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We investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura poly-

hedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by

modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a clus-

ter of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission

mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide

a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves,

which feature a tensile wavefront upon the application of compression to the system. We also demonstrate

the existence of numerically exact traveling rarefaction waves in an effective lumped mass model. Origami-

based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of

engineering applications.

PACS numbers: 45.70.-n 05.45.-a 46.40.Cd

I. INTRODUCTION

Recently, origami has attracted a significant amount of at-

tention from researchers due to its unique mechanical prop-

erties. The most evident one is its compactness and deploya-

bility, which enables various types of expandable engineering

structures, e.g., space solar sails [1, 2] and solar arrays [3].

Biological systems also exploit such compact origami pat-

terns, such as foldable tree leaves [4] and insect wings [5] for

metabolic purposes. Another useful aspect of origami-based

structures is that origami patterns can enhance static mechani-

cal properties of structures. For instance, structural bending

rigidity for thin-walled cylindrical structures can be signif-

icantly improved by imposing origami-patterns [6]. These

origami patterns are used not only for space structures, but

also in commercial products (e.g., beverage cans [7]) to re-

duce the thickness of thin-walled structures without sacrific-

ing their buckling strength.

Within the considerable progress made in the mechanics of

origami-based structures, however, the primary focus has been

placed on the static or quasi-static properties of origami. For

example, recent studies attempted to fabricate origami-based

metamaterials with an eye towards investigating the deploy-

able, auxetic, and bistable nature of origami structures [8–

11]. Limited work has been reported on the impact response

of origami-based structures [12], and their wave dynamics

is relatively unexplored. Plausibly, this lack of studies on

the dynamics of origami-based structures can be attributed

to the intrinsic characteristic of typical origami structures,

which exhibit limited degrees of freedom (DOF) during their

folding/unfolding motions. This is particularly true for rigid

∗Email: jkyang@aa.washington.edu

origami, in which the deformation takes place only along

crease lines, while origami facets remain rigid in dynamic

conditions. The rigid origami features single-DOF motions

ideally, and thus, the studies on their wave dynamics have

been more or less absent under this rigid foldability assump-

tion.

In this study, we use a single-DOF rigid origami structure

as a building block to assemble multi-DOF mechanical meta-

materials, and analyze their nonlinear wave dynamics through

analytical and numerical approaches. Specifically, we employ

the Tachi-Miura polyhedron (TMP) [13, 14] as a unit cell of

the metamaterial as shown in Fig. 1. The TMP cell is made

of two adjoined sheets (Fig. 1(a)), and changes its shape from

a vertically standing planar body to a horizontally flattened

one while taking up a finite volume between the two phases

(Fig. 1(b)). This volumetric behavior is in contrast to conven-

tional origami-patterns that feature planar architectures and

in-plane motions (e.g., Miura-ori sheets [15]). In this study,

we first characterize the kinematics of the TMP cell, show-

ing that it exhibits controllable strain-softening behavior. By

cross-linking these TMP unit cells in a horizontal layer (e.g.,

see [11]) and stacking them up vertically with separators, we

form a multi-DOF metamaterial as shown in Fig. 1(c). We

then conduct analytical and numerical studies to verify that

these multi-DOF origami structures can support a nonlinear

stress wave in the form of a so-called rarefaction wave, owing

to the strain softening nature of the assembled structure.

The rarefaction wave, which can be viewed as a variant

of a depression wave [16], has been studied in various set-

tings, including systems of conservation laws [17]. Recently,

it was proposed in the context of discrete systems with strain-

softening behavior [18, 19]. Interestingly, these rarefaction

waves feature tensile wavefronts despite the application of

compressive stresses upon external impact (see the concep-

tual illustrations in Fig. 1(c)). In that light, they are funda-
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FIG. 1: (Color online) (a) Flat front and rear sheets of the TMP with

mountain (solid lines) and valley (dashed lines) crease lines. (b)

Folding motion of the TMP unit cell. Shaded area is a unit cell of

the TMP, which consists of the front and rear sheets shown in (a).

(c) System consisting of TMP-based metamaterials and rigid separa-

tors stacked vertically. Each layer consists of nine inter-linked TMP

unit cells (see [11] for details of such horizontal clustering). Con-

ceptual illustrations of incident compressive waves and transmitted

rarefaction waves are also shown.

mentally different from the commonly encountered dynami-

cal response of nonlinear elastic chains which support weakly

or even strongly nonlinear traveling compression waves [19–

22]. More recently, strain-softening behavior was shown to

be possible in tensegrity structures [23], where rarefaction

waves were identified computationally in the elastic softening

regime.

In the present work, we will study the formation and prop-

agation of rarefaction waves in origami-based metamaterials

via two simplified models: a multi-bar linkage model and

a lumped mass model. In both cases, we confirm that the

origami structure disintegrates strong impact excitations by

forming rarefaction waves, followed by other dispersive wave

patterns to be discussed in more detail below. We also vali-

date the nonlinear nature of the stress waves by calculating the

variations of wave speed as a function of external force am-

plitude. Notably, we observe the reduction of wave speed as

the excitation amplitude increases, which is in sharp contrast

to conventional nonlinear waves seen in nature or engineered

systems [19]. In the case of the lumped mass model, we

find numerically exact traveling waves. We provide a precise

characterization of the wave speed and amplitude relationship

and a way to evaluate the robustness of the rarefaction waves

through dynamical stability computations. The findings in this

study provide a foundation for building a new type of impact

mitigating structure with tunable characteristics, which does

not rely on material damping or plastic deformation. This

study also offers a platform for exciting the rarefaction pulse

– a far less explored type of traveling wave – and examining

its characteristics in considerable detail.

The Manuscript is structured as follows: In Sec. II, we de-

scribe the two simple models of origami-based metamaterials:

the multi-bar linkage model and the lumped mass model. In

Sec. III, we conduct numerical simulations of wave propaga-

tion upon impact on the chain boundary and compare the wave

dynamics obtained from these two models. Then, in Sec. IV

we find numerically exact rarefaction waves of the lumped

mass model, and study the spectral and dynamical stability of

rarefaction waves in Sec. V. Lastly, concluding remarks and

future work are given in Sec. VI.

II. MODELING OF ORIGAMI-BASED STRUCTURES

A. Multi-bar Linkage Model

We begin by modeling a single TMP cell as shown in Fig. 2.

For the sake of simplicity, we focus on the folding motion of

two adjacent facets along the horizontal crease line as marked

by the red line in Fig. 2(a). Preserving the key features of the

TMP, such as rigid foldability and single-DOF mobility, we

can model the folding/unfolding motion of the origami facets

into a simple 1D linkage model as shown in Fig. 2(b). Here,

the unit cell consists of two rigid bars (mass m and length 2L),

and the center-of-mass coordinates of those two bars are (zL1 ,

yL1 , θ1) and (zR1 , yR1 , π − θ1), where superscripts L and R de-

note left and right linkages, respectively. The hinge that con-

nects the two bars is equipped with a linear torsional spring

with the torsion coefficient kθ. The left end of the linkage

structure is supported by a roller joint, which is allowed to

move only along the z-axis up on the application of external

force F ex. The right end is fixed by a pin joint. Therefore,

the inclined angle of the linkage, θ1, is the only parameter re-

quired to describe the motion of this unit-cell system. This

corresponds to the single-DOF nature of the TMP cell.

Based on the single unit cell, we model a chain of N -TMP

cells as shown in Fig. 3(a). In this model, each unit cell is

connected by pin joints, which are allowed to move along the

z-axis. The center-of-mass coordinates of the two bars and

the orientation angles for the j-th unit cell are (zLj , yLj , θj)

and (zRj , yRj , π − θj), respectively. Let us regroup this set of

coordinates in a vector form as follows:

rj =
[

zLj yLj θj zRj yRj π − θj
]T

.

Then, the coordinate of the origami chain can be expressed as:

r =
[

rT
1 · · · rT

j · · · rT
N

]T
.

Introducing the general coordinate

q =
[

θ1 · · · θj · · · θN
]T

,
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FIG. 2: (Color online) (a) TMP unit cell. (b) Two-bar linkage model representing the folding motion of the two facets as marked in red

lines in (a). (c) Force-displacement relationship of the TMP unit cell with L = 5mm, kθ = 1.0Nm/rad, and different initial folding angles:

θ1,0 = 30
◦, 45◦, and 60

◦. Dotted line indicates a power law approximation of θ1,0 = 45
◦ case.

the velocity vector v and the corresponding acceleration v̇ can

be expressed as

v = ṙ = Gq̇, v̇ = r̈ = Ġq̇ +Gq̈ (1)

where
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,

Gj = [−3L cos θj −L sin θj 1

−L cos θj −L sin θj −1]T ,

gj =
[

−4L cosθj 0 0 −4L cosθj 0 0
]T

,

O6×1 =
[

0 0 0 0 0 0
]T

.

If we fix the time and displacement under virtual velocity

(i.e., δq = 0 and δt = 0) [24], the variation of the velocity

vector becomes

δvj =

N
∑

k=1

∂vj

∂q̇k
δq̇k. (2)

Then the principle of virtual power is expressed by

N
∑

j=1

(

M̂j v̇j − fj

)

δvj = 0 (3)

where M̂j is a mass matrix expressed as

M̂j = diag
[

m m J m m J
]

,

and J is the bar’s moment of inertia (J = mL2/3). Also, fj

is a force vector defined as follows

fj =















[F ex, 0, −2kθ (θ1 − θ1,0)− F exL cos θ1,
0, 0, −2kθ (θ1,0 − θ1)] if j = 1

[0, 0, −2kθ (θj − θj,0) ,
0, 0, −2kθ (θj,0 − θj)] if j = 2. . .N

where θj,0 is the initial folding angle of the j-th unit cell (i.e.,

no torque applied at the hinge in this initial angle), and F ex

is the external force applied to the first unit cell as shown in

Fig. 3(a). The advantage of the principle of virtual power is

that we can apply it to a system with both motion and geomet-

rical constraints, and we can derive the equation of motion

without considering force constraints.

Substituting Eq. (2) into Eq. (3), we obtain

N
∑

k=1





N
∑

j=1

(

M̂jv̇j − fj

) ∂vj

∂q̇k



 δq̇k = 0.

Therefore

N
∑

j=1

(

M̂j v̇j − fj

) ∂vj

∂q̇k
= 0

where k = 1, . . . , N . Then

GTM̂v̇ = GTf . (4)

where

M̂ = diag
[

M̂1 · · · M̂N

]

,

f =
[

f1 · · · fj · · · fN

]T

Substituting Eq. (1) into Eq. (4), we obtain the equation of

motion as follows:

GTM̂Gq̈ +GTM̂Ġq̇ = GTf . (5)
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To obtain the equation of motion of a unit cell, let us con-

sider a simple case of N = 1. The position and velocity vec-

tors of the two rigid bars in the unit cell (see Fig. 2(b)) are

(z1, y1) = (−3L sin θ1, L cos θ1)

(z2, y2) = (−L sin θ1, L cos θ1)

(ż1, ẏ1) = (−3Lθ̇1 cos θ1,−Lθ̇1 sin θ1)

(ż2, ẏ2) = (−Lθ̇1 cos θ1,−Lθ̇1 sin θ1).

Note that the origin of z-axis is located at the fixed wall. Then,

we obtain

G = [−3L cos θ1 −L sin θ1 1

−L cos θ1 −L sin θ1 −1]T ,

Ġ = [3Lθ̇1 sin θ1 −Lθ̇1 cos θ1 0

Lθ̇1 sin θ1 −Lθ̇1 cos θ1 0]T .

Also, the force vector is expressed as:

f =[F ex, 0, −2kθ (θ1 − θ1,0)− F exL cos θ1,

0, 0, −2kθ (θ1,0 − θ1)]
T .

Plugging these expressions into Eq. (5), we finally obtain the

equation of motion of the single unit cell as

(

mL2/2 + J/2 + 2mL2cos2θ1
)

θ̈1 −mL2θ̇21 sin 2θ1

+kθ (θ1 − θ1,0) = −F exL cos θ1.
(6)

Here, we consider the quasi-static case (i.e., acceleration

and velocity terms are much smaller compared to the external

excitation and spring force terms), and the force-displacement

relationship can be derived as follows:

F ex = −
kθ (θ1 − θ1,0)

L cos θ1
. (7)

Note that F ex is the external force applied to the roller joint as

shown in Fig. 2(b). Using Eq. (7) and the axial displacement

expression u = 4L(sin θ1,0 − sin θ1), we can calculate the

force-displacement response as shown in Fig. 2(c). We ob-

serve that the system exhibits strain softening behavior in the

compressive region, whereas the system shows strain harden-

ing response in the tensile domain. Also, it is interesting to

find that this strain softening/hardening behavior can be tuned

by controlling the initial folding angle, θ1,0.

B. Lumped Mass Model

In this section, we introduce a lumped mass model, in

which a chain of origami cells is modeled as lumped masses

connected by nonlinear springs (see Fig. 3(b)). The strain soft-

ening behavior of the TMP unit cell considered herein leads

to the following power-law relationship:

F ex = Aδn (8)

z

Fex

m1

u1

m2

u2 uN

mN

F=A�n
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u3

z

k� k� k�
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FIG. 3: Schematic illustrations of (a) Multi-bar linkage model and

(b) Lumped mass model.

where δ is the compressive displacement, and the coefficient

A and the exponent n are the constant values determined by

curve fitting of Eq. (7).

Since the power-law relationship in Eq. (8) assumes only

a positive displacement as an argument, we need to apply a

displacement offset (denoted by d0) towards the tension side,

so that the lumped mass model can approximate the force-

displacement curve of the multi-bar linkage model not only

in the compressive region, but also in the tensile domain. In

Fig. 2(c), the dashed curve shows the fitted power-law rela-

tionship for the multi-bar linkage model, where the black cir-

cle represents (along the horizontal axis) the displacement off-

set d0.

By using this simple force-displacement relationship, we

can derive a general expression of the equation of motion as

follows:

Müj = A [d0 + δj−1,j ]
n

+
−A [d0 + δj,j+1]

n

+
(9)

where M is the lumped mass corresponding to 2m, n ∈ R,

and the bracket is defined by [·]+ = max(0, ·). Note that this

form of equation has been used widely for analyzing nonlinear

waves propagating in discrete systems in the case of strain-

hardening interactions (i.e., n > 1 in Eq. (9), e.g., granular

crystals). Therein, the formation and propagation of nonlin-

ear wave structures, such as solitary waves [19, 20] and dis-

crete breathers [21, 22], have been well studied. The inter-

pretation of origami dynamics via this nonlinear lumped mass

system opens up a broad, novel potential vein of studies. In-

deed, one advantage of modeling the origami lattice in this

way is that many tools and results obtained in the context

of granular crystals and more generally Fermi-Pasta-Ulam-

type settings [25] can be applied in our system. For example,

the recent work of [18] examined a one-dimensional discrete

system under the power-law relationship of strain-softening
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springs (i.e., n < 1 in Eq. (9)). This study reported the propa-

gation of rarefaction waves through dynamic simulations and

a long wavelength approximation, where it was shown that

the width of the rarefaction wave is independent of the wave

speed. In the work of [23], a lattice of tensegrity structures

were shown to be described by Eq. (9) with n < 1. In this

setting rarefaction waves were also studied. The analysis of

nonlinear waves in post-buckled structures has been also at-

tempted using a similar discrete system [26]. In this article,

we extend the theoretical results in such nonlinear-spring sys-

tems by introducing a systematic tool for the computation of

numerically exact traveling waves, which will be discussed in

Sec. IV. We also address the subject of their dynamical sta-

bility in Sec. V.

III. NUMERICAL SIMULATIONS

To examine the dynamic characteristics of the origami-

based structure and compare the results from the two reduced

models, we conduct numerical computations of wave propa-

gation under a compressive impact. Also, we apply various

amplitudes of impact force to the multi-bar linkage model in

order to examine the speed of both compressive and tensile

strain waves, especially focusing on the dominant traveling

wave.

A. Waveform analysis

We perform numerical computations where a compressive

impact is applied to the first unit cell with the right end of the

N -th unit cell kept fixed as shown in Fig. 3(a). The strain

waves propagating in a uniform chain of N = 400 unit cells

are examined numerically. In the case of the multi-bar linkage

model, the relative strain is defined as

ηj =
hj,0 − hj

hj,0

(10)

where hj = 4L sin θj and hj,0 = 4L sin θj,0 (see Fig. 2(b)).

The numerical constants used in the calculation are the follow-

ing: L = 5mm, m = 0.39 g, kθ = 1.0Nm/rad, and θj,0 =
45◦. To apply impact excitation, we impose F ex = 100N for

the first 1 ms and F ex = 0N after the first 1 ms in our sim-

ulations. From the force-displacement curve based on these

constants, we obtain n = 0.64 and A = 2, 938N/mn, given

an initial displacement offset of d0 = 2.1mm for the power-

law approximation. In the case of the lumped mass model, the

relative strain is defined as

ηj =
uj+1 − uj

d0
. (11)

Figures 4(a) and (b) show space-time contour plots of strain

wave propagation under compressive impact, while Figs. 4(c)

and (d) show the strain waveforms corresponding to t = 3, 40,

and 70ms. Note that in Figs. 4(c) and (d), the strain curves at

t = 3 and 40 ms are shifted vertically by 0.5 and 1, respec-

tively, to ease visualization. After the impact force is applied

to the system, the first compressive impact attenuates quickly

as the strain waves propagate through the system, and then a

rarefaction wave appears in front of the first compressive wave

(see the insets as well as the arrows (1) and (2) in Fig. 4). It

should be also noted that due to the strain-softening behav-

ior, the amplitude of the compressive force is reduced dras-

tically as the wave propagates along the chain. Since both

the multi-bar linkage model and the lumped mass model have

this strain-softening nature, the analogous type of rarefaction

waves is observed.

In addition, the inset of Fig. 4(c) shows the magnified view

of the leading edge of the propagating strain wave. This lead-

ing wave is created due to the effect of inertia in the multi-bar

linkage model. That is, when the first unit cell folds right

after the compressive impact, the second unit cell is pulled

by the first unit cell before the compressive force propagates

to the next unit cell. Therefore, the tensile strain appears in

front of the first compressive wave in the multi-bar linkage

model. Comparing the numerical results of the two mod-

els, the lumped mass model captures the multi-bar linkage

model dynamics even quantitatively at short times, while the

agreement between the two becomes qualitative at longer time

scales (see, also, Appendix A corresponding to the tensile im-

pact case).

Let us also note in passing that in the wake of this primary

rarefaction pulse, we observe radiative dispersive wavepack-

ets both in the multi-bar linkage model and in the lumped mass

model. These wavepackets apparently travel maximally with

the speed of sound in the medium, while the rarefaction pulse

outrunning them is apparently supersonic. We will return to

this point to corroborate it further by our numerical bifurca-

tion analysis in the next section. Additionally, it should be

noted that in the lumped mass model, highly localized struc-

tures with a clear envelope can be discerned (see e.g., the

vicinity of unit number 150 of the 70 ms panel of Fig. 4(d)),

which seem to have the form of excitations, which are ex-

ponentially localized in space and periodic in time [27, 28].

A closer inspection of Fig. 4(b) also seems to suggest that

such coherent wavepackets travel more slowly than the disper-

sive radiation. The multi-bar linkage model also exhibits such

time-periodic patterns, but there is no clear signature of spa-

tial localization. The fundamental difference of wave prop-

agation between these two models stems from the fact that

the lumped mass model neglects rotational motions of origami

components, while the multi-bar linkage model accounts for

coupled motions of both translational and rotational dynamics

of origami. While these nonlinear wave structures are worth

investigating, this topic is beyond the scope of this paper, and

we do not explore them further here.

B. Wave speed analysis

The propagation speed of strain waves is now investigated

numerically under various amplitudes of impact force. The

wave speed is approximated as follows

Vε =
Nh0

∆t
(12)
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FIG. 4: (Color online) Space-time contour plots of strain wave propagation based on (a) the Multi-bar linkage model and (b) the Lumped mass

model. Temporal plots of strain waves using (c) the Multi-bar linkage model and (d) the Lumped mass model. Strain curves at t = 3 ms and

40 ms are offset by 1.0 and 0.5, respectively, to ease visualization. The inset in (c) shows the magnified view of the leading edge. The arrows

(1) and (2) point to the rarefaction wave present in the dynamics.

N

	t

Maximum compressive (or tensile) strain(a) (b)

FIG. 5: (Color online) (a) Surface map of strain field to calculate wave speed. (b) Wave speed of strain waves as a function of external force

ranging from −150N to +150N. Numerical simulations are based on L = 25mm, mj = 19.7 g, N = 20 and kθ = 1.0Nm/rad.
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where h0 is the initial height of the unit cell, and ∆t is the

time span in which the strain wave propagates from the first

unit cell to the N -th unit cell (see Fig. 5(a)). The propagating

wave speeds calculated are depicted in Fig. 5(b) under three

different initial folding angles: θj,0 = 35◦, 45◦, and 55◦. It

is evident that the wave speed is altered by the impact force,

which is one of characteristics of nonlinear waves. However,

it should be noted that in the compressive regime, the wave

speed decreases as the compressive impact increases. This is

in sharp contrast to conventional nonlinear waves formed in

the system of strain-hardening lattices [19, 20]. A different

trend is observed in the tensile regime, where the wave speed

increases as the tensile impact increases. It is also notewor-

thy that the wave speed curve can be shifted by changing the

initial folding angle. Therefore, we can control the speed of

the waves propagating through the origami-based metamateri-

als by altering their geometrical configurations, implying their

inherent dynamical tunability.

IV. EXACT RAREFACTION WAVES OF THE LUMPED

MASS MODEL

We now turn our attention to a more systematic analysis and

understanding of the rarefaction waves in the simpler lumped

mass model; notably, our conclusions here in that regard are of

broader interest to previously discussed settings such as those

of [18, 23]. Based on the previous analysis, we numerically

investigate the existence and dynamical stability of exact rar-

efaction waves of the lumped mass model [cf. Eq. (9)]. In

particular, we consider the model in the strain variable δj,j+1

written as

Mδ̈j,j+1 = A{[d0 + δj−1,j ]
n

+
− 2[d0 + δj,j+1]

n
+

+ [d0 + δj+1,j+2]
n

+
}. (13)

The existence and the spectral stability of traveling waves of

Eq. (13) with wave speed c must be examined through the

ansatz δj,j+1(t) = δ(j − c t) := Φ(ξ, t), i.e., going to the co-

traveling wave frame where the relevant solution appears to

be steady and hence amenable to a spectral stability analysis.

Then, Φ solves the advance-delay differential equation

Φtt(ξ, t) = −c2Φξξ(ξ, t) + 2cΦξt(ξ, t) +
A

M

{

[d0 +Φ(ξ − 1, t)]
n

+
− 2 [d0 +Φ(ξ, t)]

n

+
+ [d0 + Φ(ξ + 1, t)]

n

+

}

. (14)

Traveling waves of Eq. (13) correspond to stationary (time

independent) solutions Φ(ξ, t) = φ(ξ) of Eq. (14), satisfying

0 = −c2φξξ +
A

M
{[d0 + φ(ξ − 1)]

n

+
− 2 [d0 + φ(ξ)]

n

+

+ [d0 + φ(ξ + 1)]
n

+}. (15)

To obtain numerical solutions of Eq. (15), we employ a uni-

form spatial discretization of ξ consisting of l points ξk (k =
− l−1

2
, . . . , 0, . . . , l−1

2
) with lattice spacing ∆ξ chosen such

that q = 1/∆ξ is an integer. Then, the field φ(ξ) is replaced

by its discrete counterpart, i.e., φk := φ(ξk) = φ(k∆ξ).
The second-order spatial derivative appearing in Eq. (15)

is replaced by a modified central difference approximation

(φk−2 − 2φk + φk+2)/(4∆ξ2). The reason for this choice

of central difference is connected to the stability calculation

to be discussed in Sec. V. Using this discretization, Eq. (15)

becomes the following root-finding problem,

0 = −c2
φk−2 − 2φk + φk+2

4∆ξ2
+

A

M
{[d0 + φk−q ]

n

+

− 2 [d0 + φk]
n

+
+ [d0 + φk+q ]

n

+
} (16)

which is solved via Newton iterations. We employ periodic

boundary conditions at the edges of the spatial grid. We are in-

terested specifically in rarefaction waves, and thus we use the

profiles obtained via the numerical simulations of Sec. III A

to initialize the Newton solver, see e.g. arrow (2) of Fig. 4(d).

Herein, we consider an origami lattice with L = 25mm,

kθ = 1.0Nm/rad and θ = 55◦. The corresponding best-

fit values of the parameters of the lumped-mass model are

A = 280N/mn, n = 0.53, m = 19.7 g with M = 2m and

d0 = 12mm.

In Fig. 6, numerically exact rarefaction waves (i.e., solu-

tions of Eq. (16) with a prescribed tolerance) are presented

for various values of the wave speed c. In particular, Fig. 6(a)

shows the rarefaction waves in terms of the relative strain

variable φ/d0, while Fig. 6(b) shows the corresponding

relative momenta φ′/d0. Note that the tails decay to zero

monotonically, implying that the traveling structure does not

resonate with the linear modes of the system, as the wave

is supersonic. It is not surprising then that our parametric

continuation in the wave speed c reveals a critical minimum

value cs =
√

nAdn−1
0 /M = 173.5 m/s, which is the sound

speed of the chain (see the vertical dashed-dot gray line

of Fig. 6(c)). This is consistent with the long-wavelength

analysis of [18] and also with our observations of the previous

section indicating that the wave outruns the small amplitude

radiation tails behind it. Thus, similarly to systems with

n > 1 [19, 29], the rarefaction waves of the origami lattice are
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FIG. 6: (Color online) Summary of numerical results on continuations of rarefaction waves over wave speed c with l = 4001 points and

∆ξ = 1/13: (a) Relative strain profiles for various values of the wave speed c. (b) Relative momenta corresponding to (a). (c) Maximum of

the absolute value of the relative strain variable as a function of the wave speed. Note that the horizontal dashed black line corresponds to the

value of pre-compression in normalized units (or, equivalently, d0 in physical units), while the vertical dashed-dot gray line corresponds to the

value of the speed of sound cs of the medium.

traveling faster than any linear waves of the system. However,

in contrast to solitary waves in systems with n > 1, the

amplitude of the rarefaction waves in the origami system has

a natural bound determined by the precompression d0 of the

system, in which case the particles come out of contact (see

the horizontal dashed black line of Fig. 6(c)). Although waves

with amplitude exceeding this value are in principle possible,

we were unable to identify any ones such numerically. An

interesting open problem would be to prove rigorously if such

a bound exists. Another interesting related problem is if there

is a critical maximum value of c. Our numerical continuation

algorithm did indeed terminate due to lack of convergence

at c ≈ 201.6 m/s, but this could have been a result of the

ill-conditioned nature of the Jacobian matrix as the amplitude

approached the critical limit of d0. Given the tunability

of origami lattices (and associated nonlinear contact force

exponents n), it would also be of interest to explore the

variation of the above features over different values of n.

V. SPECTRAL AND DYNAMICAL STABILITY OF

RAREFACTION WAVES

The robustness of a solution φ0 of Eq. (15) can be inves-

tigated through a spectral stability analysis. Here we investi-

gate the spectral and dynamical stability of rarefaction waves

based on the analytical derivation in Sec. IV. To investigate

the spectral stability of a solution φ0 of Eq. (15), we substitute

the linearization ansatz Φ(ξ, t) = φ0+εa(ξ)eλt into Eq. (14),

yielding the eigenvalue problem at order ε :

λ2a(ξ) = −c2aξξ(ξ)+2λcaξ(ξ)+n
A

M

{

[

d0 + φ0(ξ − 1)
]n−1

+
a(ξ−1)−2

[

d0 + φ0(ξ)
]n−1

+
a(ξ)+

[

d0 + φ0(ξ + 1)
]n−1

+
a(ξ+1)

}

(17)

where (λ, a) correspond to the eigenvalue-eigenvector pair.

We define a solution φ0 of Eq. (14) to be stable if none of

the eigenvalues λ = λr + iλi has a positive real part. The

eigenvalue problem corresponding to the rarefaction wave (in

which φ0 is localized in ξ) can be seen as a compact pertur-

bation of the eigenvalue problem in which φ0 = 0. Thus, we

expect the continuous spectra of these eigenvalue problems to

coincide [30].

If φ0 = 0, then we can solve (17) analytically with the

ansatz a(ξ) = eiξℓ, where the eigenvalues are given by

λ(ℓ) = iℓc± 2i sin

(

ℓ

2

)

√

nAdn−1
0

M
. (18)

This indicates that the continuous spectrum around the uni-

form steady state is purely on the imaginary axis. Thus,

any instability of the rarefaction wave will be due to point

spectrum, which we must calculate numerically. We chose a

discretization such that the spectra of the zero solution (see

Eq. (18)) corresponds to the spectra of the zero solution of the

discrete variant of Eq. (17). Using the standard central differ-

ences for the spatial derivatives appearing in (17) will lead to

eigenvalues with a real part in the case of φ0 = 0. Hence, par-

ticular care needs to be taken to discretize the first and second

derivative operators in a “compatible” way. Indeed, in order

to avoid this “spurious instability,” we used a modified central

difference formula for the second spatial derivative, leading to
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FIG. 7: (Color online) Eigenvalue spectrum for a traveling wave with c = 180 and d0 = 12mm on a lattice with l = 1501 and ∆ξ = 0.2.

the following eigenvalue problem

λak = bk, (19)

λbk = −c2
ak+2 − 2ak + ak−2

4∆ξ2
+ c

bk+1 − bk−1

∆ξ
+ n

A

M

{

[

d0 + φ0
k−q

]n−1

+
ak−q − 2

[

d0 + φ0
k

]n−1

+
ak +

[

d0 + φ0
k+q

]n−1

+
ak+q

}

which has been cast as a linear system in λ through the def-

inition aλ = b (such that standard eigenvalue solvers can be

used), and where ak := a(k∆ξ). In the case of φ0 = 0,

Eq. (19) with k ∈ Z is solved by ak = eik∆ξℓ, where the

eigenvalues are given by

λ(ℓ) = i
sin(ℓ∆ξ)

∆ξ
c± 2i sin

(

ℓ

2

)

√

nAdn−1
0

M
, (20)

which is consistent with (18) in the limit ∆ξ → 0 and per-

haps even more importantly is also purely on the imaginary

axis, suggesting neutral stability. However, additional incon-

stancies may arise due to the finite nature of the computa-

tions and introduction of boundary conditions. For exam-

ple, we find eigenvalues with a spurious real part in the base

case of φ0 = 0 when fixed boundary conditions are used

whereas periodic boundary conditions retrieve the “correct”

result, with the eigenvalues being purely imaginary. All of

the above heavily predisposes us about the ill-conditioned na-

ture of this eigenvalue problem and the extreme sensitivity of

the relevant eigenvalues to perturbations, a feature which will

become even more transparent in our following discussion re-

garding the traveling wave stability on top of the trivial state

of φ0 = 0.

With the appropriate discretization and boundary condi-

tions at hand, we now turn to the stability spectra for the

non-trivial solutions φ0 6= 0 of Eq. (16). Figure 7 shows the

eigenvalue spectrum of a rarefaction wave with c = 180. In

this case, there is an eigenvalue with real part λr ≈ 0.073,

implying the presence of either a spurious or genuine (al-

beit very weak) instability. Given the scale of the parameters

for the origami lattice considered, the value of λr ≈ 0.073
may be misleading, since for example, when normalizing the

system parameters (see Appendix B), the same solution has

λr ≈ 3.12 × 10−5. However, the conclusion remains the

same: either the solution is very weakly unstable, or there is a

spurious instability. The latter would not be surprising, given

the very delicate nature of the stability computations, as high-

lighted above even in the trivial case of the zero solution. It

is worthwhile to note here that all solutions that we computed

yielded a spectrum with at least one eigenvalue with a (rela-

tively small) real part. In order to resolve this pending issue

(of whether this is a true or a spurious instability), we have

resorted to direct numerical simulations (i.e., an examination

of the dynamical stability of the state) of the time evolution of

the traveling wave in what follows.

In our numerical computations of Eq. (13), we have ini-

tialized the evolution by a numerically exact traveling wave

solution perturbed by a small and uniformly distributed ran-

dom noise (in the vicinity of the coherent structure) with

ε = 10−3 × max(|δj,j+1(t = 0)|). Remarkably, all the

solutions we dynamically simulated appeared robust against

such perturbations, suggesting the spectrally observed weak

instabilities are spurious in this case. Figure 8 summarizes

our findings on dynamical evolutions of rarefaction waves in

terms of the relative strain variable δj,j+1(t)/d0, by illustrat-

ing the representative cases with wave speeds c = 174, 180
and 190. While outside the scope of the present article, an

important future direction would be to develop more sophisti-

cated discretization schemes (such as those based on Cheby-
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FIG. 8: Evolution of unperturbed (a)-(c) and perturbed (d)-(f) rarefaction waves with wave speed (a) and (d) c = 174, (b) and (e) c = 180,

and (c) and (f) c = 190, respectively, according to the discrete equation (Eq. (13)) with periodic boundary conditions. The parameter values

used are the same as in Fig. 7.

shev collocation methods [31]) or algorithms for nonlinear

eigenvalue problems (such as Jacobi-Davidson type methods

[32, 33]) not only for the stability of rarefaction waves in the

origami lattice, but also for a wide class of lattice dynamical

systems supporting traveling waves.

VI. CONCLUSIONS & FUTURE CHALLENGES

In the present work, we investigated nonlinear wave dy-

namics in origami-based metamaterials consisting of building

blocks based on Tachi-Miura polyhedron (TMP) cells. We

analyzed the kinematics of the TMP unit cell using a sim-

ple multi-bar linkage model and found that it exhibits tun-

able strain-softening behavior under compression due to its

geometric nonlinearity. We observed that upon impact, this

origami-based structure supports the formation and propaga-

tion of rarefaction waves. The resulting evolution features a

tensile wavefront despite the application of compressive im-

pact. A further reduction was also offered based on the fitted

force-displacement formula for a single cell, in the form of

a lumped mass model. In the latter case we obtained numeri-

cally exact rarefaction waves and studied their spectral and es-

pecially dynamical stability. The dynamical features observed

herein may constitute a highly useful feature towards the ef-

ficient mitigation of impact by converting compressive waves

into rarefaction waves and disintegrating high-amplitude im-

pulses into small-amplitude oscillatory wave patterns. We

also demonstrated the potential tunability of the wave speed

by altering initial folding conditions of the origami-based

structure, which naturally opens up the feasibility of control-

ling stress wave propagation in an efficient manner.

The rather unique nonlinear wave dynamics of origami

structures can lead to a wide range of applications, such

as tunable wave transmission channels and deployable im-

pact mitigating layers for space and other engineering sys-

tems. These applications will leverage intrinsic versatility of

origami structures, e.g., the formation of not only rarefaction

waves, but also other types of nonlinear waves and tunable

frequency band structures. On the theoretical/computational

side, there is also a large number of intriguing questions that

are emerging. For example, a more detailed comparison of the

coherent wave structures propagating in the multi-bar linkage

model vs. the lumped-mass model would be an interesting

topic for further consideration. This would help uncover the

dynamical features leading to the apparent weak amplitude

decay in the former, in contrast to the robust wave propaga-

tion in the latter. At the single wave level, an exploration of

the delicate issues of spectral stability by means of different

numerical methods and of the corresponding dynamical impli-

cations would be of particular interest. Subsequently, under-

standing the dynamics and interactions of multiple rarefaction

wave patterns would also be a relevant theme for future inves-

tigations. These topics are currently under active considera-

tion and will be reported in future publications.
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Appendix A: Comparison between multi-bar linkage and

lumped mass models under tensile impact

In Fig. 4, we show the comparison between multi-bar

linkage and lumped mass models under compressive impact.

Here, we turn our attention to the case of tensile impact. For

numerical simulations, we applied an impact of F ex = −100
N (minus sign indicates tensile direction) during the time

span of 1 ms. The numerical constants used in the multi-bar

linkage model are the same as described in Section III.

For the lumped mass model, we obtain n = 0.22 and

A = 2, 815N/mn, given an initial displacement offset of

d0 = 5.6mm for the power-law approximation. Figure 9(a)

and (b) show space-time contour plots of strain wave propaga-

tion under compressive impact, while Figs. 9(c) and (d) show

the strain waveforms corresponding to t = 3, 20, and 50ms.

Both the multi-bar linkage model and lumped mass model

exhibit tensile isolated waves propagating faster than the other

oscillatory waves. These waveforms look similar to those of

solitary waves formed in granular crystals, except that they

exhibit tensile packets instead of compressive ones [19]. The

simulation results in Fig. 9 imply that both numerical ap-

proaches – the lumped mass model and the multi-bar linkage

model – produce qualitatively analogous results given the

parameters used in our origami-based metamaterial system.

This verifies the validity of the quasi-static approach used in

the lumped mass model through this qualitative agreement.

We also note that quantitative aspects still retain a number of

distinctive features between the two models. For example,

the multi-bark linkage model has more such isolated waves

(i.e., notice a smaller one around j = 260 in panel (c)), and

the difference in speed between the isolated waves and the

oscillatory tail is clearly larger in panel (c) in comparison to

panel (d) of the lumped mass model.

Appendix B: Lumped mass model in scaled units

We shortly discuss the scaling transformation applied to the

model equation (Eq. (19)). The latter can be written as

¨̃Φk=−c2
Φ̃k+2 − 2Φ̃k + Φ̃k−2

4∆ξ2
+c

˙̃Φk+1 −
˙̃Φk−1

∆ξ

+
A

M

{[

d0 + Φ̃k−q

]n

+
− 2

[

d0 + Φ̃k

]n

+
+
[

d0 + Φ̃k+q

]n

+

}

.

(B1)

Then, both the strain and time variables are rescaled using

Φ̃ 7→ Φ̃/α and t 7→ βt, respectively, where the scaling fac-

tors are given by α = d0 and β =
√

αn−1A/M . This way,

Eq. (B1) is written in scaled units as

¨̃Φk = −c̃2
Φ̃k+2 − 2Φ̃k + Φ̃k−2

4∆ξ2
+ c̃

˙̃Φk+1 −
˙̃Φk−1

∆ξ

+
{[

1 + Φ̃k−q

]n

+
− 2

[

1 + Φ̃k

]n

+
+
[

1 + Φ̃k+q

]n

+

}

,

(B2)

with the scaled wave speed given by c̃ = c/β.
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FIG. 9: (Color online) Space-time contour plots of strain wave propagation under tensile impact based on (a) the Multi-bar linkage model and

(b) the Lumped mass model. Temporal plots of strain waves using (c) the Multi-bar linkage model and (d) the Lumped mass model. Strain

curves at t = 3 ms and 20 ms are offset by 1.0 and 0.5, respectively, to ease visualization. The inset in (c) shows the magnified view of the

leading edge. The arrows (1) and (2) point to the solitary wave-like wave packets present in the dynamics.
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