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ABSTRACT 

We focus on solitary waves generated in arrays of lightly contacting spherical elastic granules by 

shock forces of steep rise and slow decay durations, and establish a priori: (i) whether the peak 

value of the resulting solitary wave would be greater, equal, or less than the peak value of the 

input shock force; (ii) the magnitude of the peak value of the solitary waves; (iii) the magnitude 

of the linear momentum in each solitary wave; (iv) the magnitude of the linear momentum added 

to the remaining granules, if the first granule is ejected; and (v) a quantitative estimate of the 

effect of the granules’ radius, density and stiffness on force amplification/mitigation. We have 

supported the analytical results by direct numerical simulations. 
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1. Introduction 

Ordered granular media are a type of nonlinear phononic crystals [1] highly suited for stress-

wave management  [2,3]. They may have one-, two-, or three-dimensional alignments  [2,4–12], 

where the nearest neighbors exchange energy and momentum through strongly nonlinear 

Hertzian interaction  [13]. Nesterenko is the first to show that such a nonlinear relation between 

contact force and position produces a new class of translational solitary waves that involve no 

vibrations and have a compact support of about 5 granules  [2,4] in monodispersed granular 

chains.  They are excellent media for passive energy absorption and shock mitigation 

 [4,10,14,15]. Diatomic and tapered chains are also studied by several researchers analytically, 
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numerically, and experimentally  [2,16–22] as shock protectors. These studies, however, 

consider impulsive loads. In reality, the applied forces due to impact- or explosive-induced 

shocks have finite steep rise and slow decay periods that have not been theoretically studied. It 

may also be possible to produce input forces with slow rise and steep decay periods. While our 

focus here is on mechanically induced shocks, our approach may also be applicable to input 

forces with slow rise and fast decay periods, for which one or several granules may be ejected, 

adding linear momentum to the remaining granules. However, we do not address this issue in the 

present paper.   

2. Statement of Problem and System Description 

When the applied force is an impulse, imparting an initial velocity to the first granule of an 

ordered granular crystal, then after an initial transient period, the contact force between the 

granules forms a single localized wave-form, called solitary wave (SW). We seek to broaden the 

class of input forces, focusing on realistic shock loads which generally have steep rise and slow 

decay finite durations.  

Consider a set of lightly contacting one-dimensional identical elastic spheres, subjected to 

an applied force, ( )0;F t t , of finite rise time, 0t , and finite decay time. The dimensionless 

governing equations of motion are  

( ) ( ) ( ) ( ) ( )3/2 3/2 3/2 3/2
1 1 2 1 1 1, ,,i i i i i N N Nx x x x x x x x x x xF τ − + −+ + + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤′′ ′′ ′′= − − = − − − = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
%    (1) 

where prime denotes differentiation with respect to normalized time / ,tτ β=  with t  being the 

dimensional time unit, and ( ) ( )
11/222 2 1 / /E Rβ ν π ρ

−
⎡ ⎤⎡ ⎤= −⎣ ⎦ ⎣ ⎦ , where E  is the Young’s 

modulus, ν  is the Poisson’s ratio, and R  is the radius of a typical granule.  The chain is free at 

both ends. In (1), ix  is normalized displacement of the ith granule, measured relative to its initial 

position, 2, , 1,i N= −L ( )F τ%  is the normalized externally applied force to the first granule, 

( ) ( )0; / ,F F t tτ α=%  where ( ) 12 22 3 1 .ER να
−

⎡ ⎤−⎣ ⎦=  In the absence of loads, the granules are in 

light contact with no compression,  forming a system of No-tension elastic medium  [23]. 
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The considered input (dimensional) shock, ( )0; ,F t t  is defined by, 

( ) ( ) ( ) ( ) ( ) ( )0 0 1 0 2 0 0; ; (0, ],F t t F F t H t t F t H t t H nt t t= − + − − ∈ ∞⎡ ⎤⎣ ⎦                         (2) 

which has finite rise and finite decay durations, a common characteristic of an actual shock. 

Here, 0t  is the rise time (used as unit of time), 0nt  is the total duration of the shock with  ሼ݊ א Թ|݊  1ሽ, 0F  is the peak value of the shock (used as unit of force), ( )1F t  and ( )2F t  with 

peak values of 1 represent shock profiles during rise and decay periods, respectively, and ܪሺ·ሻ is 

the Heaviside step function. Therefore, ( )0 0 1; ( )F t t F F t=  for 00 ,t t≤ ≤  ( ) ( )0 0 2;F t t F F t=  for 

0 0,t t nt≤ ≤  ( )0; 0F t t =  for 0 ,t nt≥  and ( ) ( )1 2max max 1.F t F t= =  

In general, impact- or explosive-induced shocks have steep rise followed by slow decay 

periods. We focus on a class of such shocks and limit our attention to realistic cases where the 

input rise and decay profiles of the applied force, ( )1F t  and ( )2F t , satisfy, 

( ) ( ) ( ) ( ) ( )0 0
0 0

0 0

2 1 1 0 2 00 0

11; ; .
2 2

nt nt
t t

t t

n
F t dt F t dt F t dt t F t dt t

−
≥ ≥ ≤∫ ∫ ∫ ∫                        (3) 

The first condition guarantees that the rise is faster than the decay, and the second one requires 

that the area under the rise profile be at least equal to that of a triangle.  Finally, the last 

restriction ensures that the area under the decay profile is not greater than that of a triangle with 

the same duration. 

3. Characteristics of SW 

The linear momentum of a SW traveling in ordered granular crystals, is ( )
0

,SW SWL F t dt
∞

= ∫  where 

( )SWF t  represents the time variation of SW at each neighboring granules contact. The profile of a 

SW can be expressed in terms of the Padé approximation  [24] as follows: 

( )SWF t  ( ) ( )( ) 3/21/4

2

2 / ,
3 1

RE BS B R t
ν

⎡ ⎤
⎣ ⎦−

                                  (4a) 
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where B  is the peak amplitude of the relative displacement of two contacting granules, and ( )S τ  

is given by ( ) 22 4 6 8
2 4 6 8( ) 1 ,S q q q qτ τ τ τ τ

−
= + + + +  with 2 0.439,q = 4 0.0994,q = 6 0.0147q =  and 

8 0.0013;q =  see  [24].  According to the Hertzian contact, the peak value of the SW, 

( )
maxSWmax ,SWF t F⎡ ⎤ =⎣ ⎦  is given by ( )

3/2
2

2 .
3 1

RE B
ν−

  Hence, 

SWL  { }
max max

1/4 1/4
3/2

SW SW( ) 1.543R RF S d F
B B

β τ τ β
∞

−∞

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫  ( ) SWmax

1/3

5/6
2 3/2 4

4.06 .
1

E F
Rν ρ

−
⎛ ⎞
⎜ ⎟
⎜ ⎟−⎝ ⎠

 

Our numerical simulations show that the Padé approximation underestimates the value of the 

integral in the above expression by about 7%; see Appendix A. Hence the coefficient 4.06 needs 

to be increased by about 7% to 13/3, leading to the following fundamental result: 

SWL  ( )
SWmax

1/32 3/2 4
5/6

113, .
3

R
AF A

E

ν ρ⎛ ⎞−
⎜ ⎟=
⎜ ⎟
⎝ ⎠

                                   (4b,c) 

The parameter A characterizes the total linear momentum of a fully developed SW that the 

corresponding chain of contacting granules can support.  For a given shock input, the peak value 

of the resulting SW, 
maxSW ,F  also depends on the parameter A, and, as shown later on, this peak 

value increases with granules’ increasing stiffness and granules’ decreasing density and radius, 

according to the structure of parameter A. Therefore A embodies significant amount of 

information about the resulting SW. 

4. Response of the System 

The total linear momentum of the input force (2) is AppliedL ؠ ( ) ( )
0 0

0

1 2 0
0

.
t nt

t

F t dt F t dt F
⎡ ⎤

+⎢ ⎥
⎢ ⎥⎣ ⎦
∫ ∫  In 

certain cases, the applied force may introduce a train of SWs. Then, only a part of the input 

momentum will be used to create the primary SW. Let the portion 
max

5/6P
Applied SWL AF= of the total 

input momentum, ,AppliedL  be used to form the primary SW of the peak amplitude 
maxSW ,F  where 

the superscript “P” stands for the primary SW. Set 
max

1/6 ,P
SWt AFα −=  where α  accounts for the 

profile of the input force (see comments below) and note,  
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( ) ( )

( ) ( )
( )

( )

0 0

0

1/6
max0

max

0

1 2 0
0

1/6
1 2 0 0

0

;

.

;
SW

t nt

Applied
t

P
Applied A Ft

Applied SW
t

F t dt F t dt F L

L

F t dt F t dt F L if AF nt
α

α
−

−

⎧⎡ ⎤
⎪ + =⎢ ⎥
⎪⎢ ⎥⎣ ⎦⎪= ⎨⎡ ⎤⎪⎢ ⎥+ < <⎪⎢ ⎥⎪⎣ ⎦⎩

∫ ∫

∫ ∫
         (5a) 

The top expression corresponds to cases when the entire linear momentum is used to form a 

single (primary) SW, and the second expression is for cases when more than one SW would be 

formed. The time-parameter 
max

1/6P
SWt AFα −=  can be calculated from

( ) ( )
0

2 0/ .
P

nt

Applied SW
t

F t dt L L F= −∫   For a triangular input shock of peak value 0,F  it can easily be 

shown that the time parameter Pt  is given by, ( )
max

5/6
0 0 0 01 2 / ;P

SWt nt n t nt AF F⎡ ⎤= − − −⎣ ⎦  see 

Appendix B for details. In this case, we must have 

max max

max max

5/6
1/6 1/6

0
0 0

2 2 ,SW SW
SW SW

AF F
nt AF AF

F F
α− −≥ = =                                         (5b) 

which provides an expression for ,α  i.e. 
max 02 .SWF Fα =  For a general input shock profile, α  

must accounts for the deviation of the input shock profile from the corresponding triangular one.  

Then, for profiles which satisfy conditions (2), we have observed that the expression, 

( ) ( ) ( )max

3/23/21

1 0 2 0
0 0 1

1 1 12 ,
2 2 1

n
SWF

F t d F t d
F n

α τ τ τ τ= − − − −
−∫ ∫                    (5c) 

yields accurate results for 0 0 0̂ ,t t t≥ −  which we have verified by extensive numerical 

simulations; see comments in subsections 4.1 and 4.2.  

4.1. Qualitative Prediction of Peak Contact Force, 
maxSWF  

We now examine the qualitative relation between the peak values of the input force and that of 

the resulting primary SW. If the peak value of the primary SW equals 0,F  then, according to 

equation (4b), the portion of the input linear momentum used to form the primary SW would 

equal 5/6
0 .A F   But, if this portion is greater (less) than 5/6

0 ,A F  then the peak value of the primary 



6 
 

SW would by necessity be greater (less) than 0.F   Therefore we can make the following 

qualitative prediction: 

i. The steady-state peak compressive contact force, 
maxSW ,F  would relate to the input 

shock amplitude, 0 ,F  in the following manner: 

a. If  ( )0 1/6
0 0 ,F A F ntα − <  then a train of SWs form and  

maxSWF ൝ ܨ ൏ܨ ൡܨ ( ) ( )
( )1/60

00

0

1 2
0

F A Ft

t

if F t dt F t dt
α −⎛ ⎞

⎜ ⎟+
⎜ ⎟
⎝ ⎠
∫ ∫ ൞ ିܨܣ ଵ/ ିܨܣ ଵ/൏ ିܨܣ ଵ/ൢ.             (5d) 

b. Else, a single SW forms and  

maxSWF ൝ ܨ ൏ܨ ൡܨ ( ) ( )
0 0

0

1 2
0

t nt

t

if F t dt F t dt
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠
∫ ∫ ൞ ିܨܣ ଵ/ ିܨܣ ଵ/൏ ିܨܣ ଵ/ൢ,                     (5e) 

where 0Fα  is given by, 

( ) ( ) ( )0

3/23/21

1 0 2 0
0 1

1 1 12 .
2 2 1

n
F F t d F t d

n
α τ τ τ τ= − − − −

−∫ ∫  

Table 1 shows the qualitative comparison between 
maxSWF  and 0F  for different input shock 

profiles, supporting the predictions based on equations (5d,e). 
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Table 1. Qualitative comparison between peak value of input shock ( )0F  and peak value of the 

resulting primary SW ( )maxSWF  using equations (5d) and (5e),  for different input force profiles 

with ( ) ( ) 1

1 0/F t t t η=  and ( ) ( ) ( ){ } 2

2 0 0/ 1 .F t nt t n t
η

⎡ ⎤= − −⎣ ⎦  System parameters: 

0 0100 , 15 ,F N t sμ= = 193 ,E GPa= 37958 / ,kg mρ =  9.5 .D mm=  

( )1 2, ,n η η  Qualitative comparison between 
maxSWF  and 0F  

Exact (Numerical) Approximate (Using analytic equations (5d) and (5e))

(10,1,5) 
maxSWF  0F  

maxSWF  0F  

(6,0.5,6) 
maxSW 0F F<  

maxSW 0F F<  

(4,0.25,1) 
maxSW 0F F>  

maxSW 0F F>  

4.2. Quantitative Estimate of Peak Contact Force, 
maxSWF  

If all of the input energy and momentum are not used to form a single SW, secondary or even 

tertiary SWs may be generated. 

4.2.1. Estimate of 
maxSWF when 5/6

0
P
AppliedL AF<  and 0

Pt nt=  

In this case the total momentum of the input force would be used to create a single SW, and in 

addition the first granule would be ejected, imparting additional linear momentum to the system. 

(The following calculations do not include this effect, and hence the resulting estimates need to 

be corrected, as detailed below in subsection 4.2.2). From equation (5a) we have P
Applied AppliedL L= SWL  

max

5/6 5/6
0SWAF AF< which leads to, 

maxSWF  6/5

0.
P
AppliedL

F
A

⎛ ⎞
<⎜ ⎟⎜ ⎟

⎝ ⎠
                                                   (5f) 

This is a relation between P
AppliedL  and 

maxSW .F  It provides a quantitative estimate of the influence 

of the properties of the granules on the peak-force amplification/mitigation, for finite duration 

shock loads, showing how the peak value of the SW increases with increasing stiffness and 

decreasing density and radius of the granules; see equation (4c).  For an impulse load, the 
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qualitative dependence of the peak stress amplification/mitigation on granules’ stiffness, mass 

density, and radius has been recognized in  [2,25]. 

4.2.2. Error estimate when 5/6
0

P
AppliedL AF<  and 0

Pt nt=  

In this case the first granule is always ejected, imparting additional momentum to the rest of the 

granules, which the calculation of 
maxSWF  based on equation (5f) as outlined above, does not 

include. We now seek to estimate this momentum.  Since the duration, 0 ,nt  of the input force in 

equation (2) is measured in terms of its rise time, 0,t  we first calculate a virtual rise time, say 0̂ ,t  

such that, when the same input force-profile is measured in terms of this unit of time, 0̂ ,t  i.e., 

when the input force is ( )0̂; ,F t t  it would generate a SW with 
maxSWF  0 ,F  or P

AppliedL  5/6
0 .AF  

Hence 0̂t  is given by, 

( ) ( )
0 0

0

ˆ ˆ

1 2
ˆ0

t nt

t

F t dt F t dt+∫ ∫  1/6
0 ,AF −                                                (5g) 

which can be calculated, for example, by iteration. The time-difference 0 0 0
ˆ ,t t tΔ = −  is a measure 

of the error in the estimate that does not include the additional momentum due to an ejected 

granule. When 0tΔ 0,  then the first granule would not be ejected, and if it should be then its 

linear momentum would be negligibly small. We estimate the linear momentum that would be 

generated if such ejection should occur, i.e. if 0 0.tΔ >  The first granule begins to acquire a 

velocity anti-parallel with the applied force, when its contact area with the next granule begins to 

recede as the applied force decays. We use the terminal portion of the force ( )0̂;F t t  (the shaded 

area in Figure 1), to estimate this additional momentum, LΔ  ( )
0

0 0

ˆ

0
ˆ

ˆ2 ; .
nt

nt t

F t t dt
−Δ
∫  Then, the total 

input momentum to form the SW would be P
AppliedL L+ Δ  ,SWL from which we obtain, 

maxSWF  ( )
0

0 0

6/5ˆ
0

2 0
ˆ

ˆ2 ; .
ntP

Applied

nt t

L F F t t dt
A A −Δ

⎛ ⎞⎧ ⎫⎪ ⎪⎜ ⎟+ ⎨ ⎬⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠
∫                                     (5h) 
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Figure 1. Schematic diagram showing the correction plot to estimate 

maxSW .F  

Table 2 compares values of 
maxSWF  given analytically by (5h) with the corresponding values 

obtain by numerical solution of equations (1).  As is seen errors are quite small. 

Table 2. Quantitative comparison of peak value of the resulting primary SW ( )maxSWF  given 

analytically by (5h) with the corresponding values obtain by numerical solution of equations (1), 

for different input force profiles with ( ) ( ) 1

1 0/F t t t η=  and ( ) ( ) ( ){ } 2

2 0 0/ 1 .F t nt t n t
η

⎡ ⎤= − −⎣ ⎦  

System parameters: 0 0100 , 15 ,F N t sμ= = 193 ,E GPa= 37958 / ,kg mρ =  9.5 .D mm=  

( )1 2, ,n η η  ( )0 0
ˆ ,t t  in sμ  % of error in 

m axSWF  using equation (5h) 

(3,0.5,1) (14.4, 7.4) 3.0 

(2,1,1) (24, 18) 2.6 

(4,1e-5,1) (9.6, 3.6) 0.5 

(6,0.9,1) (7.9,1.9) 2.6 

(5,0.25,1) (8.6, 2.6) 2.9 

 

4.2.3. Estimation of 
maxSWF  when 5/6

0
P
AppliedL AF≥  and 0

Pt nt=  

In this case, the first granule may be ejected and either a single or double localized SWs can be 

generated; however the secondary SW would carry negligibly small energy. Therefore, it is 
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reasonable to assume that all of the available input linear momentum is used to generate a single 

dominant SW wave, carrying almost all of the input momentum, and set P
AppliedL  SWL  which 

produces equation (5f).  In this case, the calculation of 
maxSWF  based on equation (5f) does not 

introduce significant errors when P
AppliedL  5/6

0AF . This is due to the fact that even though the first 

granule (and possibly other granules, close to the application point of the input shock) may be 

ejected, the energy that they carry away would be insignificantly small. 

4.2.4. Estimation of 
maxSWF when 0

Pt nt<   

In this case, multiple localized SWs are expected to form. First we estimate the percentage of the 

input momentum used to generate the 1st (primary) SW. This would serve to show whether or not 

all the input momentum is required to generate this SW.   

Let the input momentum from time 0t =  to ( )max

1/6P
SWt t A Fα −= =  be used to form a 

primary SW and set  

( )
( )

( )
1/6
max

0 ,1
0 0

; ,
SWA F

SWF t t dt F t dt
α −

∞

=∫ ∫  

where ( ),1SWF t  represents the time variation of the primary SW. The linear momentum of the 

primary SW of peak amplitude ( )
max,1 SWmax SWF t F⎡ ⎤ =⎣ ⎦  is ,1SWL 

max

5/6
SWAF  and the linear momentum 

P
AppliedL  used to form the SW is given by ( )

( )1/6
max

0
0

;
SWA F

P
AppliedL F t t dt

α −

= ∫  ,1,SWL  which produces 

equation (5f). 

4.2.5. Estimation of SW Train (SWT) amplitudes 
maxSW , jF when 0

Pt nt<  

If the input force is through impact of a granule on the first granule of the chain of an ordered 

granular crystals, then depending on the mass of the striking granule, either a single or multiple 

SWs (SWT) will be generated  [2,26–28]. In this section, however, we seek to calculate the 

number of SWs and their respective amplitudes for finite duration rise-decay shock loads. Let the 

input linear momentum from t = 0 to ( )max

1/6
,1SWt AFα −=

 
be used to form the primary SW, i.e., 
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( )
( )

( )
1/6

,1max

0 ,1
0 0

; .
SWA F

SWF t t dt F t dt
α −

∞

=∫ ∫  Similarly, let the input momentum from time ( )max

1/6
,1SWt A Fα −=  

to ( )max

1/6
,2SWt A Fα −=  be used to form the secondary SW, and so on. Then, in general, for the thj  

secondary SW, we have, 

maxSW , jF  ( )
( )1/6

,max

max

6/5

5/6
SW , 1

20

1 ; 1,2, ,
SW jA F j

k
k

F t dt F j
A

α −

−
=

⎡ ⎤
⎢ ⎥− =
⎢ ⎥
⎣ ⎦

∑∫ L                       (5i) 

and hence, 

( )max max max

1/6 1/6 1/6
, SW ,1 SW ,k

2

; 1,2, ;
j

SW j New
k

AF AF A F jα α α− − −

=

= + =∑ L  and

( ) ( )
3/2

2 0
1

8 2 1 1 .
4 2 1

n

New F t d
n

α τ τ−= − −
− ∫  

Equation (5i) can be solved by iteration to obtain the peak values 
maxSW , jF  of the thj SW. 

5. Discussion and Conclusion 

When the input force to a chain of identical elastic spheres, has finite rise and decay durations, a 

rich set of interesting dynamic issues emerges. We have considered these issues for a general 

realistic class of shock-induced input force, and provided explicit expressions and procedures to 

successfully address them without having to numerically solve the required system of equations. 

Only the knowledge of the input force and the properties of the considered granules are required 

in our approach. For this, we have identified two fundamental parameters: one material-

dependent parameter, A, and the other time parameter, ( )max

1/6
SWAFα − , in addition to the input 

momentum parameter P
AppliedL . These parameters can be calculated a priori based on the 

properties of the granules and the time-profile of the input force. Then based on the relations 

between P
AppliedL  and 5/6

0 ,AF  we have shown that: 
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i. If 5/6
0

P
AppliedL AF<  and 0

Pt nt= , then the first granule would be ejected and a single 

localized SW would be generated. As a result, the input energy would decrease and 

the input linear momentum would increase.  

ii. If P
AppliedL  5/6

0 ,AF then the first granule may be ejected, and at least one secondary 

SW would be generated. 

iii. If P
AppliedL ب 5/6

0 ,AF  then the first granule would not be ejected and a train of SWs 

would be generated.  

iv. When the system generates SWT, the number of SWs and their peak amplitudes can 

be calculated, as outlined in subsection 4.2.5. 

In another word, we have shown for the first time that the entire physics of the SWs in our 

challenging problem is embedded in the values of only three fundamental quantities. In addition, 

and only from the structure of the parameter A, we have shown, quantitatively, how the peak 

value of SW, FSWmax
,  increases with decreasing granules’ radius, R,  and density, ,ρ and 

increasing Young’s modulus, E. These observations have been made before by other researchers 

 [2,25] qualitatively for an impulsive load only. Our equation (5f) provides new direct 

quantitative relation between the peak value of SW and the contacting granules’ properties for 

finite duration shock loads.   

While our focus has been on chains of identical elastic granules with one-directional 

Hertzian interaction, we hope that our methodology will pave a way to address similar 

challenges for two- and three-dimensional granular crystals subjected to general finite duration 

shocks. 
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Appendix A: Representation of the linear momentum of SW 

In this Appendix, we show in detail how we have obtained the closed-form expression (equation 

(4b,c) of the manuscript) for the linear momentum of a SW. The governing equations of motion 

of a set of contacting granules (in physical units) are, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3/2 3/2
1 1 2 12 2

3/2 3/2
1 12

0; 2 2;
3 1 3 1

2 ; 2, , 1,
3 1

N N N

i i i i i

RE REmu u u mu u u

REmu u u u u i

t

N

F t
ν ν

ν

−+ +

− ++ +

= − − = −
− −

⎡ ⎤= − − − = −⎣ ⎦−

&& &&

&& L

                 (A1) 

where m is the mass and ui  the displacement of the ith granule, measured relative to its initial 

position. Now we introduce two dimensionless variables: normalized displacement, /i ix u R= , 

and normalized time, / ,tτ β=  and reduce the governing equations of motion to (1). In the 

Hertzian contact, the time variation of the contacting force is given by (in dimensional unit), 

( ) ( ) ( )3/2
12

2 .
3 1SW i i

REF t u u
ν += −

−
 Hence, the linear momentum of a SW is 

( ) ( )3/2
12

0

2 .
3 1SW i i

REL u u dt
ν

∞

+

⎡ ⎤
⎢ ⎥= −

−⎢ ⎥⎣ ⎦
∫  Now, we express the SW profile in terms of the Padé 

approximation  [24], i.e. we set ( )1i iu u +−  ( ){ }1/4/ ,BS B R t  and obtain,  

SWL  ( ) ( ){ } 3/21/4

2

2 /
3 1

RE BS B R t dt
ν

∞

−∞

⎡ ⎤
⎢ ⎥⎣ ⎦−∫  ( ){ }max

3/21/4
SW / .F S B R t dt

∞

−∞

⎡ ⎤
⎢ ⎥⎣ ⎦∫  

We then consider non-dimensional unit and set ( ) ( )1/4 1/4ˆ ˆ/ / , /B R t dt R B dβ τ β τ= =  and obtain, 

SWL  ( ) { }
max

1/4 3/2
SW ˆ ˆ/ ( ) .F R B S dβ τ τ

∞

−∞
∫  

The integral in the above equation can be calculated yielding, { }3/2ˆ ˆ( ) 1.543S dτ τ
∞

−∞

=∫ .  Therefore, 

since, ( ) 2/32 2
max/ 3 1 2R B F ERν

−
⎡ ⎤= −⎣ ⎦ , we obtain  
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                 SWL  ( ) { }
max

1/4 3/2
SW ˆ ˆ/ ( )F R B S dβ τ τ

∞

−∞
∫   

 ( ) ( ) ( ) ( )
max

1/411/2 2/32 2 2
SW max2 2 1 / / 3 1 2 1.543F E R F ERν π ρ ν

− −⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦
 

                        ( ) max

1/3

5/6
SW2 3/2 4

4.06 .
1

E F
Rν ρ

−
⎛ ⎞
⎜ ⎟
⎜ ⎟−⎝ ⎠

                                                                        

(A2) 

To obtain the above expression for linear momentum, we have used the Padé approximation to 

represent the profile of SW. As reported in  [24], although the Padé approximation captures this 

profile fairly well, it does slightly deviate from the exact profile (Figure A1), which introduces 

some error in equation (A2).  

 

Figure A1. Comparison of time series of contact force profile between exact numerical solution 

(Numerical) and Padé approximation (Theory).  

In Figure A1, we have compared the exact solution (numerical) of time series of contact force 

profile with that given by the Padé approximation (theory). The Padé approximation 

underestimates the area enclosed by the profile, introducing an error in estimating the linear 

momentum. Numerically we have estimated this discrepancy to be about 7%. Hence, the RHS of 

equation (A2) is corrected, arriving at equation (4b,c). 
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Appendix B: Representation of the dimensionless parameter α  

 

Figure B1. Representation of the time-parameter Pt  when 0.Pt nt<  

Figure B1 shows the representation of the time-parameter Pt  when 0.Pt nt<  If the first granule 

does not eject, we can write, 

( ) ( ) ( )
0 0

0

1 2 1 2 0 2
00

P

P

t ntt
Applied SW

SW SW
t t

L L
A A L F t dt F t dt F L F t dt

F

⎡ ⎤ −
+ = ⇒ + = ⇒ =⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫ ∫              (B1) 

For a triangular shock profile, ( ) ( ) 1

1 0/F t t t η=  and ( ) ( ) ( ){ }2 0 0/ 1 .F t nt t n t⎡ ⎤= − −⎣ ⎦  Therefore, 

1 0 0 / 2,A t F=  and ( ) ( ) ( )22 2
2 0 0 0 01 2 1 .PA F n t nt t t n⎡ ⎤⎡ ⎤= − − − −⎡ ⎤⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

 Substituting in (B1),   

( )( ) ( ) ( )

( )

max

max

22 2 5/60
0 0 0

0

5/6
0 0 0 0

1 1 /
2 2 1

1 2 /

P
SW

P
SW

t n t nt t AF F
n t

t nt n t nt AF F

⎡ ⎤ ⎡ ⎤⎡ ⎤+ − − − =⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦−⎣ ⎦

⎡ ⎤⇒ = − − −⎣ ⎦

 

In this case, we must have ( )
max

5/6
0 0 01 2 / 0.SWn t nt AF F⎡ ⎤− − ≥⎣ ⎦  Since, 0t  is always positive, and 

with the restrictions imposed on input shock profile (equation (3) in the manuscript), n  should 

be greater than 2, therefore, 

max max

max max

5/6
1/6 1/6

0
0 0

2 2 ,SW SW
SW SW

AF F
nt AF AF

F F
α− −≥ = =                                             (B2) 
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which provides an expression for α , i.e. 
max 02 /SWF Fα = . This also signifies that for triangular 

input shock, if 1/6
0 02nt AF −> , then 

maxSWF would be always higher than 0F  and a train of SWs 

would form. For a general input shock profile, α  must accounts for the deviation of the input 

shock profile from the corresponding triangular one, as given in the manuscript.  

Input forces with slow rise and steep decay periods 

Though slow rise and steep decay finite-duration forces are not characterized as “shock loads” 

and are not easy to realize (even in a laboratory setting), we have examined these cases as well. 

As shown, the developed analytical tolls can be successfully used to qualitatively and 

quantitative estimate the peak value of the primary SW.  For slow rise and steep decay finite-

duration loads, the first granule (and possibly other granules, close to the application point of the 

input force) would be ejected. In that case, energy would be carried away and momentum would 

be added to the remaining chain. The resulting error that is introduced by this in the initial 

estimate can be calculated and corrected. However, we do not address this issue in the present 

paper.  The following numerical results should illustrate what could happen for such cases.  

Consider an input force profile such that ( )1 0/ ,F t t t=  and ( ) ( ) ( )2 0 01 ,F t nt t n t= − −⎡ ⎤⎣ ⎦  

in order to examine the effect of slow rise and steep decay input forces. For the same peak value, 

we keep the total pulse duration constant, i.e. fix , and vary the rise time. Four examples are 

shown in Figure B2a. In the inset of Figure B2b, the corresponding terminal velocity of the first 

granule is plotted. As is seen, the first granule attains a negative velocity for the input force 

whose rise time exceeds its decay time.  The magnitude of this negative velocity increases as the 

decay duration decreases. 

As illustrated by Figure B2, for slow rise and steep decay finite-duration loads (for 2n <

in Figure B2a), the first granule would be ejected (as shown in Figure B2b by the negative value 

of the granule’s terminal velocity), and hence energy would be carried away and momentum 

would be added to the remaining chain. The smaller the value of n  (smaller n  indicates slower 

rise and steeper decay input load), the higher is the ejection velocity of the first granule. 

0nt
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Figure B2. (a) Triangular input force profile with fixed total pulse duration but variable rise time; 

and (b) the first granule’s velocity profile; here ( )1stMin V  stands for the end condition of the 

first granule; negative velocity shows the granule will be ejected. 

  

(b) 

(a) 
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