.16 and β2 ≃ −0.04. While at present these ex-
ponents remain unexplained, we expect that they may be
central to a theoretical elucidation of Ekman pumping in
this system.

We also investigated the location 1/Romax and the
height Nur,max of the maximum heat-transport enhance-
ment. Analyzing these quantities was more difficult,
since the maximum of Nur is broad and for large Pr
was beyond the experimentally accessible range of 1/Ro.
Therefore, the investigated Pr range is small and pa-
rameter uncertainties are relatively large (especially for
1/Romax). Also here we analyzed potential power-
law dependences of both quantities on Ra and Pr (see
Figs. 12, 13, and 14). We found that the data at constant
Pr are consistent with Nur,max−1 ∝ Ra−0.35. The Pr de-

pendence at constant Ra could be given by Nur,max−1 ∝

Pr0.65, although the error of this exponent is about 50%.
We found that the location 1/Romax of Nur,max can be

represented by the power law 1/Romax ∝ Pr1.37 ·Ra−0.18.

D. Concluding remarks

With our analysis we hope to provide sufficient data
and a good starting point for theoretical modeling of
rotating turbulent Rayleigh-Bénard convection in the
buoyancy-dominated regime. Such modeling was already
challenging for non-rotating convection where only two
control parameters (Ra, Pr) are relevant [66–69]. It will
be even more challenging for the rotating case where the
parameter space is larger. However, the existence of the
different 1/Ro-ranges suggests that only a few mecha-
nisms have to be considered, and that in each range a dif-
ferent mechanism is dominating the changes of the heat
transport with increasing rotation rate. We note that
analyzing 1/Roc, S

+

Ro, Nur,max − 1, and 1/Romax pro-
vide quantitative independent information about several
mechanisms. From 1/Roc we learn under which condi-
tions vortices form close to the top and bottom bound-
aries (as shown in Ref. [36]) while S+

Ro
is indicative

of the strength of Ekman pumping once vortices have
formed. The relative strength of Ekman pumping and
TP suppression determines the values of Nur,max−1 and
1/Romax.

Qualitatively one sees that S+

Ro
is essentially indepen-

dent of Ra and depends only weakly on Pr, indicating
that Ekman pumping is not strongly Ra and Pr depen-
dent. On the other hand, Nur,max − 1 and 1/Romax

show a stronger Pr and Ra dependence, indicating that
the location and size of the maximal heat-transport en-
hancement are determined mostly by the Ra and Pr de-
pendences of the heat-transport reduction in the bulk
due to the TP effect. As 1/Ro increases through ranges
II and III, the heat is still transported efficiently across
the boundaries by Ekman pumping, but the thermal re-
sistance of the bulk increases. As a result significant ver-
tical temperature gradients develop in the bulk. Since
the significance of the thermal resistance in the bulk
increases with increasing 1/Ro and 1/Ek, and because

1/Ek = 1/(2Ro)
√

Ra/Pr, one would expect that at a
given 1/Ro the thermal resistance increases with Ra but
decreases with Pr. That is why, for constant Pr, Numax

is smaller at larger Ra and is reached already at smaller
1/Ro. On the other hand, for constant Raand at larger
Pr a larger Nur,max is found and is reached only at larger
1/Ro.

In this paper we focused on the initial heat-transport
enhancement Nur with increasing 1/Ro and the decrease
of Nur for larger 1/Ro. We did not consider in detail the
subranges Ia and Ib, and did not examine other subranges
that occur for large Ra (see sec. VA1 and ref. [39]).
These subranges become obvious in Nur(1/Ro) only at
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the largest Ra, but should be observable at smaller Ra
by studies of internal flow structures.
Most likely transitions between structures of different

symmetry in the turbulent bulk (such as for instance
the replacement of Ekman vortices near the plates by
Taylor columns penetrating the entire sample) and/or
changes in the various boundary layers (thermal, Ekman,
Stewardson) are responsible for the additional transitions
above 1/Roc. Clearly, further experimental and numeri-
cal studies are needed for a better understanding of this

very rich system.
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