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Abstract 

We developed a ‘brute-force’ simulation method and conducted numerical ‘experiments’ on 

homogeneous nucleation in an isotropic system at large driving forces (not small supersaturations) using 

the stochastic Ginzburg-Landau approach.  Interactions in the system are described by the asymmetric 

(no external field), athermal (temperature-independent driving force), tangential (simple phase 

diagram) Hamiltonian, which has two independent ‘drivers’ of the phase transition: supersaturation and 

thermal noise.  We obtained the probability distribution function of the lifetime of the metastable state 

and analyzed its mean value as a function of the supersaturation, noise strength, and volume.  We also 

proved the nucleation theorem in the mean field approximation. The results allowed us to find the 

thermodynamic properties of the barrier state and conclude that at large driving forces the fluctuating 

volumes are not independent. 
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I. INTRODUCTION 

The problem of decomposition of a metastable state and emergence of a stable one is central not only 

to physics of materials but also to many branches of science overall.  Although the main reason for the 

decomposition—instability of the state—is the same in all situations, actual realization of it may be very 

different.  Actual transformation from the old phase (α) to the new phase (β) may proceed through a 

process of nucleation that is, overcoming of a barrier state in the form of a nucleus or nuclei—small 

regions of the phase α that acquire properties of the phase β. In many cases the nucleation occurs due 

to presence of foreign objects in the system or specific properties of the walls of a container that 
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encompasses it.  This type of nucleation is not a subject of the present publication.  We consider only 

the case of homogeneous nucleation when the decomposition is a completely intrinsic phenomenon 

that comes about as a result of the presence of thermal fluctuations in the system. A unique feature of 

the homogeneous nucleation process is that the thermodynamic work of creation of the nucleus comes 

directly from the energy of fluctuations while typically the fluctuations have an opposite effect of 

degrading the energy of the system available for productive work—the free energy concept. 

All theories of nucleation consist of three components in various proportions: thermodynamic 

properties of the barrier state, account of the fluctuations, and the rate (kinetics) mechanism. Cluster 

models of nucleation, like the Classical Nucleation Theory (CNT) [1-3], consider small aggregates of 

atoms or molecules as precursors of the new phase, which constantly form and decompose in the old 

phase due to fluctuations.  Many phase transformations in spatially extended systems have been 

successfully analyzed by continuum theories, like the density functional theory, which is a formulation of 

statistical physics with the free energy as a functional of the particle number-density distribution [4]. 

Another continuum theory often used to study nucleation is the diffuse interface theory, which takes 

into account the non-sharpness of the cluster interface allowing for a size-dependent surface tension 

[5]. In the Ginzburg-Landau (GL) approach [6-14] a system is considered as a continuous medium whose 

state is described by one or more continuous functions of space and time—order parameter fields—and 

properties—by an effective Hamiltonian [6, 7]. A great advantage of the GL approach to the nucleation 

theory is that it self-consistently incorporates all three components of a nucleation theory. 

An efficient way to analyze the nucleation problem in the GL framework is to use the concept of lifetime 

[8-14], which is similar to that of the first passage time. According to Penrose and Lebowitz [15], a 

metastable state is a state in the vicinity of which the representative point of the system spends long 

time before eventually leaving it with low probability of return.  Then the lifetime of a metastable state 

(the first passage time) can be defined as the time for the representative point to leave the basin of the 

state.  Thermodynamically, the latter means crossing of the barrier by forming a supercritical nucleus. 

Although the concept of lifetime avoids a multiple nuclei scenario, which is important in experimental 

situations, it is a potent idea in the theory of nucleation. Two methods are most often employed in 

order to compute the lifetime in continuous systems: the Ising- type discrete and the analytical 

continuous methods.  In the framework of the first one, the infinite-dimensional continuous system is 

broken into a large but finite set of cells and the spatially continuous function is replaced by the set of 

discrete variables.  Then, the lifetime is calculated for the multivariable finite system.  In the second one, 
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the real-valued partition function of the infinite-dimensional continuous system is extended from the 

domain of parameters where the phase is stable into the domain where the system is metastable or 

unstable and, therefore, the partition function becomes complex.  Then, the imaginary part of the latter 

is declared to be (proportional to) the lifetime [8, 10]. 

Langer [8] introduced the GL approach to the statistical nucleation theory by describing the phase space 

of the system with an order parameter taken at a certain number of fixed space points.  He obtained an 

equation for the probability current density in the phase space and found its stationary solution when 

the system is close to the phase-coexistence line.  The lifetime in Langer’s theory is estimated as the 

inverse of the probability current at the saddle point of the Hamiltonian.  Buttiker and Landauer [9] 

applied the Langer’s theory to a multi-saddle system.  Klein et al [10] extended the Langer’s theory on 

the systems close to the spinodal point that is, the point of a barrierless transition.  Binder [11] 

considered the relaxation process in a metastable state using the GL approach and erroneously 

concluded that “true nucleation is absent in Ginzburg-Landau model”. Patashinskii and Shumilo [12] 

developed a consistent field theory of decomposition of metastable states in conserved and non-

conserved systems and calculated the lifetimes of the states as functions of the ‘driving force’. As a state 

variable, they used radius of the nucleus, which is a well-defined quantity near the coexistence line but 

becomes ill-defined near the spinodal point. Significant amount of research has been done on the 

nucleation in one-spatial dimension (1D) systems [9, 13, 14, 16, 17]. Umantsev and Olson [11] studied 

thermodynamic properties of the critical nucleus; Maier and Stein [14] found complicated dependence 

of the lifetime on the system’s size; a group of French researchers [16, 17] found that the duration of 

reactive trajectories between metastable states of equal energy levels follows Gumbel distribution. 

Homogeneous nucleation is a strongly nonequilibrium nonlinear stochastic process. Many complex 

problems where fluctuations are important require numerical calculations as an effective tool of their 

solution. Monte Carlo (MC) and molecular dynamics (MD) methods were used for direct or “brute-force” 

simulations of the nucleation process on the inter-molecular level. Tomita and Miyashita [18] conducted 

MC simulations of the nucleation process in a metastable state of a two-dimensional Ising model and 

found that the mean lifetime was inversely proportional to the volume of the system for small driving 

forces but independent of the size for the large driving forces with the driving-force depended 

crossover.  Rahman et al [19] used MD simulations to study crystal nucleation in a Lennard-Jones system 

and found that the lifetime of the quenched state depends upon the interaction potential. Yasuoka and 

Matsumoto [20] carried out a large-scale MD simulation of vapor-to-liquid transition with water 
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molecules interacting via either Lennard-Jones or water-water potential. The nucleation rate, which is 

inversely proportional to the lifetime, was estimated based on the number of clusters exceeding a pre-

defined threshold size and plotted as a function of time. The critical nuclei happened to be in the range 

of 30-45 water molecules. “Brute-force” simulations are limited to situations in which the activation 

barrier is not very high. If the activation barrier is too high, the spontaneous crossing of the barrier 

becomes very unlikely and cannot be observed in the limited time accessible in simulation. In such 

cases, one has to resort to indirect and more complicated techniques such as umbrella sampling [21], 

transition-path sampling [22], or multi-level splitting [17]. 

Nucleation rate depends strongly on the free energy landscape of the system.  Much effort has been 

made to verify the Gibbsian concept of the free energy barrier and develop numerical methods for the 

free energy landscape evaluation. Frenkel et al [23] used MD simulation to determine the nucleation 

barrier in colloidal systems. Recently Wedekind et al. [24] introduced a new method based on the 

concept of mean first-passage time, which allowed them to evaluate the nucleation barrier in MD 

simulations of a Lennard-Jones gas. 

There are two types of numerical simulation approaches to the homogeneous nucleation, which use the 

GL method.  In the first one [25], one randomly incorporates the critical nuclei into the system using 

probabilities calculated from CNT and allows the system to evolve from that state on.  In the second one 

[26, 27], one incorporates the thermal noise in the form of a Langevin stochastic force into the time-

dependent GL equation, which turns the order-parameter evolution into a stochastic process.  Petschek 

and Metiu [26] used the Cahn-Hilliard-Langevin equation for concentration in a binary alloy, which 

undergoes spinodal decomposition and calculated the correlation functions and structure factor. Vilas 

and Mazenko [27] analyzed domain growth kinetics in the GL system and found that the numerical 

results are consistent with the theoretical ones.  Langevin dynamics is known to have strong connections 

with that of Monte Carlo method of treating stochastic processes. Meakin et al [28] compared the two 

methods for the spinodal decomposition and found them equivalent.  

However, it is important to stress out that, despite significant effort of the researchers, the statistical 

properties and functional dependency of the nucleation rate on the control parameters remain largely 

unexplored in the 3D field systems. In this publication we use the stochastic GL approach to conduct 

numerical simulations of the homogeneous nucleation in an isotropic 3D system at large (not small) 

values of the driving force and calculate the lifetime at various values of the driving force, thermal noise, 

and system volume.  In Sec. II we review basic results of the GL equilibrium theory as applied to the 
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thermodynamic and fluctuation properties related to nucleation. In Sec. III we discuss the stochastic 

dynamics in the GL framework, construct the direct simulation method, provide the simulation results, 

and analyze them theoretically. In Sec. IV we discuss the successes and failures of the method and 

consider real-material systems applications. 

II. EQUILIBRIUM SYSTEM 

1. Thermodynamic Theory and Free Energy Landscape 

In the Ginzburg-Landau (GL) approach, the states of the system are described by different distributions 

of an order parameter field η(x) (OP, scalar in the simplest case). Interactions in an isotropic system of 

volume V are described by the GL effective Hamiltonian [6-12]: 

   Hሼߟሽ ൌ  ݀ଷݔ ቂܪሺߟ; ሻߤ   ଵଶ ሻଶቃ ߟሺߢ    (1) 

which consists of the uniform contribution described by the Hamiltonian density H(η; μ) and the 

spatially inhomogeneous contribution proportional to the stiffness parameter κ. The latter depends on 

the radius of intermolecular interactions responsible for the α/β phase transitions. μ is the chemical 

potential difference between the α and β phases, which is a quantitative expression of the deviation 

from the α/β equilibrium (sometimes called the ‘driving force’). It is a matter of convenience to choose 

the reference ‘disordered’ state α such that {ηα=0, μα=0, H(ηα; μα)=0}. 

In addition to the Hamiltonian, the state is characterized by its volumetric content that is, excess order 

counted from the disordered state: 

ሽߟሼݒ     ؠ  ݀ଷߟ ݔሺxሻ  .     (2) 

If the fluctuations of the OP are not important (e.g. at low temperatures), the effective Hamiltonian, 

Eq.(1), is equal to the Helmholtz free energy excess counted from the free energy of the α-state Fα [6]: 

ሽߟሼܨ     െ ఈܨ ؠ ܨ∆ ൌ Hሼߟሽ    (3) 

In the functional space of the OP, equilibrium states of the system are found among the extremals ηE(x) 

of the functional H{η} that is, solutions of the Euler-Lagrange equation (ELE) [7, 8, 10, 12]: 
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ఋHఋఎ ؠ డுడఎ െ ଶηߢ ൌ 0     (4) 

which satisfy boundary conditions (BC) corresponding to the physical problem under consideration. In 

this publication we consider a system with a free boundary where the Newmann-type BC apply: 

ሻܠሺߟܖ     ൌ ෨ܸ   ݊   0 .     (5) 

If we apply to Eq.(1) formula ∇(η∇η)=η∇2η+(∇η)2, the Gaussian theorem, ELE, Eq.(4), and BC, Eq.(5), 

then the free energy excess, Eq.(3), can be expressed as follows [7]: Δܨா ൌ  ݀ଷݔ ቂܪሺߟா; ሻߤ  െ ଵଶ ாߟ డுడఎ ሺߟா; ሻቃ ߤ      (6) 

Three sets of equilibrium states are of particular importance here: uniform, kink-type, and localized non-

uniform. The OP of the former are solutions of the homogeneous equation: ߲ܪሺߟEሻ ⁄ߟ߲ ൌ 0. A system 

with a non-convex Hamiltonian density H(η) has more than one uniform equilibrium state. Stable or 

metastable uniform states are called phases; in the OP space they are separated by unstable uniform 

equilibrium states called transition states. The free energy excesses and volumetric contents of the 

uniform states are proportional to the occupied volume V. The OP of a kink-type state is a 1D solution of 

Eq.(4): ηE(x)=ηI(x); it represent an interface separating the coexisting phases. Its free energy excess is 

proportional to the surface area S separating the phase volumes. A localized non-uniform equilibrium 

state represents a barrier state between the metastable and stable phases: ηE(x)=ηB(x); it is called a 

critical nucleus. The free energy excess ΔFB and volumetric content vB of the critical nucleus are positive 

and finite that is, not proportional to V. Notice that the free energy excess of an equilibrium state ηE(x) 

is equal to the work that must be done on the homogeneous state η=ηα in order to form that state in an 

open system. 

In this publication we consider a typical first-order phase transitions between two phases, α and β, e.g., 

crystallization or polymorphism, caused not by temperature changes but by changes of pressure, 

concentration, or another thermodynamic quantity.  Traditionally, the first-order transitions have been 

studied in the framework of a symmetric 2-4-Landau Hamiltonian with a linear biasing proportional to 

the external field, e.g. electric or magnetic. However, in liquid-solid and polymorphic transitions the 

phase biasing is delivered by the chemical potential difference, not the external fields. In this case, an 
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efficient way to study the phenomena of phase coexistence, nucleation, growth, and coarsening in the 

GL framework, is to consider the Hamiltonian density in the form: 

;ߟሺܪ   ሻߤ ൌ ଵଶ ܹ߱ଶሺߟሻ   ሻ;     (7a)ߟሺߥ ߤ

  ߱ሺߟሻ ൌ ሺ1ߟ െ ሻߟሺߥ      ,ሻߟ ൌ ଶሺ3ߟ  െ  ሻ,   (7b)ߟ2

where W=const is the scale of the energy barrier and μ=const(T) is the chemical potential difference 

[29]. Such Hamiltonian is called asymmetric, athermal, and tangential [7]. It guarantees that the OP 

values of the disordered α (ηα=0) and ordered β (ηβ=1) phases are independent of μ. Notice that for the 

athermal Hamiltonian the excesses of the free and internal energies are equal. For convenience, we 

define dimensionless supersaturation as follows: 

     Δ ؠ െ ఓௐ         (8) 

Then Δ=0 is the α/β-phase equilibrium point; Δ=1 is the α-phase spinodal point; for 0<Δ<1 the α-phase 

is metastable with ΔFβ=−VWΔ/6; and the transition state between α and β phases has {ηt=(1−Δ)/2, 

ΔFt=VW(3+Δ)(1−Δ)3/96}. 

At Δ=0 there exists an equilibrium interface ηE(x)=ηI(x) between the α- and β-phases and the 1D ELE, 

Eq.(4), can be written as 

    ܴ ௗఎௗ௫ ൌ േߟூሺ1 െ  ூሻ      (9)ߟ

where ܴ ൌ ሺߢ ܹ⁄ ሻଵ ଶ⁄  is the GL radius of interactions. Eq.(9) has a two-branch hyperbolic-tangent 

solution [7] with the interfacial energy excess 

   
Fௌ ؠ σ ൌ  ቀௗఎௗ௫ ቁଶ ାஶିஶݔ݀ ൌ √ௐ .     (10) 

To find the structure and thermodynamic properties of the critical nucleus in the isotropic system 

described by the Hamiltonian, Eqs.(1, 7), one has to resolve the 3D spherically symmetric ELE, Eq.(4), 

with BC, Eq.(5). Solutions of this problem ηE(x)=ηB(r) for different values of the supersaturation are 

obtained in Appendix A and plotted in Figure 1. In the small supersaturation limit (Δ→0) it resembles 
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the 1D kink-type solution where all the changes localized at a well-defined boundary of the critical 

nucleus. In the large (not small) supersaturation limit (Δ→1) it is a bell-type curve localized at the center 

of the nucleus with the maximum height significantly smaller than ηβ=1 [10]. The radius of the critical 

nucleus can be estimated as RN=2R0/Δ in the limit Δ→0 and RC=R0/(1−Δ)½ in the limit Δ→1. 

In Figure 2, the free energy excess ΔFB and volumetric content vB of the critical nuclei are plotted as 

functions of the supersaturation Δ (see Appendix A). Notice sharp decrease of the excess energy and the 

slow rise of the excess order with the approach to the spinodal point. 

Nucleation theorem is a general relation between the free energy excess, size of the critical nucleus, and 

the chemical potential difference in the system [3, 30]. Eqs.(1-7) allow one to establish it in the mean 

field approximation (see Appendix C): பிಳபµ ൎ ݒ         (11) 

Derivation in Appendix C shows that the nucleation theorem, Eq.(11), is accurate as long as the thickness 

of the interface region is much smaller than the radius of the critical nucleus: 2R0«RN.  Hence, in the 

mean field approximation, the nucleation theorem is true only in the limit μ→0 (Δ→0). In the limit 

Δ→1, due to the diffuseness of the barrier state, Eq.(11) does not hold and the respective relation 

should be established directly from Eqs.(1-8), see Appendix A and Fig.2. 

2. Fluctuation Theory 

Presence of the thermal noise in the system causes fluctuations of the OP field η(x) and changes 

properties of the system.  In the Gibbs canonical ensemble, the statistical average of a fluctuating 

thermodynamic quantity ܳሼߟሽ is expressed as ۄܳۃ ؠ ଵ
Z

 ߚ  ሽ ݁ିఉHሼఎሽ   whereߟሼܳ ߟܦ ൌ 1/݇ܶ , kB is 

Boltzmann’s constant, T is the temperature of the ensemble, Z ؠ   ఉHሼఎሽ is the fluctuationି݁ ߟܦ

partition function of the system, and  ߟܦ ؠ ∏  אܠሻܠሺߟܦ  denotes the functional integration over all 

possible configurations of the OP field. The fluctuation Helmholtz free energy F and internal energy E 

are defined as follows:  ܨሼߟሽ െ ఈܨ ؠ F ൌ െβିଵ lnZ    (12) 
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ۄHۃ     ؠ E ൌ డሺఉFሻడఉ       (13) 

In Ref. [31] the low-temperature fluctuation-perturbation theory was developed and the fluctuation 

energies and volumetric content, Eq.(2), together with their variances, were calculated in the second-

order expansion in the small noise intensity β−1. The small parameter of expansion was dimensionless 

strength of noise: 

ߝ     ؠ ଵఉௐோబయ ൌ ்்ಷ ;       (14a) 

    ிܶ ؠ ோబಳ .       (14b) 

where TF is the GL fluctuation temperature scale. The leading terms of the expansions are the following: 

    E ൌ ଶఉோబయ ൌ ଵଶ  (15a)     , ܸܹߝ

ሺHሻݎܸܽ     ൌ Eబఉ ,      (15b) 

 F ൌ E ቈln ఉௐVቀଵି∆ା൫గమ൯మ/యቁଶ െ ଶଷ  ଶUమ ቀ1 െ ୲ୟ୬షభ UU ቁ,  (15c) 

ۄݒۃ    ൌ ଵగ ቀగቁଵ ଷൗ ଷି∆ଵି∆ ቀ1 െ ୲ୟ୬షభ UU ቁ Eబௐ    (15d) 

ሻݒሺݎܸܽ     ൌ ఉௐሺଵି∆ሻ     (15e) 

where ܷ ൌ ሺ6ߨଶሻଵ/ଷሺ1 െ ∆ሻିଵ/ଶ. Notice that Eqs.(15c, 15d) represent a ‘fluctuation theorem’—a 

relationship between the fluctuation free energy, volumetric content, and the driving force. 

III. NUMERICAL SIMULATIONS 

1. Stochastic Dynamics 
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In this publication, we analyze fluctuations in the system described by a non-conservative OP filed. 

Evolution of such system close to the state of its equilibrium is described by the stochastic time-

dependent Ginzburg-Landau equation (STDGLE): 

    
ௗఎௗ௧ ൌ െߛ ఋHఋఎ  ,ܠሺߦ  ሻ;      (16)ݐ

Here t is time, γ is the GL relaxation coefficient, and ξ is the Langevin random force, which mimics the 

internal noise. If the noise is thermal and ‘white’, it obeys the following correlation conditions: 

,ܠሺߦۃ      ۄሻݐ ൌ 0,     (17a) 

,ܠሺߦۃ    ,Ԣܠሺߦሻݐ ۄԢሻݐ ൌ ܠሺߜଵିߚߛ2 െ ݐሺߜԢሻܠ െ  Ԣሻ, (17b)ݐ

where the averaging is over the time sequence. As known [6-8], STDGLE, Eqs.(16, 17), are consistent 

with the thermal equilibrium in the canonical ensemble. 

In the framework of the direct (‘brute-force’) simulations method, Eqs.(16, 17) are discretized using the 

space-time grid with parameters Δx and Δt and solved numerically starting with the initial value of 

η(x)=ηα=0. For convenience the following scaling for the space, time, and energy are used: 

  
 ௫ோబ ՜ Vோబయ  ;ݔ  ՜ V ;   ௧ఛ ՜ HWோబయ  ;ݐ ՜ H ;   ߬ ؠ ଵఊௐ ;     (18) 

where τ is the GL time scale. Other details of the ‘brute-force’ method are described in Ref.[31] where 

its consistency with the fluctuation-perturbation theory, Eqs.(15), was verified and the optimal scaled 

grid parameters were found: Δx=2, Δt=0.5. 

In the next subsection are presented results of numerical simulations for the asymmetric, athermal, and 

tangential Hamiltonian, Eqs.(1, 7), with the dimensionless control parameters varied in the following 

ranges: supersaturation Δ=0.5÷0.95, noise strength ε=9×10−4÷9×10−2, and volume 

V=3.375×106÷6.4×107. As the system starts in the homogeneous α-state ηα=0, there is a relaxation 

process to reach the metastable state with fluctuations. The nucleation is considered to have taken 

place if at least one of the points in the system has η(xc)≥ηβ=1; this point is called center of the nucleus. 

The lifetime L of the metastable state is the simulation time from the start until the nucleation event; it 

must be much longer than the relaxation time: ܮ ب ߬ ൎ ሺ1 െ ∆ሻିଵ [7, 31]. This condition determines 
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the lifetime minimum in the numerical experiments. The lifetime maximum depends on the speed of the 

available computational facility: in the present work Lmax=8000. Thus, there are three sources of 

systematic error in the estimate of the lifetime: the finite relaxation time, the nucleation criterion, and 

the cutoff simulation time. For the statistical analysis of the lifetime, we ran one hundred trials of the 

simulations at the same conditions changing only values of the initial seed of the noise, averaged the 

lifetime and its moments over the trials, and calculated the mean value τL≡<L> and variance rL≡var(L). To 

find the probability density function of the lifetime f(L) we constructed its probability mass histogram 

with 26 bins between the maximum and minimum values. 

2. Results 

In Figure 3 are plotted typical time sequences of the fluctuating quantities v(t) and H(t) from the start till 

the nucleation event at two different sets of the control parameters. The equilibrium averages of these 

quantities are consistent with the perturbation-theory estimates, see Eqs.(15) and Ref. [31]. Clearly, the 

volumetric content v(t) provides a more detailed representation of the path of the system in the 

configuration space {η} than the Hamiltonian H(t).  First, relaxation of v(t) to its equilibrium level takes 

longer than that of H(t) because the former is linearly proportional to the OP fluctuation modes, see 

Eq.(2), while the latter is comprised of the contributions where the lowest order of the modes is 

quadratic, see Eqs.(1, 7). Second, in large systems the cycling effect—visiting by the representative point 

of the system of the same set of states constituting a cycle before exiting the metastable domain [32]—

is recognizable on the time sequence v(t) but not on H(t), see Fig. 3a. In both cases depicted in Fig. 3 the 

lifetimes of the α-phase are significantly larger than the relaxation times. Although one can easily 

identify on the time sequences v(t) and H(t) the nucleation moment—start of runaway from the vicinity 

of the α-phase, e.g. Fig. 3a—the thermodynamic properties of the system at that moment, namely the 

free energy barrier and the volumetric content of the critical nucleus, cannot be identified on these 

plots.  

In Figures 4-6 the 3D OP fields of the nucleated systems with the same parameters as in Figs.3 are 

depicted in different projections. Clearly, the nucleation event results in formation of a compact nucleus 

with diffuse boundaries. The nucleus is supercritical because η(xc)≥1. Figures 4 are XY-planes, which run 

through the centers of the nuclei. Differences in the nucleus sizes and fluctuation levels are clearly 

visible.  
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In Figure 5 are plotted the OP field distributions along the Z-axes, which run through the centers of the 

same nuclei as in Figs.4. For comparison, in Fig. 5a is plotted the radial field distribution of the critical 

nucleus at the same supersaturation, c.f. Fig. 1b. It shows that the first stage of the supercritical 

evolution at large driving forces is the nucleus growth by the size and amplitude. 

In Figure 6 is depicted the 2D orthographic projection of the level surface η(x)=0.3333 of the nucleus 

from Figs. 3a, 4a, 5a.  It is almost nearly spherical.  (Dependence of the sphericity of the nucleus on the 

control parameters was not analyzed in the present work.) 

In Figure 7 are plotted the numerically generated probability mass histograms of the lifetime at different 

values of the control parameters. Comparison of the histograms with the probability distribution 

functions of various distributions showed that the best fit was achieved by the lognormal distribution: 

   ݂ሺܮሻ ൌ ଵඨଶగ ୪୬ቆଵାೝಽഓಽమቇ ݁ି ౢమ  ಽටഓಽమశೝಽഓಽమమ ౢ൭భశೝಽഓಽమ൱
   (19) 

where τL and rL are respectively the mean value and variance of the lifetime L. 

 

In Figures 8 are plotted the logarithm of the mean lifetime τL as a function of the inverse noise intensity 

ε at different values of the supersaturation Δ.  The plots are nearly straight lines with the slopes and y-

intercepts dependent on the supersaturation: the slopes decrease and the y-intercepts increase with the 

increase of Δ. 

In Figure 9 are plotted the logarithm of the mean lifetime as a function of the logarithm of the volume of 

the system at different values of the supersaturation.  The slope of the linear fit depends on the 

supersaturation: it approaches (−1) as Δ→0.5 and (−½) as Δ→1. 

3. Theoretical Analysis 

An important conclusion that can be made from the numerical experiments is that the thermodynamic 

properties of a fluctuating system, namely the free energy excess and volumetric content of the 
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nucleation barrier, cannot be directly measured from the fluctuation plots. In order to see that, one can 

compare thermodynamic formulae, Eqs.(A21), with their fluctuation counterparts, Eqs.(15), for a typical 

system of (V=8×106, Δ=0.8, and ε=0.01) and notice that the thermodynamic quantities of the critical 

nucleus are even smaller than the dispersions of their fluctuation counterparts, let alone the quantities 

themselves. Hence, in order to find these quantities one has to develop indirect methods of observation. 

Many of the numerical observations can be clarified if we cast the mean lifetime into the functional 

dependence suggested by the nucleation theories: 

     ߬ ൌ ሺሻഀሺሻ ݁ிಳሺሻ ఌൗ
    (20) 

where the prefactor P and exponent α are functions of the supersaturation Δ. Taking the natural 

logarithm of this expression, we obtain: 

  ln ߬ ൌ ln ܲሺΔሻ െ ሺΔሻߙ ln ܸ  ΔܨሺΔሻିߝଵ   (21) 

Then the slope of ln(τL) as a function of (1/ε) for constant V and Δ should be equal to ΔFB and the slope 

of ln(τL) as a function of ln(V) for constant ε and Δ—to α. The slopes are tabulated in Table 1 and plotted 

in Figure 10. Comparison of the former with the free energy barrier ΔFB from Eq.(A21) produced a good 

match. Then, application of the nucleation theorem, Eq.(11), yields the volumetric content of the critical 

nucleus, which should be compared to direct observations of the OP field in the numerical experiments, 

see Fig. 5. We also found (see Table 1 and Fig. 10) that the volume exponent α and prefactor P vary with 

the supersaturation Δ: α≈1 as Δ→0.5 while α→½ as Δ→1. 

Table 1 Comparison between numerical observations and theoretical calculations  

Supersaturation 

Δ 

Noise strength 

ε 

Free energy barrier 

ΔFB 

Volume exponent 

α 

Prefactor 

P 

0.5 0.08÷0.09 3.0238 1.0688 2×10−6 

0.6 0.051÷0.06 2.484 0.9482 5×10−12 

0.7 0.0285÷0.031 1.5424 1.0074 1×10−13 

0.8 0.013÷0.015 0.6957 0.7849 7×10−16 

0.85 0.0075÷0.008 0.413 0.9354 1×10−14 
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0.9 0.0034÷0.004 0.2829 0.8741 2×10−27 

0.95 0.00087÷0.0009 0.0528 0.6466 4×10−19 

 

IV. DISCUSSION AND CONCLUSIONS 

In this publication, using the Ginzburg-Landau approach, we developed a direct (‘brute-force’) numerical 

simulation method for observation of a 3D homogeneous nucleation process—creation of a critical 

nucleus out of fluctuations. Formation of a nucleus belongs to the category of rare events that have 

dramatic consequences for the system. The main observational quantity is the lifetime of a metastable 

state—not the nucleation rate—that is, time for the system to form a critical (to be exact, supercritical) 

nucleus. We start with a homogeneous metastable state subjected to the internal thermal noise and 

observe evolution of the system governed by the stochastic time-dependent Ginzburg-Landau equation. 

The lifetime was statistically averaged over one hundred trials with different initial values of the seed for 

the random noise generator.  The mean lifetime was analyzed as a function of the control parameters: 

supersaturation Δ, noise strength ε, and volume of the system V. In this publication, we used the 

asymmetric (no external field), athermal (temperature-independent driving force), tangential (simple 

phase diagram) Hamiltonian, which has two independent ‘drivers’ of the phase transition: 

supersaturation and thermal noise. In the previous publication of the author [31], the method was 

verified by the fluctuation-perturbation theory for the metastable equilibrium states of the same 

Hamiltonian and the best parameters for the method were identified. 

Combination of the theory and numerical simulations helped us reveal many hidden features of the 

nucleation process. For instance, we found that the thermodynamic properties of the critical nucleus—

its size and energy—cannot be found through the direct measurements of the ‘brute-force’ method. The 

reason for that is that the fluctuation excess properties are proportional to the volume of the system 

while the respective thermodynamic ones are independent of that. Then, even for small (but not very 

small) systems, the former are significantly larger than the latter. In our observations, the 

thermodynamic excess properties happened to be even smaller than the dispersions of their respective 

fluctuation counterparts. It is impossible, so to speak, to unwrap the critical nucleus from the chaos of 

fluctuations. However, we found an indirect method to recover the free energy barrier for nucleation 

ΔFB from the fluctuation ‘experiments’ (c.f. [24]).  It consists of measuring the mean lifetime and plotting 

its logarithm as a function of (1/ε) at V=const for different values of the supersaturation Δ. Then, 
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according to Eq.(20), the slope of this plot is equal to the free energy barrier.  Inspection of the data in 

Table 1 shows that the ratio of the free energy barrier to the strength of noise is very high: 30÷70, 

hence, according to Eq.(20), the prefactor P is very small. 

Moreover, we found that the dependence of the mean lifetime on the volume of the system itself 

depends on the supersaturation: the lifetime is inversely proportional to the volume for Δ∼0.5 and 

inversely proportional to the square root of the volume for Δ→1. This can be explained by stating that 

at large driving forces fluctuations in the neighboring volumes of the system are not independent. The 

functional dependence, Eq.(20), also explains the lognormal distribution of the lifetime. Indeed, we just 

need to recall that a quantity is distributed lognormally if it can be represented as an exponential 

function with a normally distributed exponent and that the thermal noise is a normally distributed 

stochastic quantity. Comparison of the numerically generated order parameter distribution of the 

supercritical nucleus with that of the theoretical critical one, Fig. 5a, sheds light on the initial stage of 

the supercritical evolution of the system. It shows that the first stage of the supercritical evolution at the 

large driving force is growth of the nucleus by the size and amplitude. 

The ‘brute-force’ nucleation simulation method can be used only at large—more exactly, not small—

supersaturations. This may be explained by the functional dependence, Eqs.(20, A14) and Fig. 2.  Indeed, 

as the barrier becomes too high at Δ→0 the lifetime becomes exponentially large. Hence, at small 

supersaturations one has to use other methods of the nucleation simulation such as umbrella sampling 

[21], transition-path sampling [22], or multi-level splitting [17]. 

Experimentally, the large driving force of transformation can be achieved, for instance, by applying high 

pressure in isothermal crystallization of simple metals or other substances with large slopes of melting-

temperature-pressure curves (dTm/dP), e.g. alkali metals. Specifically, one needs to prepare the melt at 

temperature Tm(0)—melting point at P=0 (atmospheric pressure)—and apply hydrostatic pressure P>0. 

All liquids have spinodal pressures PS at which they become absolutely unstable to crystallization.  Then, 

the supersaturation is Δ~P/ PS and the noise strength is εm=Tm/TF. Other parameters for typical metals 

(the author did not find the data on the alkali metals) are given in Table 2. Inspection of the data shows 

that most of the metals are very “noisy” at their melting points. 

Table 2 Crystallization constants of metals 

Quantity  Tm  σ  R0 τ=(γW)−1 W=6σ/R0 κ=6σR0 γ TF=WR0
3/kB εm= 
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Units  10+3K J/m2 10-10m 10-14s 10+9J/m3 10-10J/m 10+3m3/Js 10+3K Tm/TF 

Aluminum 0.9335 0.115 2.5 6.08 2.76 1.73 5.96 3.12 0.299 

Copper 1.3580 0.280 1.65 5.00 10.2 2.77 1.96 3.31 0.410 

Nickel 1.7280 0.370 1.25 2.87 17.8 2.78 1.96 2.51 0.688 

Below we succinctly formulate the most important accomplishments and failures of the present 

research. 

Accomplishments: 

• We constructed a method capable of simulating the basic element of homogeneous nucleation. 

• The method was ‘calibrated’ by the perturbation theory. 

• The method allowed us to study the homogeneous nucleation process and initial stages of the 

supercritical evolution. 

• The method allowed us to study statistical properties of the lifetime and dependence of the 

lifetime on the control parameters: supersaturation, noise strength, and volume of the system. 

• Although the thermodynamic properties of the nucleus cannot be obtained directly from the 

fluctuation properties of the system—the former is much smaller than the latter, we found an 

indirect method to extract these properties from the data on the lifetime. 

• We also proved the nucleation theorem in the field approximation. 

Failures: 

• Calibration of the method was not perfect: the energy of the metastable phase did not follow its 

theoretical trend as a function of the supersaturation.  

• The method cannot be used for small supersaturations. 
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APPENDIX A: Thermodynamic Properties of the Barrier State 

To find the thermodynamic properties of the barrier state in the large isotropic system with free 

boundaries we need to solve the 3D spherically symmetric ELE, Eq.(4), with the Newmann-type BC, 

Eq.(5) for ηB(r), where r is the radial distance from the center. In a system described by the tangential 

Hamiltonian, Eqs.(1, 7), they take the form: 

ߢ   ቀ ௗమௗమ  ଶ ௗௗቁ ߟ  ߟሺߟ2ܹ െ ௧ሻሺ1ߟ െ ሻߟ ൌ 0  (A1) 

ߟ       ՜ 0,   ௗఎಳௗ ՜ ݎ   ݎ݂  0 ՜ ∞.   (A2) 

Eqs.(A1, A2) should be supplemented with the conditions at the center: 

     
ௗఎಳௗ ൌ ݎ ݐܽ  0 ൌ 0    (A3) 

Then, the volumetric content, Eq.(2), and free energy excess, Eq.(6), of the barrier state can be 

expressed as follows: ݒሺ∆ሻ ൌ ߨ4  ஶݎ݀ ଶݎ ሻݎሺߟ ൌ  ሻ   (A4)ߟଵሺܫߨ4

Δܨሺ∆ሻ ൌ ߨ4  ቄܪሺߟ; ∆ሻ െ ଵଶ ߟ డுడఎ ሺߟ; ∆ሻቅ ݎଶ ݀ݎஶ ൌସగଷ ܹ ቂሺ1  ሻߟଷሺܫ௧ሻߟ െ ଷଶ  ሻቃ     (A5)ߟସሺܫ

Here and below the moments are defined as: 

ሺ݂ሻܫ     ؠ  ݂ሺݎሻ ݎଶ ݀ݎஶ     (A6) 

Eqs.(A1-6) can be simplified using the scaling of Eq.(18): 

  
ோబ ՜ ூோబయ   ;ݎ ՜ ሻݎሺߟ    ;ܫ ՜ ሻ;    ுሺఎሻௐݎሺߟ ՜  ሻ  (A7)ߟሺܪ

1. Small Supersaturation Limit 
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In order to find an analytical solution of Eq.(A1) for 

ا∆       1     (A8) 

we notice that in this case, everywhere except for a small vicinity of the center, it is resolved by the kink-

type 1D solution of  ELE, Eq.(9) [10, 33]: 

ሻݎሺߟ    ؆ ݎூሺߟ െ ܴேሻ,     ݎ   ሺ1ሻ;    (A9)~ݎ

where the constant, which may be called radius of the critical nucleus is: 

     ܴே ൌ ଶ∆       (A10) 

To verify Eq.(A9), one needs to use the property ݀ߥሺߟሻ ⁄ߟ݀ ൌ 6߱ሺߟሻ, see Eq.(7). In the vicinity of the 

center: 

ሻݎሺߟ   ؆ ሺ0ሻߟ  ଵ డுడఎ ሺߟሺ0ሻ, ∆ሻݎଶ,    0 ൏ ݎ ൏  ;  (A11)ݎ

Moreover, matching the solutions, Eq.(A9) and Eq.(A11), we obtain that 

ሺ0ሻߟ   ؆ ூሺെܴேሻߟ ൌ 1 െ ூሺܴேሻ~1ߟ െ ݁ିோಿ    (A12) 

Notice from Eqs.(A10, A12) that in the limit Δ→0 the coefficient in front of r2 in Eq.(A11) is exponentially 

small. 

To calculate the free energy barrier, Eq.(A5), we notice that the contribution of the domain 0<r<r0, 

Eq.(A11), is negligible due to its small size. The domain r0<r<∞ we divide into two subdomains: 

r0<r<RN−r0 and RN−r0<r<∞.  Then the free energy excess due to the barrier may be written as follows Δܨ ൌସగଷ ቂሺ1  ଷߟ௧ሻߟ ሺ0ሻ െ ଷଶ ସߟ ሺ0ሻቃ  ோಿݎ݀ ଶݎ  ேଶܴߨ4  ሺௗఎಳௗ ሻଶ  ݀ݎାஶିஶ  

       (A13) 
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where the integration limits in the first integral were changed because RN»r0 and in the second were 

spread to ±∞ due to Eqs.(A11, A12). Then, using properties of the 1D kink-type solution, Eq.(10), we 

obtain the relationships for the free energy excess: Δܨ ൌ ேଶܴߨ4 ଵ െ ସగଷ ܴேଷ ∆ ൌ ଶగோమಿଽ ൌ ଼గଽమ   (A14) 

and volumetric content of the barrier state:  

ݒ     ൌ ସగଷ ܴேଷ ൌ ଷଶగଷ∆య.      (A15) 

They agree with the respective expressions of CNT in the scaled form. The unbounded growth of the 

free energy barrier in the limit of the vanishing driving force (Δ→0) is due to its growing size, Eq.(A10), 

and flatness, Eq.(A9, A11, A12). 

2. Large Supersaturation Limit 

The large supersaturation (the so-called scaling or Cahn-Hilliard [34]) limit of nucleation takes place 

when the system approaches the α-spinodal point that is: 

      Δ ՜ 1ି     (A16) 

In this case the OP of the transition state 

௧ߟ       ՜ 0ା     (A17) 

provides the relevant scale for the OP spatial distributions, see Eq.(A1). For instance, the scaled 

correlation radius diverges: 

     ܴ ൌ ଵඥଶఎ ൌ ଵ√ଵି∆ ՜ ∞.    (A18) 

The variables in Eqs.(A1-6) can be rescaled further as follows: 

ݎ  ൌ ఘඥఎ ; ሻݎሺߟ  ൌ ሻߟሺܫ  ;ሻߩ௧ ܻሺߟ ൌ ௧ିଷߟ ଶ⁄ Ιሺܻሻ;   (A19) 
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Noticing that in this regime ηt<ηB«1 we obtain from Eq.(A1) the following parameterless equation for 

the scaled barrier state Υ(ρ): 

   ቀ ௗమௗఘమ  ଶఘ ௗௗఘቁ ܻ  2ܻሺܻ െ 1ሻ ൌ 0    (A20) 

with the boundary conditions that follow from Eqs.(A2, A3). Asymptotically, ܻ~ ݁ିఘ ோ⁄ ⁄ߩ  where RC=2−½. 

Relations for the scaled moments of the barrier state are known: Ι1(Υ)=Ι2(Υ)=½Ι3(Υ) (see [35] or 

Appendix B). Then, using Eqs.(A4, A5), we obtain expressions for the free energy excess: 

    Δܨ ൌ ଶగ√ଶ భሺሻଷ ሺ1 െ ∆ሻଷ ଶ⁄ ՜ 0   (A21) 

and volumetric content of the barrier state: ݒ ൌ ସగభሺሻሺଵି∆ሻభ మ⁄ ՜ ∞     (A22) 

3. Intermediate Supersaturations 

To find the thermodynamic properties of the barrier state for the medium values of the supersaturation, 

ELE, Eq.(A1) with the BC, Eqe.(A2, A3) were scaled as in Eqs.(A7) and solved numerically using the 

shooting method.  Specifically, for given Δ, first, the value of ηB(0) was set equal to (1+ηc)/2 where H(ηc, 

Δ)=0 and 0<ηc<1.  Second, ηB(r0) was calculated using Eq.(A12) for r0=0.005.  Third, using this value as 

the initial condition, Eq.(A1) was integrated in the domain r0<r≤rf, where rf>max(RN,RC), using Runge-

Kutta method with adaptive step-size control.  Fourth, ηB(rf) was verified against the boundary 

conditions, Eq.(A2), the value of ηB(0) was adjusted accordingly, and the calculations were repeated 

from step two; the iterations of ηB(0) were repeated twenty four times. Fifth, the integration domain 

boundary rf was increased by 10% and, provided the change was not significant, the trajectory ηB(r) was 

recorded.  Using the previously recorded trajectory of ηB(r) the moments, Eq.(A6) were calculated.  

Same procedure was used to solve the scaled Eq.(A20) in the large-supersaturation regime; the latter 

yielded Υ(0)= 4.192, Υ(RC)=2.585, and Ι1(Υ)=3.784, which is in accord with [35]. In Figures 1 and 2, the 

black curves represent numerically calculated distributions ηB(r) and functions ΔFB(Δ), vB(Δ). 
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APPENDIX B: Integral Relations 

First, we present the ELE, Eq.(A20), and BC, Eqs.(A2, A3), in the form [35]: 

   
ଵఘ ௗమௗఘమ ሺܻߩሻ  2ܻሺܻ െ 1ሻ ൌ 0    (B1) 

   
ௗௗఘ ሺ0ሻ ൌ 0,   ௗௗఘ ሺ∞ሻ ՜ 0, ܻሺ∞ሻ ՜ 0   (B2) 

Then, multiplying Eq.(B1) by ρ2, integrating from 0 to ∞ using the rules of integration by parts and BC, 

Eq.(B2), and using Eq.(A6), we obtain the relation: 

     Ιଶሺܻሻ ൌ Ιଵሺܻሻ     (B3) 

Next, multiplying Eq.(B1) by ρ2Υ and following the same procedure as before, we obtain the relation: 

   ቀௗௗఘቁଶ ஶߩ݀ ଶߩ  ؠ Jሺܻሻ ൌ 2ሾΙଷሺܻሻ െ Ιଶሺܻሻሿ   (B4) 

Furthermore, multiplying Eq.(B1) by ρ3dΥ/dρ and following the same procedure as before, we obtain: 

    Jሺܻሻ ൌ 2ሾ2Ιଷሺܻሻ െ 3Ιଶሺܻሻሿ    (B5) 

Finally, simultaneous solution of Eqs.(B4, B5) yields: 

     Jሺܻሻ ൌ Ιଷሺܻሻ     (B6) 

     Ιଷሺܻሻ ൌ 2Ιଶሺܻሻ     (B7) 

 

APPENDIX C: Nucleation Theorem 

To prove the nucleation theorem we differentiate Eq.(6) with respect to μ and obtain: பிಶபµ ൌ  ݀ଷݔ ቂడுడఓ  ଵଶ ቀడఎಶడఓ డுడఎ െ ாߟ డఎಶడఓ డమுడఎమ െ ாߟ డమுడఎడఓቁቃ   (C1) 
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For a kink-type state described by Eqs.(9, A9), all terms in the parenthesis of the integrand vanish 

everywhere except narrow transition region of thickness 2R0. For the first term of the integrand, we find 

from Eqs.(7) that డுడఓ ൎ  (C2)      ߟ

Comparing Eqs.(C1, C2) with Eq.(2) we find the nucleation theorem, Eq.(11). Eqs.(C1, C2) show that the 

nucleation theorem is due to the general properties of the Hamiltonian, Eq.(1), not due to the specific 

form of Eqs.(7). 
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List of Figure Captions 

Figure 1. Numerically calculated radial distributions of the OP field of the critical nuclei ηB(r) for (a)—

small (Δ=0.12) and (b)—large (Δ=0.95) supersaturations (see Appendix A). 

Figure 2. (Color online) Free energy excess ΔFB and volumetric content vB of the barrier state as 

functions of the supersaturation Δ, see Appendix A.  Black solid lines correspond to the intermediate 

supersaturations computed numerically; purple dash—small supersaturation limit, Eqs.(A14, A15), blue 

dash—large supersaturation limit, Eqs.(A21, A22). 

Figure 3 (Color online) Time sequences of v(t) and H(t) of the system with (a) Δ=0.95, ε=0.00087, 

V=8×106 and (b) Δ=0.7, ε=0.029, V=3.375×106. Arrows show the relaxation processes and the nucleation 

moments. 

Figure 4 (Color online) OP distributions in XY-planes through the centers of the nuclei: (a) Δ=0.95, 

ε=0.00087, V=8×106 and (b) Δ=0.7, ε=0.029, V=3.375×106. 

Figure 5 OP distributions on the Z-coordinates through the centers of the nuclei: (a) Δ=0.95, ε=0.00087, 

V=8×106 and (b) Δ=0.7, ε=0.029, V=3.375×106.  Smooth curve in (a) represents the radial distributions of 

the critical nucleus with the same parameters, c.f. Fig. 1b. 

Figure 6 (Color online) 2D orthographic projection of the 3D nucleus at Δ=0.95, ε=0.00087, V=8×106 

(imaged by ParaView®).  

Figure 7 Probability distribution histograms and lognormal probability distribution functions of lifetime 

in the systems of V=8×106 and (a) Δ=0.7, ε=0.029 and (b) Δ=0.9, ε=0.00345. 

Figure 8 (Color online) Logarithm of the mean lifetime τL as a function of the inverse noise ε in the 

systems of V=8×106 at different values of the supersaturation Δ labeled by different symbols on (a) 

Δ=0.5÷0.85 and (b) Δ=0.9, 0.95. 
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Figure 9 (Color online) Logarithm of the mean lifetime τL as a function of the logarithm of the volume V 

at different values of the supersaturation Δ labeled by different symbols. 

Figure 10 Numerically generated slopes of ln(τL) as a function of (1/ε) for constant V (a) and as a 

function of ln(V) for constant ε (b) versus the supersaturation Δ. Solid lines: (a)—ΔFB from Eq.(A21); 

(b)—a guide to eye. 
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