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Solids are distinguished from fluids by their ability to resist shear. In equilibrium systems, the resistance to
shear is associated with the emergence of broken translational symmetry as exhibited by a non-uniform density
pattern that is persistent, which in turn results from minimizing the free energy. In this work, we focus on a class
of systems where this paradigm is challenged. We show that shear-driven jamming in dry granular materials
is a collective process controlled by the constraints of mechanical equilibrium. We argue that these constraints
can lead to a persistent pattern in a dual space that encodes the statistics of contact forces and the topology of
the contact network. The shear-jamming transition is marked by the appearance of this persistent pattern. We
investigate the structure and behavior of patterns both in real space and the dual space as the system evolves
through the rigidity transition for a range of packing fractions and in two different shear protocols. We show
that, in the protocol that creates homogeneous jammed states without shear bands, measures of shear jamming
do not depend on strain and packing fraction independently but obey a scaling form with a packing-fraction
dependent characteristic strain that goes to zero at the isotropic jamming point, φJ . We demonstrate that it
is possible to define a protocol-independent order parameter in this dual space, which provides a quantitative
measure of the rigidity of shear-jammed states.

I. INTRODUCTION

Solid packings of dry grains are amorphous structures that
are created through external driving at zero temperature. In
the last couple of decades, much progress has been made in
analyzing the problem of the glass transition [1–4], and the
nature of rigidity of disordered solids. In these systems, ei-
ther density or temperature changes induce a transition from
a fluid to an amorphous solid. The amorphous solid acquires
a shear-rigidity because of a persistent pattern in the positions
of the particles [5]: a pattern that is difficult to quantify [6]
but is known to exist. In spite of their structural similarities to
amorphous solids at finite temperatures, the question of what
imparts rigidity to granular solids poses additional challenges
because of the absence of any cohesive interactions between
the grains and because of the absence of thermal fluctuations.
In this paper, we address the question of rigidity of dry grains
by analyzing the persistence of patterns in both positions and
contact forces.

Jamming of frictionless soft grains, which has been exten-
sively studied over the last two decades [7, 8] occurs deep in
the glass phase and is characterized by the onset of mechan-
ical equilibrium. This phenomenon can be described within
the concept of isostaticity [8, 9] and the jamming transition
occurs at some protocol dependent density at which the struc-
ture becomes isostatic [10]. “Jamming” has become synony-
mous with this rigidity transition of frictionless grains. An
alternative picture of jamming was, however, proposed in the
late ’90’s [11], prompted by observations in non-Brownian
suspensions of colloidal particles. This scenario can be de-
scribed as shear-induced solidification: a fluid to solid transi-
tion where the solidity emerges solely as a result of applied
stresses. One expects that in such a transition there is an or-
ganization in the space of forces that drives or stabilizes the

positional patterns. Moreover, the driving mechanism for col-
lective organization of the grains has to be the constraints of
mechanical stability subject to the globally imposed stresses:
a scenario that is different from the density or temperature-
driven glass transition. A crucial feature that distinguishes the
shear-jamming process from the density-driven jamming pro-
cess is its inherently anisotropic character, and the presence of
a bath of “spectator” grains that do not bear any forces. The
shear-jammed (SJ) structure forms within this bath as more
and more grains become incorporated into the force-bearing
network in response to the externally imposed shear. In con-
trast, isotropic, density-driven jamming occurs in the absence
of a bath: except for a vanishingly small fraction in the ther-
modynamic limit, all grains are part of the force-bearing net-
work.

Analysis of recent experiments on shear-jamming in dry
grains [12–14] and discontinuous shear thickening in dense,
non-Brownian suspensions [15–18] have found remarkable
similarities between experimental observations and the the-
oretical picture of stress transmission in shear-jammed solids
that was presented in the 90’s. In this paper, we present a the-
oretical framework that quantifies the phenomenon of shear-
induced jamming. In particular, we construct an order pa-
rameter that distinguishes these solids from fluids. The theo-
retical framework is applied to experimental studies of shear
jamming in dry grains. Part of this work has been published
earlier in a concise form [19].

This paper is organized as follows. In section II, we de-
velop a description of granular solids in a space that is “re-
ciprocal” to position space, in a sense to be defined below. In
section III, we describe different experimental protocols and
present an algorithm for generating the reciprocal space rep-
resentation from a knowledge of contact forces and positions
of grains. In section IV, we propose an order parameter that
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can be identified with shear-jammed states, which indicates
that shear-jamming is associated with a broken-symmetry in
this reciprocal space. In this section, we also analyze experi-
mental data using the theoretical perspective developed in the
earlier sections, and in section V, we present our conclusions
and ideas for future work.

II. THEORETICAL FRAMEWORK

A collection of dry grains interacting via purely repulsive
contact interactions can be viewed in some respects as a sys-
tem of hard particles. Solidification of hard particles is en-
tropic in origin and requires the presence of thermal fluctua-
tions. The rigidity of these solids arises from an effective “co-
hesion” caused by entropic forces. In contrast to such Brown-
ian systems of hard particles, the lack of thermal fluctuations
in dry grains imply that there are no intrinsic mechanisms to
heal broken contacts and generate cohesive interactions. An
alternative mechanism that can lead to a solid-like response to
shearing is the collective organization of grains arising from
the constraints of mechanical equilibrium.

A dry granular packing has to satisfy four types of con-
straints that arise from the requirements of the mechanical
equilibrium at zero temperature. The constraints of force and
torque balance have to be satisfied for every grain. Since the
contacts are frictional, the Coulomb criterion of static equi-
librium has to be satisfied. This introduces an additional con-
straint, | ft | ≤ µ | fn|, where µ is the coefficient of friction and
ft(n) is the tangential (normal) component of the contact force.
The interaction between dry grains is purely repulsive, hence
the normal force has to be positive, which is an additional
inequality constraint. As discussed below, the equality con-
straint of force balance and the inequality constraint of pos-
itive normal forces can be incorporated by resorting to a ge-
ometric representation, dual to the real-space geometry. The
torque balance condition and the Coulomb inequality manifest
themselves by affecting the patterns in this dual space.

1. Mechanical equilibrium and height fields

The continuum analog of the force and the torque balance
conditions can be expressed in terms of the stress tensor σ̂:
~∇ · σ̂ = ~F , σ̂ = σ̂T . In a two dimensional packing with only
boundary loading (~F = 0), ~∇ · σ̂ = 0 can be enforced through
the introduction of a vector field of gauge potentials referred to
as height vectors,~h(~r) [20–24]: σ̂ = ~∇×~h. Here ~∇×≡ ε̂ ·~∇,
and ε̂ is the 2D Levi-Civita tensor; the “ · ” refers to matrix
multiplication [22]. Hence,

σ̂ = ~∇×~h (1)

= ε̂ ·~∇~h (2)

=

(
∂yhx ∂yhy
−∂xhx −∂xhy

)
. (3)

Since torque balance requires that the stress tensor is symmet-
ric, ~∇ ·~h = 0.

This two dimensional continuum description can be derived
from an equivalent discrete formulation at the grain level [20–
24]. There, the heights are uniquely defined on the dual space
of the contact network or the voids surrounding the grains.
A geometric representation which omits the real space geom-
etry, but retains the topology of the contact network, accu-
rately represents the structure in the space of height vectors.
The vectors representing the heights appear as vertices of a
network in which, starting from an arbitrary origin (gauge
freedom), force vectors are laid down to generate the edges
connecting these vertices. Since we enforce force balance for
each and every grain, and two touching grains share an equal
and opposite force (Newton’s third law), the heights form the
vertices of a tiling of the plane by polygons. This network of
polygons is equivalent to the Maxwell-Cremona tiling [25] or
force tiling [19, 26], where each polygonal face represents a
grain.
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FIG. 1: (Color online) Force tiles and {hi} of a typical experimental
SJ state (a) The real-space configuration of grains. (b) Height field
defined on the voids (red points) around a single grain. Starting from
an arbitrary origin, and going around the grain in a counterclockwise
direction, the height,~hν, is incremented by the contact force, ~fi, sepa-
rating two voids. The vectors ~fi form a closed polygon when adjacent
forces are arranged head-to-tail. The vertices of this polygon (force-
tile) are given by the values of the heights~hν. (c) The height vertices.
(d) The force tile network corresponding to the height vertices shown
in (c). ~Fx and ~Fy indicates the extent of the applied external stress.
The compressive direction (larger force) is chosen according to [12].
This figure has been reproduced from [19].

2. Structure of height space

Under periodic boundary condition, any 2D system can be
mapped to the surface of a torus [27]. The integral of σ̂ over
a topologically trivial (contractible) loop (Fig. 2, curve C)
vanishes identically, because ~∇ · σ̂ = 0. However, for non-
contractible loops (Fig. 2, curve A or B), which spans the sys-
tem, the integral is nonzero. These two integrals:
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FIG. 2: (Color online) Illustration of Invariants: Left: The physical
system, a 2-D granular solid of size L×L, is outlined by the black
box, also shown are its images under PBC. The lines A & B represent
the two distinct classes of non-contractible loops in the system and C
represents a trivial loop. Right: Representation of the system on the
surface of a torus. Loops A & B are non-contractible and correspond
to the same labeling as in the left panel. To change ~Fx(~Fy), a change
has to be made on the non-contractible loop B (A).

~Fx =
∫ Ly

0
dy
(

σ11(x,y)
σ12(x,y)

)
; ~Fy =

∫ Lx

0
dx
(

σ21(x,y)
σ22(x,y)

)
(4)

are topological invariants of the system. (Lx,Ly) are the size
of the system along the corresponding directions. Physically,(
~Fx,~Fy

)
amount to the total load along the two directions, and

are related to the force-moment tensor.

Σ̂ = ∑
〈i j〉

~ri j⊗~fi j =

(
Lx 0
0 Ly

)
×
(
~Fx · x̂ ~Fx · ŷ
~Fy · x̂ ~Fy · ŷ

)
(5)

Here, the sum defining the force-moment tensor is over all
contacts, ~ri j is the contact vector from the center of grain
i to the inter-particle contact between grains i and j, and
~fi j is the force associated with that particular contact. The
pressure, P, of the packing is given by (λ1 + λ2)/2, and the
anisotropy of the stresses is given by τ = |λ1−λ2|/2, where
λ1,2 are the eigenvalues of the stress tensor of the entire pack-
ing, σ̂global = Σ̂/N; N is the total number of grains. The stress
anisotropy of the global stress tensor is τ/P. Since ~∇×~h = σ̂,(
~Fx,~Fy

)
represent the net change of height across the sam-

ple [49]. Consequently, the force tiling in the height space is
confined within a parallelogram formed from

(
~Fx,~Fy

)
; only a

non-zero applied stress leads to a finite structure in the height
space. Since these two vectors are topological invariants of
the system, one can construct a statistical ensemble of all force
tiles confined within this parallelogram as the analog of a mi-
crocanonical ensemble in equilibrium statistical mechanics.
In this ensemble, energy is replaced by the vectors

(
~Fx,~Fy

)
.

The force network ensemble (FNE) approach to granular elas-
ticity [28, 29] is an example of such an ensemble, as is the
generalized Edwards ensemble [24, 30]. This description can
be generalized to a finite system. The shape of the confining
region is, however, no longer a parallelogram. An average par-

allelogram can be defined via the columns of the force-tensor
Σ̂, as shown in Fig. 1.

3. Positivity, Coulomb criterion, and convexity

Any force balanced configuration leads to a height pattern,
ρ(~h) = ∑i δ

(
~h−~hi

)
. If such a height pattern does not change

under small, continuous deformation of the boundary, we will
define such a structure to have persistent order in height space.
It is analogous to how one may define rigidity for an elas-
tic solid, where the rigidity measures the persistence of the
density field of the atoms of the material when the system is
strained. Since changes to the boundaries of the force tiling
is equivalent to changing the boundary load on the sample,
a granular assembly, created at a given

(
~Fx,~Fy

)
, will collec-

tively resist shear deformation, if it has persistent order. The
question that we ask is whether the condition of mechanical
equilibrium can lead to persistent order, and under what con-
ditions.

Since forces can be arbitrarily small, the heights are con-
tinuous variables. A set of heights confined within the par-
allelogram bounded by

(
~Fx,~Fy

)
represents a force-balanced

configuration. Thus, in the absence of any other constraints,
the heights should not show any correlation or broken sym-
metry. The torque balance condition, the positivity of the nor-
mal forces, and the Coulomb criterion, however, provide ad-
ditional constraints on the geometrical structure of the height
space.

The positivity of the normal forces guarantees that the
height field increases monotonically. Therefore, there is only
a single height origin and therefore, a single sheet of tiles. In
the presence of attractive and repulsive interactions the poly-
gons would be organized on multiple sheets since there would
be multiple points in the packing where the height would go
to zero.

For a granular solid composed of frictionless, grains of con-
vex shapes (circles or ellipses, for example) with only normal
forces between grains, a rotation of 90◦ converts all forces to
tangential. A convex polygon that exactly inscribes the grain
can be constructed by simply elongating the rotated force vec-
tors. This polygon is related to the force tile by a conformal
transformation. Hence, in the absence of frictional forces, all
force tiles are convex. This convexity constraint is equivalent
to the torque balance condition for frictionless grains, and of
course, the Coulomb condition is always satisfied.

It is possible to have non-convex polygons as force tiles
when frictional forces exist. Two consecutive forces around a
disk can either form a convex vertex (Fig. 3 A) or a concave
one depending on how frictional they are and the angular dis-
tance θ2−θ1 between the contacts. Decomposing each force
into a tangential and a normal part, the condition for convexity
can be easily obtained:

1+
f1t f2t

f1n f2n
+

(
f1t

f1n
− f2t

f2n

)
cot(θ2−θ1)≥ 0, (6)
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where the tangential force and the normal force obey the
Coulomb criterion for a given static friction coefficient µ:
f1t
f1n
, f2t

f2n
≤ µ. The angular distance between two contacts

θ2−θ1 is constrained by geometry. In a mono-dispersed pack-
ing of just-touching disks, for example, θ2 − θ1 cannot be
smaller than π/3. Using this as a lower bound, Eq. 6 gives
the range of values of tangential forces for which convexity is
possible for a given µ. A straightforward calculation based on
Eq. 6 shows that for any µ < 1/

√
3' 0.58, the convexity con-

dition is never violated. For µ= 0.7, which is the static friction
coefficient of the particles studied in the experiments [12, 31],
it is possible to have non-convex polygons when the two con-
secutive forces ~f1 and ~f2 are simultaneously fully mobilized
contacts (| ft |= µ fn), or are close to being fully mobilized. In
Fig. 3(C), we perform this analysis on a typical experimen-
tal shear-jammed state [12, 32] created at φ = 0.805 under a
pure-shear strain of 15%, and for grains with a friction co-
efficient of µ = 0.7. The rescaled tangential forces for all
pairs of consecutive contacts are represented by a scatter plot.
The convexity criterion given by Eq. (6) is represented by the
shaded region in Fig. 3(C). While a few contact pairs form
concave edges, they are rare occurrences and we deduce that,
statistically, in the shear jammed states, the force tiles are con-
vex for typical physical values of µ.
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FIG. 3: (Color online) Convexity criterion for force tiles: (A) A
typical case where two consecutive forces form a part of a convex
polygon. (B) A rare case where two consecutive forces form a part
of a concave polygon. Convexity is determined by the sign of ~f1×
~f2, which depends upon the angular separation of adjacent contacts
(θ2− θ1), and the magnitude of the tangential components of these
forces. (C) Convexity map for θ2− θ1 ≥ π/3 (Eq. 6) and µ = 0.7
(packing fraction φ= 0.805 and strain γ= 15%). Grey region denotes
convex and white concave. Experimental data from a typical SJ state
is also shown (points). This figure has been reproduced from [19].

The Coulomb criterion | ft | ≤ µ fn is the most difficult to
implement within the tiling representation [33]. The previ-
ous discussion indicates that these constraints can be effec-
tively captured as a convexity constraint on the force tiles of
stable packings since non-convex tiles occur only when the
tangential forces are close to the failure threshold. If uncon-
strained in height space, the ensemble of all possible point
patterns formed by the vertices are trivially expected to have a
liquid-like order or 〈ρ(~h)〉 = const. With the requirements of
convexity and the strict edge-matching constraints of tiling,
the vertices of a tile cannot come arbitrarily close to each

other. This requirement constrains the possible point patterns
formed by the vertices of the tiles to a much smaller subset of
configurations, hence giving rise to the possibility of broken
translational symmetry in height space or 〈ρ(~h)〉 6= const. The
constraints act as effective springs that tie the vertices to their
average positions. If these springs constrain the position of
every vertex in the tile to a region that is small compared to
the average force (length of a link), then we expect to see cor-
relations and broken translational invariance in height space.
The strengths of the effective springs are not predetermined
but emerge as a consequence of the local constraints and the
global constraints through ~Fx, ~Fy, or Σ̂.

Based on the above points, we argue that broken transla-
tional symmetry and persistent order emerges in height space
as the number of vertices is increased through the creation
of force-bearing contacts between grains as a set of grains is
stressed. In the remainder of this paper, we construct and
analyze height patterns of experimentally generated shear-
jammed states, and show that rigidity is concurrent with ap-
pearance of persistent patterns of heights and occurs at a crit-
ical value of the fraction of force-bearing grains [12]. The
appearance of the persistent pattern is also accompanied by a
decrease in the number of non-convex polygons in homoge-
neous shear-jammed states.

III. EXPERIMENTAL METHODS AND ANALYSIS OF
EXPERIMENTAL DATA

We apply the above-mentioned theoretical framework to
experimental systems that exhibit shear jamming, and explore
the jamming dynamics from dual space representations. For
this purpose, we examine two different sets of shear exper-
iments on two dimensional systems of photo-elastic parti-
cles. These experiments not only reliably demonstrate shear-
jamming behaviors according to force and stress analyses, as
presented elsewhere [12, 32], but also provide full data sets
of microscopic location and contact forces of each particle,
which can be readily used in the dual-space construction.

For protocol I the shear apparatus, Fig. 4 (a-b), acts to de-
form a rectangular region into a parallelogram (simple shear),
while preserving the total system area. The basic scenario
of the experimental approach has been presented in Ren et
al. [14]. For protocol II, Fig. 4 (d-e), the shear apparatus starts
from a square shape, then contracts along one dimension and
elongates along the other, while keeping the total area constant
(pure shear). The base of this apparatus is a smooth Plexiglas
plate that does not move, thus the shear is purely boundary-
driven. Many details of the experiments have been published
elsewhere [12–14, 34, 35]. For completeness, we provide ad-
ditional relevant details on the experiments and protocols in
Appendix I.

A. Experimental protocols

These strain-controlled experiments involve two different
types of experimental apparatus, which apply shear strain γ to
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the sample. The simple shear apparatus (protocol I) has a spe-
cial arrangement of slats on the bottom, as sketched in Fig. 4
(a-b), which shows an overhead schematic of the apparatus. In
this system, shear is applied at the walls, and also uniformly
through the base. This means that particles which are rattlers
or experience very weak forces from surround grains are not
left behind during the initial phases of shear. As a result, the
system exhibits locally coarse-grained shear strain that corre-
sponds to the global affine shear, with small, spatially homo-
geneous, fluctuations [13], as shown in Fig. 4(c) . Shear bands
or other macroscopic inhomogeneities do not develop in this
system.

An overhead schematic of the second shear apparatus (pro-
tocol II) is sketched in Fig. 4 (d-e). The boundaries of this
system are controlled so as to produce pure shear, consisting
of compression in one direction and dilation in the orthog-
onal direction. The particles rest on a base consisting of a
smooth Plexiglas sheet and are confined by the boundaries,
whose positions are controlled by a pair of stepper motors
(not shown). The upper boundary is fixed in the frame of
the base. The three other walls move as indicated in part (d).
That is, in order for the system to evolve from (c) to (d), the
three lower boundaries move in the indicated directions rela-
tive to the base and top wall. The side walls are maintained
in a rectangular geometry by guides. This apparatus allows a
deformation of the boundaries in a continuous range of rect-
angular geometries. However, for the experiments described
here, the area of the interior, which contains the particles, is
held fixed. Thus, the strains correspond to pure shear. In this
device, the strain is applied strictly at the boundaries, as is
typical of most granular strain devices. Consequently, there is
no control over the local strain, and the system exhibits local,
macroscopic strain inhomogeneity [36], as shown in Fig. 4(f).
In particular, during the course of a strain experiment, it tends
to develop a shear band.

For both types of devices, the initial state is prepared by
placing the particles within the boundaries of the container,
with the particles lying on the corresponding base. In general,
there are residual forces acting between the grains after the
placement of the particles. We remove these by gently tap-
ping or massaging the grains by a small amount. Thus, the
initial state is force-free for the experiments described here.
Necessarily, that means that they lie below what we call φJ ;
for larger φ, all static states are jammed at non-zero pressure.
In a typical experiment, the system is subject to small quasi-
static strain steps, up to some maximum shear strain. For
protocol I, the strain step is 0.27% and for protocol II, it is
0.3%. After each small step, the system is allowed to come
to mechanical equilibrium, after which we obtain images that
characterize the state of the system. We carry out different
types of shear experiments that include shear to some maxi-
mum strain, and cyclic shear, where the system is 1) sheared
from an initial state to a maximum shear strain, then returned
to its initial boundary configuration, and 2) then subject to re-
peats of this protocol.

The particles are illuminated from below by a circularly po-
larized uniform light source. They are also illuminated from
above by a low intensity UV light source. The systems are im-

(a)

(d)

(b)

(e)

Protocol II

Protocol I

(c)

(f)

FIG. 4: (Color online) Schematics of shear strain devices. The first
device is sketched in parts (a) and (b). Photoelastic particles rest on
a surface that consists of smooth powder-coated slats cut from trans-
parent Plexiglas. During an experiment, the walls and slats deform
at constant area, and the whole system undergoes simple shear, as
indicated by the arrows of part (b). (c) Incremental strain field (δεxx)
between γ = 13.5% and 13.77% from the first device shows small
homogeneous fluctuation. The second device is sketched in parts (d-
e). With this apparatus, we can independently control the spacing
between opposing walls to achieve arbitray strains. For the present
experiments, we only consider strains where the are of the enclosed
rectangle is constant, corresponding to pure shear strains.(f) Incre-
mental strain field (δεxx) between γ = 9.24% and 9.57%, from the
second device shows macroscopic strain inhomogeneity.

aged from above by a camera which obtains three different im-
ages of each state, following a given small strain step. One im-
age is acquired with a crossed circular polarizer in front of the
camera, a second image is acquired without that crossed po-
larizer, and a third is acquired with only the UV light source.
The first type of image gives the photoelastic response of the
system, the second gives the location and boundaries of the
particles, and the third shows the orientation of small bars that
have been drawn of each particle with UV sensitive ink to
track rotation.

Since protocol I creates homogeneous shear-jammed states
without shear bands, they are a much better candidate for ana-
lyzing the nature of shear-jamming and shear-jammed states.
Analysis of inhomogeneous states with shear bands such as
those created by protocol II are more difficult to characterize.
Therefore, in this paper, we have focused most of our analysis
on the states created by protocol I. However, we have com-
pared some features of the shear jamming transition from the
two protocols in section IV.C to demonstrate the difference be-
tween the patterns in height space in states with and without
shear bands.

B. Analysis Methods

1. Construction of Force Tiles

Topologically, the network of force tiles is the graph dual to
the real-space contact network (a graph with grains as nodes
and force-bearing contacts between grains as edges). This
duality is unique in 2D. Hence, given the topology of the
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real-space network (RSN) and the information about the min-
imal cycles of the RSN, the topology of the force tile network
(FTN) can be easily constructed in the form of an adjacency
matrix. The height points are then constructed from the topo-
logical information as well as the information about the forces
that act through the contacts. The difficulty in designing a nu-
merical algorithm to construct the topology of a dual graph is
associated with the construction of the minimum cycle basis
(MCB). We adapted an existing algorithm [37] for construct-
ing MCBs to generate the adjacency matrix required to con-
struct the FTNs. As discussed in section I.A, height vectors
are represented by the vertices of the FTN, whereas the edges
represent the forces acting through the contacts. The choice of
the height origin and, therefore, the choice of a particular ver-
tex as the origin of the FTN, is arbitrary. However, once this
is chosen, any force and torque balanced grain configuration
gives rise to a unique set of vertices. A metric (Euclidean) for
the FTN is defined by assigning a scalar weight (magnitude
of the force) and a direction (direction of the force through a
contact) to each edge in a FTN. The object that encodes all of
the information for constructing a FTN is, therefore, a vector-
weighted adjacency matrix. Using this adjacency matrix, the
FTN can be constructed iteratively. This iterative construction
process is analogous to constructing a lattice from the primi-
tive vectors. An important difference is that, in the case of a
two-dimensional lattice, there are only two primitive vectors,
whereas due to the disordered nature of the FTN, there are as
many primitive vectors as there are contacts, which necessi-
tates an iterative process. The entire construction process is
summarized below and in Fig. 5:

• Obtain RSN from microscopic information.

• Obtain the topology of the dual graph of the RSN. This
is also the topology of the FTN and is encoded in an
adjacency matrix with entries that are zero and unity.

• Replace the non-zero entries of the adjacency matrix by
two numbers that correspond to the components of the
force vector acting through that particular contact.

• Start from a trial configuration of the height space ver-
tices, and construct them iteratively using the adjacency
matrix with weights as described above. The itera-
tion ends when the final difference between two heights
(vertices of the FTN) is the same (within a small numer-
ical tolerance) as the vector weight of the entry in the
adjacency matrix corresponding to the edge connecting
these two vertices.

From an algorithmic point of view the first step, obtaining
the RSN, is the easiest. The contacts and force at the granu-
lar level are easily obtained from either simulation or exper-
imental data. Some amount of post-processing is required to
obtain the FTN for experimental data, since Newton’s third
law may not always be rigorously satisfied due to experimen-
tal limitations. However, this shortcoming can be accommo-
dated within the framework of the algorithm to construct FTN.
Since we already have the contact topology for the FTN, it
ensures force balance by default. All the forces acting on a

(a) (b) (c)

(f) (e) (d)

FIG. 5: (Color online) A schematic of the force tiling algorithm. (a)
A typical grain configuration. The colors are used to tag a grain
and the corresponding force tile, otherwise they have no physical
significance. (b) The real space contact network. (c) A portion of
the real space contact network. (d) The faces (a point inside every
face is marked by a red dot) of this portion of the real space contact
network as obtained from the MCB algorithm. (e) The dual graph
(blue dashed line) topology obtained from the MCB. (f) The force
tiling for this configuration. The color of the force tile matches the
color of the corresponding grain in (a).

grain are forced to form a closed polygon. Hence, we can en-
force Newton’s third law on a contact by taking the average
of ~fi j, and ~f ji. This allows us to construct a FTN, which is
force-balanced and where Newton’s third law is satisfied. The
forces constructed this way are accurate within the experimen-
tal errors. Data obtained from simulations would be cleaner
(margin of error much smaller), and would satisfy both force
balance and Newton’s third law. Hence, no post-processing
would be required to implement the scheme. In this paper,
we have analyzed only experimental data obtained from the
shearing experiments described in the previous section.

IV. RESULTS

A. Shear jamming transition

The mechanical properties of shear jammed materials are
different from those of an elastic solid. Since by design
(φ < φJ) the systems that we are studying have zero inter-
granular forces at zero shear stress, unlike an elastic solid, this
zero-stress state in not a well-defined reference state. These
zero-shear states cannot resist any mechanical perturbation
and behave like a fluid: these are the unjammed states [8].
As the external shear stress is increased, the granular mate-
rial transitions from being unjammed to a fragile solid to a
solid that can resist shear reversals [12]. This is quite unlike
an elastic solid, which deforms reversibly and ultimately un-
dergoes plastic failure at large enough shear stress: external
shear does not strengthen an elastic solid. The origin of this
strengthening in granular materials can be ultimately traced
back to the lack of cohesive forces, which leads to a differ-
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ential mechanical response of force chains in the dilational
and compressive directions. Our objective in this paper is to
understand the implication of these microscopic processes on
the collective behavior of grains. The primary question that
we are focusing on is what type of correlations develop dur-
ing the shear-jamming process that leads to the formation of
jammed states that can resist further shearing.

Rigidity of crystalline solids is associated with the emer-
gence of order and broken translational symmetry in the av-
eraged density field of the constituent particles. This broken
symmetry exists even in an amorphous solid: if one measures
the thermal average of the density field, it is uniform for a liq-
uid (〈ρ〉 = ρ0), but nonuniform (〈ρ〉 6= ρ0) for an amorphous
solid. The shear-jamming transition occurs at zero temper-
ature, and according to previous analysis [11, 12] the orga-
nization that leads to the emergence of rigidity is primarily
in the space of forces. As illustrated in Fig. 6, apart from
the global affine deformation, the positions of the grains re-
main virtually unchanged throughout the shear-jamming pro-
cess, and any measure of the density field can at most reveal
subtle changes.

The situation is remarkably different for FTNs (Fig. 7) at
different strain steps: there is a clear evolution of the both
the global shapes and the distribution of shapes of individ-
ual tiles. At the beginning of the shear protocol, FTNs are
not well defined since very few grains form a force carrying
network. As the shear strain is increased, FTNs emerge but
both their global shape and local structure changes from one
strain step to another. In this regime, the global shapes are
also more needle like (one-dimensional). As the shear strain
is increased further, the FTNs acquire a well-defined two di-
mensional structure, and deform uniformly as the strain is in-
creased, with only small changes in the local structures. The
question we address is whether the patterns in RSNs and FTNs
become persistent during the shear jamming protocols.

1. Characterizing the order in SJ states

As mentioned earlier, characterizing the “order” in any type
of amorphous solid is a non-trivial problem. One of the ideas
that has been applied extensively in glassy systems is that of
measuring the persistence of patterns through an overlap ma-
trix. In lattice models such as spin glasses, for example [38],
similarity between two different replicas, α and β at a given
temperature, is measured by the overlap matrix Qα,β:

Qα,β
i = 〈sα

i sβ

i 〉, α 6= β, (7)

where si
α is the ith spin of the replica α. The angular bracket

denotes thermal average. Each element of the overlap matrix
varies between 0 and 1. In the high temperature phase, the
average overlap for a system of N spins, Q̄ = 1

N ∑i Qα,β
i , is

zero, whereas in the spin-glass phase Q̄ is nonzero. One can
construct similar overlap matrices for continuum systems, and
this has been done in the context of molecular glasses [39, 40],
where one analyzes the overlap of coarse-grained density
fields corresponding to different free energy minima. The

overlap measure of order is similar to measuring autocorrela-
tion functions. The autocorrelation function is an overlap of
configurations at different times and thus explicitly measures
the persistence of patterns. A non-vanishing correlation in
the limit of infinite time is equivalent to a finite overlap [38].
the Edwards-Anderson order parameter in spin glasses is the
large-time limit of the spin autocorrelation function [41].

In this section we analyze whether an overlap matrix mea-
sure can be used to identify the SJ transition. We first define
coarse-grained density fields corresponding to the point pat-
tern of vertices in the FTNs and the position of grains in RSN.
An overlap matrix between different strain steps can then be
constructed from these density fields in a manner analogous
to glassy systems. In analyzing the overlap of FTNs, one of
the complications that we need to address is that in the shear
jamming experiments, the number of height vertices increases
with the shear strain and the shape and the area of the box
enclosing the height vertices changes. For RSNs, the box
only changes shape while the area and the number of points
(grains) remains fixed. We, therefore, need to supplement the
usual coarse graining prescription by constructing a grid that
distorts affinely with the box, and by normalizing the coarse-
grained density field appropriately. With these modifications,
the overlap matrix is defined as:

Qα,β = dα,β/
√

dα,αdβ,β, (8)

where dα,β = 1
N ∑

N
m=1 ρα

mρ
β
m, and ρα

m is the value of the coarse-
grained density field of the αth point pattern (corresponding
to the αth strain step) at the mth grid point.

Overlap as a measure of rigidity: If one point pattern can
be obtained from the other solely through a series of affine
transformations, the overlap as defined by Eq. 8 between
those two patterns should be unity. As two point patterns,
modulo an affine transformation, deviate away from each
other , the overlap also decreases towards the minimum value
of 0. For example, a linearly elastic deformation of a crys-
talline solid from the zero-shear reference state is a completely
affine process; the position of the atoms, which form the point
pattern, in one state can be obtained from the other through a
series of scaling, rotation and translation. Thus, the overlap
between two such states will be unity. On the other hand, if
a liquid is sheared, the molecular displacements are less re-
stricted, and it is unlikely that the point pattern of the sheared
state is related to the unsheared state through any affine trans-
formation. This analogy suggests that shear-rigidity can be re-
lated to the overlap between configurations at different shear
strains.

Associating shear rigidity with the properties of an overlap
matrix is particularly advantageous for the granular systems
that we are interested in, since we do not need to define a zero
stress reference state. We measure the overlap of two states
at any two strain steps, α and β, and obtain one matrix for
every experimental run: the zero strain step is not treated in
any special way.
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FIG. 6: (Color online) Grain Positions: The evolution of the grain positions in a shear jamming experiment at φ = 0.8163. Bidisperse grains
(dark orange: larger and light orange: smaller grains) were used to avoid crystallization. As the system is sheared the positions of the grains
remain virtually unchanged ( evinced by the overlap matrix of the real-space position in Fig. 8 ) apart from the global affine deformation,
characterized by the global strain marked on every snapshot.

2. Emergence of rigidity

We calculate the overlap of the coarse grained density fields
from RSNs and FTNs at different strains, γ. For all the anal-
ysis in this paper, we have used a 30×30 grid to measure the
coarse-grained density field. To accommodate the change in
the sizes of the point pattern, we scale all the point patterns
to a 1× 1 box, from which we calculate the density field by
counting the number of points in each of the boxes created by
the grid. The density field depends on the coarse-graining size
(grid size in this case) and, as the coarse-graining size is in-
creased (number of grid points is decreased), the density field
becomes more uniform across different grids. Consequently,
the overlap between two such pattern increases. However,
there is a range of coarse-graining sizes over which the pat-
tern is robust.

As seen from Fig. 8a, the overlap matrix constructed from
the RSNs is relatively structureless and the majority of the
elements are ∼ 1. There is an initial small range of strains
for which the overlap decays to zero quickly with incremen-
tal strain. Beyond γ ≈ 10%, however, the overlap between

any two strain steps is of order unity. The overlap matri-
ces vary from run to run but these broad features remain un-
changed, indicating that the RSN patterns are persistent over
the whole strain history, for the full range of φ values below φJ
for which shear-jamming is observed. The implication of this
result is that from the perspective of a coarse-grained density
field, the assembly of grains at these packing fractions is in
an amorphous “solid” state. However, these amorphous solids
cannot resist shear deformations and, therefore, are not rigid.
They acquire shear-rigidity only beyond a threshold of applied
shear. Remarkably, the overlap matrix obtained from FTNs
bears a signature of this rigidity transition.

The overlap matrix of the FTNs shown in Fig. 8b exhibits
a non-trivial pattern. The most remarkable feature of this pat-
tern is an increase in the range of strains, δγ = β−α, over
which the overlap remains significantly above zero. It is clear
from Fig. 8b that this range increases monotonically with
the initial strain α. The implication is that there is a clear
signature of the shear-jamming transition in FTNs: the per-
sistence of the height pattern. We can define an order pa-
rameter by thresholding the entries of the overlap matrix :
qα,β = 1 if Qα,β ≥ 0.5, and qα,β = 0 if Qα,β < 0.5. An “or-
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FIG. 7: (Color online) Force Tiling: The evolution of the shape of the force tiles in a shear jamming experiment at φ = 0.8163. For the sake
of clarity, we have not shown the evolution of the size of the force tiles, which increases with increasing shear strain (marked on the snapshot).
Each force tile is colored according to its asphericity (see appendix), κ2. In the unjammed state (a), the force tiling is very small (due to small
forces) and formless. In the fragile state (b,c,d) the force tiling are very anisotropic (as characterized by high asphericity of individual tiles) and
begins as a quasi one dimensional structure(b), which evolves towards a well defined two dimensional shape as the shear jamming approaches
(d). In the jammed states (e-i), the tiling has a well-defined shape which remain preserved even when a large amount of strain is applied. Also,
individual tiles become more isotropic.

der parameter” ε∗(γ) can then be defined as the range δγ over
which qα,β = 1. Although different from the traditional def-
inition of an order parameter, we call ε∗(γ) an order param-
eter for shear-jamming since it is zero in the fragile regime
and non-zero in the shear-jammed regime as seen from Fig. 9.
Moreover, ε∗(γ) offers a quantitative measure of the rigidity
of the SJ states: states that have a larger value of ε∗(γ) can
sustain larger shear strains. As we will discuss in the next sec-
tions, the behavior of ε∗(γ) is different for the two protocols.
For protocol II, which creates states with shear bands, ε∗(γ)
is non-monotonic indicating that the SJ states can become
weaker under shearing. Experiments show that the SJ states
created by protocol II can undergo failure through avalanches,
and this feature is captured by ε∗(γ). As we will also show in
the next section, ε∗(γ) exhibits a scaling behavior with pack-
ing fraction for the homogeneous SJ states created by protocol

I.

B. Role of the packing fraction

We observe shear jamming for a range of packing frac-
tions below φJ . In protocol I, we observe shear jamming
for φ ∈ [0.74,0.8247] and in protocol II, we observe shear
jamming for φ ∈ [0.78,0.825]. In the following paragraphs
we investigate the role of the packing fractions in shear jam-
ming transition by analyzing experimental data from proto-
col I. One of the main results of this analysis is the deduc-
tion of a scaling form for the non-rattler fraction and the or-
der parameter, which indicates that the structure of the shear-
jammed states is controlled by a scaling combination γ/γ(φ)
with γ(φ)→ 0 as φ→ φJ .
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FIG. 8: (Color online) The overlap matrix of the RSNs (left) and the
FTNs (right) for protocol I at φ = 0.8163. The black arrow marks the
onset of the shear jamming transition, as detected from the saturation
of fNR[12].

We have investigated the dependence of the SJ transition
on φ by comparing the stress anisotropy, τ/P, the non-rattler
fraction, fNR, the order parameter, ε∗, and the FTN overlap
matrices for five different packing fractions: 0.8269, 0.8163,
0.8036, 0.7863 and 0.7728. We show the strain dependence of
fNR(γ,φ) and ε∗(γ,φ) in Fig. 9 and of (τ/P)(γ,φ) in Fig. 10(b)
for all five packing fractions. The data shown for each pack-
ing fraction is averaged over five different runs. Furthermore,
we show the overlap matrix for φ1 = 0.8163 and φ2 = 0.8036
in Figs. 10(c-d). We choose these two values of φ because
all three regimes of shear jamming – unjammed, fragile and
jammed – are clearly captured in these packing fractions. For
larger packing fractions, the system very quickly transitions
into the jammed state, so the behavior of the system in the
fragile state is difficult to decipher. On the other hand, lower
packing fractions do not reach the shear jammed state within
the range of γ explored.

Figs. 10(b)-(d) show that the strain required to reach the
jammed state is different for different packing fractions. More
precisely, the strain required to reach the jammed state in-
creases as the packing fraction decreases. Based on the ex-
perimental observations, it has been postulated that the strain
required to reach the jammed state diverges at a packing frac-
tion φs [12, 14, 27]. The exact value of φs is not known.
However, experimental measurements estimate it to be around
0.74 for protocol I [13]. At this packing fraction, the system
does not jam even at the largest experimental strain (∼ 70%).
Simulations of frictionless disks investigating particle scale
reversibility find that there is a maximum strain that increases
with decreasing packing fraction, which demarcates regions
of point reversible and loop reversible dynamics [42]. The
similarity between this behavior of the maximal strain and the
strain required to reach shear jamming is intriguing and should
be explored further in simulations of frictional grains.

The upper limit of shear-jamming packing fractions is set
by φJ at which the strain required to create a jammed pack-
ing goes to zero. The FTN overlap matrices show this trend,
which can be made quantitative by analyzing the order param-
eter ε∗(γ,φ). A similar analysis can be performed for fNR. As
shown in Fig. 9(a) and (d), both fNR and ε∗ depend strongly
on the packing fraction. As the packing fraction increases to-
wards φJ , the system transitions to the shear jammed state at a

smaller strain. The strain dependence is particularly remark-
able for ε∗ with the transition becoming sharper as the packing
fraction is increased.

The above observation suggests that there is a packing frac-
tion dependent strain γ0(φ) characterizing the shear jamming
transition. Rescaling γ by γ0(φ) = (1− φ/φJ)

1.6 leads to a
good scaling collapse of ε∗(γ,φ) and of fNR(γ,φ) except in the
very small γ regime (Figs. 9 b,e). The insight that we gain
from this scaling analysis is that although the SJ transition is
seemingly controlled by two parameters, φ and γ, it is only the
scaling combination γ/γ0(φ) that is relevant. A scaling form
for fNR(γ,φ) offers a natural explanation for the observed in-
crease in Reynolds pressure with packing fraction [14].

Reynolds pressure is a consequence of the shear dila-
tancy of the frictional grains. When frictional grains are
sheared under constant pressure, the granular packing di-
lates. In contrast, in our experiments, the area of the gran-
ular packing is held constant which frustrates the dilation
of the packing leading to an increase in the pressure of the
granular packing. This pressure is observed to increase as
R(φ)γ2 [14], where the Reynolds coefficient, R(φ), diverges
as (1− φ/φJ)

−3.3±0.1. The pressure, therefore, has a scaling
form: P(φ,γ) ∼ (γ/γ

p
0(φ))

2 with γ
p
0(φ) ∼ (1− φ/φJ)

1.65±0.05.
The similarity between the observed scaling exponents of
γ0(φ) and γ

p
0(φ) is striking and suggests that the pressure in-

crease is a direct consequence of the increase in fNR and that
the divergence of R(φ) at φJ is related to the scaling of γ(φ).

The scaling form shown in Figs. 9 (b) and (e) fails to col-
lapse the data for fNR at low values of strain primarily be-
cause the the value of fNR at γ = 0 strongly depends on the
packing fraction as shown in Fig. 9(a). To account for this,
we have attempted a different scaling collapse by defining a
scaled variable ysc(γ) ≡ y(γ)−y(0)

ymax−y(0) . Setting fmax = 1, we find

fsc ∼ γ/γ1(φ), where γ1(φ) = (1− φ/φJ)
1.2 (Fig. 9c). ε∗ ex-

hibits a similar scaling law if εmax is defined by the saturation
values of the ε∗ (Fig. 9f). This form of scaling of fNR had ear-
lier been predicted by a phenomenological theory of the the
shear-jamming transition [43].

C. Protocol dependence of the SJ transition

We observed shear jamming in both protocol I and II. Even
though the basic phenomenology – saturation of fNR, perco-
lation of the strong force network at the jamming transition –
is the same in both experiments, the difference in the proto-
cols affect the macroscopic variables significantly. To recall,
in protocol I, which we have discussed so far, shear strain is
applied homogeneously across the sample. On the other hand,
in protocol II, shear strain is applied from the boundary and
that leads to strain inhomogeneity in the system. This strain
inhomogeneity leads to formation of shear bands, which af-
fect the stability of the jammed structure. In particular, these
jammed states can fail under shear whereas those created by
protocol I do not generally show macroscopic failure. In the
following paragraphs, we provide some comparisons of the
different measures of shear jamming in the two protocols at
φ = 0.8036 (φJ ≈ 0.84 for both protocols) in order to illustrate
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FIG. 9: (Color online) Dependence of fNR (a, b, c) and ε∗ (d, e, f) on strain for packing fractions: 0.8269 (gray,4), 0.8163 (blue, �), 0.8036
(red,©), 0.7863 (turqoise, ♦) and 0.7728 (yellowish-green,5) in protocol I. ε∗ measures the range of γ with 50% or more overlap as a function
of the strain γ itself. (a) and (d) shows variation of fNR and ε∗ with strain γ. (b) and (e) Scaling of fNR and ε∗ with γ; γ0 = (1−φ/φJ)

1.6. (c)
and (f) Scaling of fsc and εsc (see text for definitions) with γ; γ1 = (1−φ/φJ)

1.2.

the effects of shear banding and failure on the order parameter
and the statistics of the FTNs.

We applied simple shear in protocol I and pure shear in pro-
tocol II. The former does not preserve the compressive and the
extensile direction over the course of the experiment, while
the latter does. As a result, the FTNs change both shape and
orientation during the shearing process of protocol I. In con-
trast, they just change shape in protocol II. Since the system
is sheared from the boundary in protocol II, the forces can be
higher near one boundary compared to the other. This non-
uniformity of forces is captured by the FTNs. As shown in
Fig. 11, the force tiles at the bottom left corner of the FTN
are much larger than the rest of the tiling. The shapes of the
individual tiles are also quite different. While the polygonal
tiles generated by protocol I are more or less regular in shape,
those generated by II can be quite irregular. This observation
can be made more quantitative by measuring the distribution
of the asphericity (see Appendix for definition) of the poly-
gons (Fig. 12). The mean asphericity of the tiles in protocol II
is always higher than protocol I.

The larger dispersion in tile shapes and sizes in the FTNs
from protocol II indicates a broader distribution of contact
forces and grain-level stresses. We see this feature in the dis-
tribution of the magnitude of the contact forces. Even in the
SJ state, the distribution generated by protocol II has an expo-
nential tail (Fig. 13(c)), which is characteristic of a marginally
jammed state [8], whereas the distribution generated by pro-
tocol I becomes narrower and develops a well defined peak as
states become shear-jammed (Fig. 13(a-b))

These broad distributions suggest that the SJ states created
via protocol II are less rigid than those created by protocol I.
Comparison of the FTN overlap matrices from the two proto-
cols support this view. Fig. 14 (c-d) illustrate the differences
between the persistence of FTN patterns created by the two
different protocols. The FTNs generated by protocol II are
much less persistent, and the structure of the overlaps do not
really evolve with γ. The order parameter, ε∗ shown in Fig. 14
(e) provides a quantitative measure of the difference in rigid-
ity between SJ states created by these two protocols. In par-
ticular, ε∗ exhibits a non-monotonic behavior in protocol II
reflecting the shear-induced failure of jammed states created
by this protocol. This result shows that shear bands influence
the persistence of patterns in FTNs and that their effect can
be measured by the order parameter ε∗. The scaling of fNR
and ε∗ in protocol I, shown in Fig. 9, is also not observed for
protocol II.

1. Percolation of force chains and force tilings

The original analysis of shear jamming [12] was based on
the structure of the force network formed as a function of
applied strain. It is known from earlier studies that force
networks in jammed packings of dry grains can be sepa-
rated into a strong network and a complementary weak net-
work [44]. The shear-induced solidification framework [11]
was also based on characterization of the force network. Here,
we present a comparison of the force-network analysis with
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FIG. 10: (Color online) Shear jamming experiments with protocol I.
(a) and (b) shows the evolution of, respectively, the fNR (reproduced
from Fig. 9 for ease of comparison) and the stress anisotropy τ/P
as a function of strain γ, for five different packing fractions:0.8269
(gray), 0.8163 (blue, �), 0.8036 (red, ©), 0.7863 (turqoise) and
0.7728 (yellowish-green). The curves are arranged in the order of
increasing packing fraction from bottom to top. The solid line is the
average from five different runs at each packing fraction, whereas
the shaded area shows the standard deviation of the mean. The stress
anisotropy peaks at the jamming transition concomitant with the sat-
uration of the fNR. The strain at which this transition happens in-
creases with decreasing packing fraction. In the bottom panel, we
compare the force space overlap matrix for packing fractions 0.8163
(c) and 0.8036 (d) . The overlap matrices show that the onset of
shear rigidity (regions with high overlap) occurs at larger strains for
smaller packing fractions.
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FIG. 11: (Color online) Force tiling from a shear jammed configu-
ration for protocol I (a), and protocol II (b); the shaded tiles are the
non-convex polygons. Due to the inhomogeneity of applied strain,
the forces in protocol II are also inhomogeneous and are larger at one
boundary compared to the other. This is reflected in the trapezoidal
shape of the force tiling in protocol II, where the tiles are larger on
the right side compared to the left.
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FIG. 12: (Color online) Evolution of asphericity of tiles ( see Ap-
pendix ) during the shear jamming proces. The distribution of the
asphericity of the tiles at different shear strains (legend) during the
shear jamming transition with (a) protocol I; φ = 0.8163 (b) proto-
col I; φ = 0.8036, and (c) protocol II; φ = 0.8036. Few representa-
tive tiles are also shown. The asphericity peaks at 1 for all strains,
but with increasing strain, the peak strength decreases and the dis-
tribution becomes broader, indicating proliferation of isotropic tiles.
(d) Mean asphericity as a function of strain at two different packing
fractions (legend) in protocol I. (e) Mean asphericity as a function
of strain for two different protocols at φ = 0.8036. Protocol II has
higher mean asphericity compared to the protocol I.

0 2 4
10

0

10
1

10
2

f/<f>

P
(f

/<
f>

)

0 2 4
10

0

10
1

10
2

f/<f>

P
(f

/<
f>

)

0 2 4
10

0

10
1

10
2

f/<f>

P
(f

/<
f>

)

(a) (c)(b)

FIG. 13: (Color online) Force distributions at φ = 0.8036. (a) Fragile
and (b) jammed packings generated by protocol I. (c) jammed pack-
ing generated by protocol II. The shear strain increases from blue to
dark red. Dark red states are jammed states.

the force-tiling analysis of the shear-jamming process in pro-
tocol II. The tiling representation explicitly includes only non-
rattlers and it has only the information about the topology of
the fabric of granular contacts. The “spatial” information in
the tiling space represents the forces. In contrast, the percola-
tion analysis explicitly incorporates the real-space fabric [12]
and the percolation analysis is based on a thresholding of
forces.

To perform the percolation analysis, we first define the col-
lection of grains that have at least one contact force ~fi j where
fi j > 〈 fi j〉 [12]: a strong force carrier. The strong force carrier
grains form multiple clusters in the system with a distribution
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FIG. 14: (Color online) Comparison of protocols: (a) fNR in the
protocol II saturates at a lower strain compared to the protocol I. The
saturation value is smaller also. (b) The stress anisotropy peaks at a
lower strain and the peak value of the stress anisotropy is lower in
protocol II than the protocol I. The overlap matrix in protocol II (d)
is distinctively different than protocol I (c). Even though the overlap
matrix for protocol II reaches a overlap value of∼ 0.5 pretty quickly,
unlike protocol I it never attains really high (> 0.8) overlap, which
suggests lack of persistent order even in the jammed state. (e) ε∗ for
protocol I (red circle) and protocol II (green triangle) φ = 0.8036.

of sizes. In turn, we define the largest such cluster the strong
force cluster. Grains with contact forces fi j ≤ 〈 fi j〉 are part
of a complementary force network or weak force network. As
shown earlier [12, 44], the results of the percolation analysis
are robust as long as the threshold is chosen to be ≥ 0.8〈 fi j〉.

In Fig. 15, we show the size of the cluster as function of
strain in a typical strain cycle. Starting from an unjammed
state, as shown in Fig. 15, the strong force cluster under-
goes two sequential percolation transitions as a function of
the strain. Initially, the system is unjammed and the strong
force cluster does not percolate in either the compressive di-
rection or the extension direction, i.e., ξx < Lx and ξy < Ly.
The reason that an unjammed state with a a non-percolating
force network can exist in this system is because there are
contacts between the grains and the substrate, which allows
force and torque balance to be satisfied for a subset of grains.
At intermediate strain values, the strong force cluster perco-
lates in the compressive direction but not transverse to it, i.e.,
ξy = Ly and ξx < Lx. We call these states fragile [11, 12].
At higher strain values, the strong force cluster percolates in
both directions ξy = Ly and ξx = Lx and we call these states
shear-jammed.

The force tilings corresponding to these same strain steps
are shown in the bottom panel of Fig. 15, and the overlap
measure, ε∗ is shown in Fig. 14(e). The persistence of tiling
patterns, measured by the overlap function provides a direct
measure of the resistance to shear of the jammed state. If the
force network in a jammed state rearranges under shear, then
the overlap function is small. The magnitude of ε∗ measures
the range of shear strain over which the jammed state main-
tains its rigidity. The percolation analysis, on the other hand,
tells us whether a particular jammed state has a force network

FIG. 15: (Color online) Top: Plots of the cluster size to box dimen-
sion ratios (ξ/L) vs. strain for a shear jamming process via protocol
II at φ = 0.805. Pure shear strain (compression in the y-direction
and extension x while total area is fixed) is applied to a initially un-
jammed system. Red line corresponds to the y−size of the largest
contiguous cluster with contact force f > 〈 f 〉 in the system. Blue
line corresponds to the x−size of the largest contiguous cluster with
contact force f > favg in the system. Snapshots of clusters are shown
for γ = 0.01 (unjammed), γ = 0.066 (fragile) and γ = 0.15 (shear
jammed). Bottom: Force tilings for same set of configurations. The
force tilings exhibit changes in global shape and local structure.

that has percolated in one or two directions (in 2D). It is an ob-
servation that when the network has percolated in 2D, it resists
shear and is shear-jammed. However, the percolation measure
does not tell us how much shear this state can resist. This is
precisely what the overlap function does, as illustrated by the
non-monotonicity of ε∗ is shown in Fig. 14(e). To summarize,
the percolation analysis is a binary measure that does not pro-
vide information about how strong a shear-jammed state is,
i.e., how much shear it can resist. The overlap function and
ε∗ provides this information and, therefore, they are not only
complementary to the percolation analysis but they provide
additional useful information about the shear-jammed states.

D. Convexity of tiles and the rigidity of the jammed packing

The discussions in the previous two subsections demon-
strate (figures 10 and 14) that the overlap matrix convincingly
captures the rigidity of the shear jammed states and the lack
of the rigidity of the fragile states. We now inquire into the
origin of the rigidity in the shear jammed states.

At the end of section II, we hypothesized that the persis-
tence of patterns in FTNs has its origin in effective interac-
tions between height vertices created by the condition of con-
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vexity of tiles. Although we do not have a complete under-
standing of the nature of these interactions and the correlations
they generate, analysis of experiments show a strong correla-
tion between the persistence of the pattern and the statistics
of convex tiles. In Fig. 16 (a) and (b), we show the variation
of the anisotropic stress (τ) and the fraction of non-convex
polygons relative to the maximum (NNC), as a function of the
applied shear strain for protocol I. The evolution of these two
variables with strain are remarkably similar. As seen from
Figs. 16(a) and (b), the position of the peak in NNC(γ) coin-
cides with that of the peak in τ(γ). Remarkably, the position
of these peaks coincide with the value of γ at which the or-
der parameter ε∗ reaches its maximum value (Fig. 9). We can,
therefore, conclude that NNC starts decreasing with γ in the SJ
phase, where the order parameter ε∗ is non-zero. These ob-
servations, however, do not demonstrate a causal relationship
between the behavior of NNC and the development of the or-
der parameter. The shear-jamming process of protocol II does
not lead to a well-developed order parameter, and, therefore,
to a well-defined SJ state (Fig. 14). Consistent with our hy-
pothesis, we find that NNC does not decrease (Fig. 16(c)) with
increasing shear strain in protocol II.
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FIG. 16: (Color online) The number of non-convex polygons, nor-
malized by the maximum number reached during the strain history,
and τ as a function of shear strain for (a) protocol I at φ = 0.8163 (b)
protocol I at φ = 0.8036, and (c) protocol II at φ = 0.8036. In (a) and
(b), both τ and NNC peaks at the strain value at which ε∗ reaches its
maximum value.

V. DISCUSSION

Shear-jamming of frictional grains is phenomenologically
very different from the traditionally-studied jamming of fric-
tionless grains. Frictionless grains undergo a density-induced
jamming transition as the packing fraction is increased to a
characteristic value, φJ , which can depend on the protocol.
Frictional grains exhibit a much richer jamming phenomenol-
ogy. In these systems, imposed shear strain can induce a jam-
ming transition over a range of packing fractions below φJ .
The primary focus of our work has been to construct a rigor-
ous theoretical framework for describing these shear-jamming
transitions.

In this paper, we have applied the dual-space formalism
based on the FTN representation of granular assemblies in
mechanical equilibrium to characterize shear-jamming tran-
sitions observed under two different experimental protocols.
Our analysis clearly identifies signatures of the jamming tran-
sition through the properties of an overlap matrix and a re-

sulting scalar order parameter. The overlap matrix and the or-
der parameter are sensitive to the nature of the jammed states
created by different protocols. A particularly striking result
of our analysis is that the strength of the order is weaker
in shear-jammed states with shear bands as demonstrated in
Fig. 14(e)). Moreover, we find that for the homogeneous
states created by protocol I, the effect of the packing fraction
can be captured by rescaling the shear strain marking the on-
set of shear-jamming. These observations indicate that the
dual-space formalism is the natural representation for char-
acterizing shear jamming, which is difficult to detect in po-
sition space. The FTN representation is equally applicable
to density-driven jamming in both frictional and frictionless
grains. Hence, this representation can be the common thread
which unifies the study of frictionless and frictional jamming.

The origin of the emergence of “order” in the FTNs is
the set of constraints of local mechanical equilibrium for dry
grains. The necessary condition for persistent order is the ge-
ometrical constraint of convexity on the shape of force tiles
formed by connecting the heights corresponding to a single
grain. This geometrical constraint is a consequence of two
inequalities: positivity of the normal forces, and the static
equilibrium restriction on the range of the tangential forces.
Persistent order develops as more and more force bearing con-
tacts are introduced into a grain packing, which translates to
an increase in the number of height vertices. The process is
thus reminiscent of density-driven solidification, albeit in a
space that refers to forces and not positions of grains. We will
explore this analogy more carefully in the near future.

The FTN representation provides a description of elastic
and plastic behavior of assemblies of dry grains by referring
only to their stress state specified through ~Fx and ~Fy. This
stress-only description avoids any reference to the concepts of
strain and energy, which are difficult to define unambiguously
in assemblies of dry grains [11].

Our analysis has been restricted to 2D. The tiling picture
does not extend to 3D. An analog of the height fields does ex-
ist in 3D [20, 33], and a completely parallel structure can be
constructed through Delaunay triangulation of the grain net-
work in real-space [33]. It is, therefore, plausible that the gen-
eral concept of order in height space extends to 3D, and [33]
provides a mathematical framework for developing and test-
ing a theory of rigidity in 3D.
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Appendix

Appendix I: Experimental Methods

In both protocols, we tested dozens of packing densities,
and up to five runs at each density, within a range φS < φ < φJ ,
whereφJ ' 0.84 is the isotropic jamming point in 2D, and
φS ' 0.75 is the minimum density for shear jamming [12, 32].
This density range ensures that the system starts from a com-
pletely stress-free state, while making sure shear jamming will
develop with increasing strain. At the beginning of each ex-
periment, we prepared a disordered packing by manually re-
arranging the particles. We also gently tapped or pushed par-
ticles to remove all forces in the system in order to start the
experiment from a stress-free state.

All experiments described here used particles, e.g. disks,
made of photoelastic material to obtain contact forces between
particles. The use of photoelasticity to obtain inter-particle
forces was first described in Majmudar and Behringer [45],
in more detail in the Ph.D. theses by Majmudar [46] and
Ren [13], and elsewhere [12, 14, 36, 47, 48]. In order to
understand the basic principle of the force-finding procedure,
we note that if a particle is subject to a known set of contact
forces (which we imagine are roughly point forces), then the
stresses within the particle are known. For instance, for a fi-
nite number of point-like contact forces acting on a disk, the
stresses within the disk are given in terms of a closed form so-
lution that involve the vector contact forces. Circularly polar-
ized light of intensity Io and wavelength λ that first traverses
a disk of thickness T along a ray that is normal to the plane
of the disk and then a crossed circular polarizer, has an inten-
sity I = Io sin2[CT π(σ2−σ1)/λ]. Here C is the stress optic
coefficient of the photoelastic material and the σi are the pla-
nar principle stresses at each point in the disk. Determining
the interparticle contact forces involves solving a non-linear
inverse problem that seeks the contact forces which yield the
observed photoelastic response within the disk. This inverse
procedure is implemented on each disk independently, where
the algorithm expressly incorporates force and torque balance
on each particle.

Protocol I provides simple shear to collections of photoe-
lastic disks. Fig.4 (a-b) shows a schematic of this shear pro-
tocol. The unique feature of this apparatus is its capability
to provide shear strain that is spatially very uniform, mod-
ulo small local fluctuations. The base of the cell consists of
50 parallel narrow slats, each with width 12.7mm. Each slat
is individually tied to, and co-moves with, the long opposing
walls of the cell. In its undeformed state, the apparatus has
interior dimensions of 30cm by 60cm. During shear, the slats
move uniformly and act to carry the particles sitting on them,
providing an affine shear background to the system. The par-
ticles are 8.0mm and 6.4mm in diameter, with 1:3.3 large-to-
small number ratio. Fig.4 (c) demonstrates that the resulting
particle movement is largely uniform with small and uncorre-
lated fluctuations, and that shear bands or other macroscopic

inhomogeneities are absent.
Protocol II is sketched in Fig. 4 (d-e). The boundaries of

this system are controlled so as to produce pure shear, con-
sisting of compression in one direction, and dilation in the
orthogonal direction. The particles rest on a base consisting
of a smooth Plexiglas sheet that is powder lubricated to re-
duce the friction between the particles and the Plexiglas sheet,
and are confined by the boundaries, whose positions are con-
trolled by a pair of stepper motors (not shown). The parti-
cles are bidisperse, 7.4mm and 8.6mm in diameter, with 1:1.5
large-to-small number ratio in this apparatus. Fig.4 (d-e) rep-
resents protocol (II), and the resulting particle movement of
this protocol (Fig.4 (f)) shows that the system exhibits local,
macroscopic strain inhomogeneity (shear banding). The up-
per boundary is fixed in the frame of the base. The three other
walls move as indicated in part (d). That is, in order for the
system to evolve from (c) to (d), the three lower boundaries
move in the indicated directions relative to the base and top
wall. The side walls are maintained in a rectangular geom-
etry by sliders. This apparatus allows a deformation of the
boundaries in a continuous range of rectangular geometries.
However, for the experiments described here, the area of the
interior, which contains the particles, is held fixed. Hence the
strains correspond to pure shear. In the device, the strain is
strictly applied at the boundaries, as is typical of most granu-
lar strain devices. Consequently, there is no control over the
local strain, and the system exhibits local, macroscopic strain
inhomogeneity [34], as shown in Fig. 4(f). In particular, dur-
ing the course of a strain experiment, a shear band tends to
develop.

In the first protocol, we carried out multiple runs for 11 dif-
ferent packing fractions from φ ' 0.69 to φ ' 0.82. In each
case, the initial state was prepared stress-free. In the second
protocol, we prepared the stress-free and homogeneous ini-
tial states in a total of 100 different packing fractions equally
spaced between φmin = 0.792 and φmax = 0.850. To eliminate
any potential correlations between run to run, the particle con-
figurations of each run were freshly prepared.

In both types of experiments, a horizontal layer of frictional
photo-elastic disks (particles) was quasi-statically sheared in
small equal strain increments. The incremental strain step is
0.27% in protocol (I) and 0.3% in protocol (II), chosen as the
minimum step that could be accurately and reliably achieved
with each apparatus. In each protocol, the system consisted of
roughly 1,000 particles that were bi-disperse in size to ensure
disordered packing. The particle size selection was slightly
different for the two protocols because of the apparatus di-
mensions and practical considerations.

After each increment, we took three photos using different
lighting conditions in order to record the position, orientation,
and photo-elastic force response of all particles. Also, for both
types of devices, the initial state was prepared by placing the
particles within the boundaries of the container, with the par-
ticles lying on the corresponding base. In general, there were
residual forces acting between the grains after the placement
of the particles. We removed these by gently tapping or mas-
saging the grains by a small amount. Thus, the initial state
was force-free for the experiments described here.
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The mechanical and statistical analysis of shear jamming
dynamics in these experiments have been reported elsewhere,
based on physical measures like the fraction of force-bearing
particles, pressure, fNR, the shear stress, and force statistics
[12, 32]. In the main sections of this paper, we have imported
the particle position and contact forces into our force tiling
algorithm and carried out our theoretical analysis.

Appendix II: Correspondence between FTN and RSN

The construction of the FTN helps us evaluate the partition
function of a granular system from the geometry of the force
tiles. So, we expect to obtain the principal stress eigenvalues
or, equivalently, the pressure and the stress anisotropy from
the geometry of the FTN. This correspondence becomes par-
ticularly simple in a 2D granular system with periodic bound-
ary condition (PBC), which we describe here. We claim that
this result is far more general and works quite well for exper-
imental systems where PBC is not employed.

As we have seen in II.A.2, the extensive stress tensor (also
called the force-moment tensor) of the 2D system under PBC
can be written as:

Σ̂ = L̂× F̂ (A.1)

=

(
Lx 0
0 Ly

)
×
(

Fxx Fxy
Fyx Fyy

)
(A.2)

=

(
LxFxx LxFxy
LyFyx LyFyy

)
, (A.3)

where the F̂ tensor codifies the global shape of the FTN. The
trace of the force-moment tensor Σ̂ is the “global pressure” P
or the isotropic component of the stress and it is an invariant of
the matrix. Hence, 2P = Σ1 +Σ2 = LxFxx +LyFyy, where Σ1,2

are the eigenvalues of Σ̂. On the other hand, the anisotropic
stress τ = |Σ1−Σ2|=

√
P2−LxLy(FxxFyy−FxyFyx).

We start the geometric interpretation of these results by
noting that (FxxFyy−FxyFyx) is the area of the parallelogram
bounded by ~Fx and ~Fy. Additionally, if we assume that Lx =
Ly = L, and Fxy = Fyx = 0, FTN and RSN becomes uncoupled
and then the geometric correspondence becomes more trans-
parent. Under this assumption, P = L(Fxx +Fyy)/2, which is
one quarter of the perimeter of the rectangle bounded by the
~Fx,y vectors. Similarly, τ = L ∗

√
((Perimeter/4)2−Area). In

the more general case, when FTN and RSN are coupled, the
perimeter of the FTN isn’t exactly equal to P, but provides a
good estimate as illustrated in Fig. 17(a) and (c). The area of

the tiles on the other hand provides an excellent estimate of
the determinant of the stress tensor Fig. 17(b) and (d). The
pressure, which is the average of the stress eigenvalues and
the determinant which is the product of the stress eigenvalues,
can be used to estimate the stress anisotropy τ, which mea-
sures the difference in the eigenvalues.

Shape Anisotropy The anisotropy of the stress state may
be approximated by measuring the shape anisotropy of the
tiles. This is achieved through calculating the gyration ten-
sor of the tiles. The gyration tensor is defined as Smn =

FIG. 17: (Color online) Scatter plot of (a) pressure, p, of individual
grains and the perimeter of the corresponding force tile and (b) de-
terminant of the stress tensor of individual grains, δ, and the area of
the corresponding force tile. (c) The “global” pressure (sum of the
pressures of all the grains), P, and the perimeter of the boundary of
the force tiling, and (d) determinant, ∆, of the force moment tensor
and the area of the force tiling as a function of strain. All variables in
(c) and (d) are scaled by their maximum value for easy comparison.
The data is from the experiment done at φ = 0.8163 using protocol I.

1
N ∑

N
i=1 r(i)m r(i)n . The shape anisotropy is then measured through

asphericity κ2 = 2 λ4
1+λ4

2

(λ2
1+λ2

2)
2 −1, where λ1 and λ2 are the eigen-

values of the two dimensional gyration tensor. For a regular
polygon, the relative shape anisotropy is zero, and for a line
it’s exactly one.
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