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Microbeam Resonant X-Ray Scattering (RXRS) experiments recently revealed the sequential
emergence of electric-field-induced subphases (stable states) with exceptionally large unit cells con-
sisting of 12 and 15 smectic layers. We try to explain the emergence of the field-induced subphases
by the quasi-molecular model based on the Emelyanenko-Osipov Long-Range InterLayer Interac-
tions (LRILIs) together with our primitive way of understanding the frustration in clinicity using
the qE number defined as qE=|[R]− [L]|/([R]+ [L]); here [R] and [L] refer to the numbers of smectic
layers with directors tilted to the right and to the left, respectively, in the unit cell of a field-induced
subphase. We show that the model actually stabilizes the field-induced subphases with character-
istic composite unit cells consisting of several blocks, each of which is originally ferrielectric 3-layer
unit cells stabilized by the LRILIs, but some of which would be modified to become ferroelectric
by an applied electric field. In a similar line of thought, we also try to understand the puzzling
Electric-Field-Induced Birefringence (EFIB) data in terms of the LRILIs.

PACS numbers: 61.30.Eb, 64.70.M-, 77.80.-e

I. INTRODUCTION

A series of experimental studies [1–4] have revealed the
sequential emergence of temperature-induced biaxial and
uniaxial subphases as a result of degeneracy lifting due
to Long-Range InterLayer Interactions (LRILIs) at the
frustration points among antiferroelectric SmC∗

A, ferro-
electric SmC∗, and paraelectric SmA [5–10]. The biaxial
subphases have nonplanar superlattice structures with
highly distorted microscopic short-pitch helical director
arrangements in unit cells consisting of several smectic
layers [11–23]. Since the deviation from the planar struc-
tures is not really large, however, the biaxial subphases
are appropriately specified by a relative ratio of ferroelec-
tric and antiferroelectric orderings in the unit cell

qT =
[F ]

[A] + [F ]
. (1)

Here qT typically increases monotonically from 0 in anti-
ferroelectric SmC∗

A to 1 in ferroelectric SmC∗ with rising
temperature, as the degeneracy lifting is frequently due
to weak LRILIs at the frustration point between the main
phases, SmC∗

A and SmC∗ [1–4]. Subphases with smaller
unit cells of irreducible qT in lower terms in the denomi-
nator must be observed more easily, whereas those with
larger unit cells of irreducible qT in higher terms both in
the numerator and denominator may be suppressed by a
number of factors including surface and finite size effects
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as well as thermal fluctuations. Experimentally, seven
subphases with qT =1/5, 1/4, 1/3, 2/5, 1/2, 3/5, and
2/3 are considered to exist [1–4, 23–27].
Here in this paper we try to study the electric-field-

induced subphases (stable state) and their emerging se-
quences in a similar line of thought. Increasing applied
electric field produces nearly the same effects as increas-
ing temperature; both favor the ferroelectric state. Since
an applied electric field selectively determines the direc-
tor tilting sense, we should use

qE =
|[R]− [L]|

[R] + [L]
(2)

instead of qT ; here [R] and [L] refer to the numbers
of smectic layers with directors tilted to the right and
to the left, respectively, in the unit cell of a field-
induced subphase [54]. Some sequential characters of
the field-induced transitions have been observed in sev-
eral temperature-induced subphase regions at zero elec-
tric field, qT =1/4, 1/3, 1/2, 3/5, and 2/3 from the early
stage of investigations [1–4, 27–32]. All of the antiferro-
electric phases, qT= 0 (SmC∗

A), 1/4, 1/2, and 2/3, must
have qE =0 at zero electric field, whereas ferrielectric and
ferroelectric phases, qT =1/3, 3/5, 2/3, and 1 (SmC∗),
must have qE =1/3, 1/5, 1/3, and 1, respectively. The
LRILIs are usually weak, and hence qE may increase
monotonically with increasing applied electric field.
Sandhya et al. recently found a fairly conspicuous

example of the field-induced transition from qE=1/5
(qT=3/5) to qE=3/5, which is considered to occur by
flipping only one layer in the 5-layer unit cell of the
temperature-induced subphase with qT=3/5 [27]. Sand-
hya et al. also observed at least two, probably three
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field-induced subphases in the transition from qE=1/3
(qT=1/3) to qE=1 (SmC∗) [4, 32]. Prior to these obser-
vations having been reported, the general view seemed to
have been that on applying the field qE=1/3 (qT=1/3)
went directly to qE=1. Conceivable simple qE ’s in this
case are 1/3, 1/2, 3/5, 2/3, etc., although it may di-
rectly change into unwound SmC∗ by simultaneously
flipping one layer in the simple 3-layer unit cell of the
temperature-induced subphase with qT=1/3. Actually,
however, Sandhya et al. pointed out some sequential
character of the field-induced subphase emergence that
may indicate the stable existence of at least two sub-
phases before the field-induced transition into unwound
SmC∗. We were wondering at that stage of our work
what unit cells constitute these field-induced subphases.
Microbeam Resonant X-Ray Scattering (RXRS) exper-

iments brought about a breakthrough in confirming the
emergence of the field-induced subphases that have unbe-
lievably large 12- and 15-layer unit cells [33]. Moreover,
they clarified the approximate planar superlattice struc-
ture of the 12-layer unit cell with qE= 2/3: It consists
of four blocks, each of which is originally ferrielectric 3-
layer unit cells stabilized by the LRILIs, but consecutive
two of which would be modified to become ferroelectric
by an applied electric field. There are several theoretical
approaches to describe the sequential phase transitions
in polar smectics, but only two of them have presented
the definite results that can be compared with the ex-
perimental ones. One is the phenomenological Landau
model reported by Dolganov et al. [34, 35] and the other
is the partially molecular model based on the LRILIs pro-
posed by Emelyanenko and Osipov [36, 37]. Apparently
the Landau model looks simple and straightforward, but
actually it is mathematically complicated task to per-
form minimization over the set of two-component order
parameters. In the partially molecular model, on the
other hand, there does not exist such a difficulty and the
LRILIs are simple, natural, and effective in understand-
ing the sequential emergence of temperature-induced bi-
axial subphases. Therefore, we examine whether the
quasi-molecular model can explain the emergence of such
unexpected exceptional field-induced subphases with the
unit cells as large as containing 12 and 15 smectic layers.
In the following, we will show that the model actually
stabilizes the field-induced subphases with characteristic
composite unit cells consisting of several blocks, each of
which is originally ferrielectric 3-layer unit cells stabilized
by the LRILIs, but some of which would be modified to
become ferroelectric by an applied electric field.

II. FREE ENERGY OF FIELD-INDUCED

SUPERLATTICE STRUCTURES ANALYZED BY

THE QUASI-MOLECULAR MODEL

The LRILIs proposed by Emelyanenko and Osipov [36,
37] are useful for understanding the degeneracy lifting
at the frustration point, when the tilt angle can be ap-

proximately considered constant and the two prototypal
subphases with qT=1/3 and 1/2 emerge between SmC∗

A

and SmC∗. They numerically calculated the subphase
unit-cell structures and the stability ranges by using the
free energy,

F =

N
∑

i=1

(Fi +∆Fi), (3)

where N is the total number of smectic layers. The
polarization-independent part Fi is phenomenologically
given by

Fi = F0(θ)−
α (T − T ∗)

T ∗
(cosφi−1,i + cosφi,i+1)

−b (cos2 φi−1,i + cos2 φi,i+1), (4)

where α > 0 and b > 0 are constants, and T ∗ is the
transition temperature between anticlinic antiferroelec-
tric SmC∗

A and synclinic ferroelectric SmC∗, which are
stabilized for T < T ∗ and T > T ∗, respectively.
The polarization-dependent part ∆Fi is written as

∆Fi =
1

2χ
{P2

i + g (Pi−1 ·Pi +Pi ·Pi+1)}

+cp(Pi · ξi) + cf cos θ {Pi · (ni+1 − ni−1)}, (5)

which consists of the last two terms containing the piezo-
electric and flexoelectric coefficients, cp and cf , as well
as the first term of the polarization-polarization interac-
tions. Here g represents the molecular positional corre-
lation in adjacent layers and ξi is given by

ξi ≡ cos θ [ni × e] . (6)

The tilt angle θ is assumed to be independent of tem-
perature and spatially uniform, and ni and e are the di-
rector and the smectic layer normal, respectively. They
reasonably took account of the direct couplings between
adjacent layers only; it is hard to consider any direct cou-
pling between smectic layers separated in next-nearest-
neighbor positions or beyond, since smectics have no
long-range positional order.
The effect of an applied electric field E can be taken

into account by adding a term Pi · E in Eq. (5). This
way of including the electric field effect has been widely
used in several papers [38–47]. The last three papers by
Emelyanenko [45–47] are elaborate and extended versions
of his prototypal paper with Osipov [36]. In these papers,
the way of minimizing the free energy is characteristic
and the tensorial nature of g is also taken into account.
The apparently main conclusion illustrated in Figs. 1 and
2 of Ref. [45] is, however, in contradiction with the es-
tablished view that the tilting directions are parallel to
the field in the unwound antiferroelectric phase [2, 39].
Moreover, the structure of 15-layer subphase obtained as
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qT=11/15 in his most recent paper [47] is different from
that identified in this paper. In the following, therefore,
we try to understand the emergence of field-induced sub-
phases with exceptionally large unit cells consisting of 12
and 15 smectic layers by using the simple quasi-molecular
model and the electric field effect Pi ·E.
Minimizing the total free energy including the field ef-

fect with respect to polarization Pi results in effective
LRILIs. Actually by performing the minimization, we
obtain the following set of equations for Pi :

Pi + g (Pi−1 +Pi+1) + χME
i = 0 , (7)

where

ME
i ≡ Mi +E (8)

and

Mi ≡ cp ξi + cf cos θ (ni+1 − ni−1). (9)

Now the polarization-dependent part of the free energy
including the applied electric field effect is written as fol-
lows:

∆Fi =
1

2
Pi ·M

E
i . (10)

Analytical solutions for Eq. (7) can be obtained for
any field-induced superlattice structures with unit cells
consisting of finite number of smectic layers. For a unit
cell consisting of any odd number of layers t = 2n + 1,
we obtain:

P
(2n+1)
i =−

χ

r2n+1

[

s2n+1M
(E)
i

+

n
∑

k=1

(−g)ks2(n−k)+1(M
(E)
i−k +M

(E)
i+k)

]

,

(11)
For a unit cell consisting of any even number of layers
t = 2n, on the other hand, we obtain:

P
(2n)
i =−

χ

r2n

[

s2n M
(E)
i

+
n−1
∑

k=1

(−g)k s2(n−k) (M
(E)
i−k +M

(E)
i+k)

]

+
1

2
(−g)n s0 (M

(E)
i−n +M

(E)
i+n) ,

(12)

Here the coefficients rk and sk are given in Eqs. (55),
(56), (58), and (59) of Ref. [36].
Substituting Eqs. (11) and (12) into Eq. (10), we ob-

tain the following expression for the polarization contri-
bution to free energy of the superlattice structure with a
periodicity of t-layers:

∆Ft

N
= −

χ

2 t

t
∑

i=1

t
∑

k=1

fk M
(E)
i ·M

(E)
i+k−1 , (13)

where fk is given in Eq. (61) of Ref. [36]. Substituting
Eq. (8) into Eq. (13), we obtain

∆Ft

N
=−

χ

2 t

t
∑

i=1

t
∑

k=1

fk Mi ·Mi+k−1

−
χE2

2 (1 + 2g)

−
χ cpE sin θ cos θ

(1 + 2g) t

t
∑

i=1

cosϕi ,

(14)

where the director is expressed in terms of the tilt angle
θ and the azimuthal angle ϕi,

ni = (sin θ cosϕi, sin θ sinϕi, cos θ), (15)

and the electric field is applied along the y-axis,

E = (0, E, 0). (16)

Since the first term of Eq. (14) is given in Eq. (62)
of Ref. [36], we obtain the modified dimensionless free
energy density of any t-layer field-induced superlattice
structure F̃t, which can be used to find out the most
stable one at a particular temperature and an applied
electric field:

F̃t

=
1

B sin2(θ) cos2(θ)

{

Ft

N
− F0(θ) +

χE2

2 (1 + 2 g)

}

=−
1

2

χcpcf
B

{
cp
cf

f1 +
cf
cp

f
(2)
1 }

−
χcpcf
B

1

t

t−1
∑

i=1

t
∑

j=i+1

{
cp
cf

fj−i

+
cf
cp

f
(2)
j−i } cos(ϕj − ϕi)

+ 2
χcpcf
B

1

t

t−1
∑

i=1

t
∑

j=i+1

f
(1)
j−i sin(ϕj − ϕi)

−
1

t

t
∑

i=1

cos2(ϕi+1 − ϕi)

−
a∆T

B T ∗

1

t

t
∑

i=1

cos(ϕi+1 − ϕi)

−
χcpE

sin θ cos θ B (1 + 2 g)

1

t

t
∑

i=1

cosϕi ,

(17)

where a = 2α/(sin2 θ cos2 θ) and B = 2 b/(sin2 θ cos2 θ).
Five parameters are needed, four of which are already
used in Ref. [36] and intuitively understandable, g (the
molecular positional correlation in adjacent layers), cf/cp
(the ratio between flexoelectric and piezoelectric coeffi-
cients), χcpcf/B (the sterngth of LRILIs as compared to
that of Short-Range InterLayer Interactions (SRILIs)),
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and T̃ = a∆T/B T ∗ (the effective dimensionless temper-
ature); the only new parameter is the effective dimen-
sionless electric field strength,

Ẽ = χcpE/{sin θ cos θ B (1 + 2 g)} . (18)

When Ẽ=0, the free energy F̃t assures that all the
subphases are antisymmetrical with respect to their mid-
dles of their unit cells and is minimized with respect to
ϕi,j ≡ ϕj − ϕi as given in Eq. (65) of Ref. [36]. Since
the electric field generally changes the symmetry of field-
induced subphases, minimizing Eq. (17) with respect to
ϕi is not so easy as it would appear to be. In order to see
how to properly perform the minimization, therefore, let
us first consider some simple cases of the main and the
subphases.

III. CASE-BY-CASE STUDIES OF THE

ELECTRIC FIELD EFFECTS IN SOME SIMPLE

UNIT CELL STRUCTURES

Two major effects produced in a main phase or sub-
phase by applying an electric field are unwinding of the
macroscopic long-pitch helical structure and aligning of
the averaged tilt-plane direction of the unit cell with re-
spect to the electric field. Since no macroscopic long-
pitch helical structure is taken into account in Eq. (17),

the aligning starts to occur from the beginning Ẽ≃0.
Let us begin with the two simple structures of the main
phases, ferroelectric SmC∗ and antiferroelectric SmC∗

A,
where the directors of the whole smectic layers are par-
allel to a single plane and hence the structure is planar.
The free energy given by Eq. (17) is written for SmC∗ as

F̃1 = −1− T̃ −
1

2(1 + 2g)

cp
cf

χcpcf
B

− Ẽ cosϕ1 , (19)

and hence we have cosϕ1=1, i.e. ϕ1=0, for Ẽ > 0. Since
Ẽ contains the product of cpE as in Eq. (18), Ẽ > 0
means cp>0 for an electric field applied along the y axis;
the director tilting occurs parallel to the x axis in the
ϕ1=0 direction as intuitively anticipated from Eqs. (9)
and (11) and illustrated in Fig. 1(a). In other words,
cp>0 corresponds to the positive spontaneous polariza-
tion.

In the main antiferroelectric phase, SmC∗
A, it is well

known that the director tilting plane tends to be parallel
to the electric field and some small non-planar (asymmet-
ric) distortion occurs in the planar anticlinic structure as
the pretransitional effect [38–40, 48–50]. Let us consider
that the initial tilt-plane direction is φ0 and the distor-
tion angle is ∆φ. Then we can put

ϕ1 = φ0 −∆φ , ϕ2 = φ0 + π +∆φ . (20)

We determine their equilibrium values by minimizing

Eq. (17) with respect to φ0 and ∆φ as follows:

φ0 = ±
π

2
,

∆φ = ±
Ẽ

4{(2− T̃ ) + g(cp/cf)(χcpcf/B)/(1− 4g2)}
.

(21)
As illustrated in Fig. 1(b), in fact, such a distortion pro-
duces small induced spontaneous polarization along the
initial tilt-plane direction φ0=±π/2; the resulting polar-
ization makes the initial tilt-plane direction align along
the applied electric field. Again, cp>0 corresponds to the
positive spontaneous polarization consistently.
The structures of all temperature-induced subphases

produced by the Emelyanenko-Osipov LRILIs are not
planar and possess a certain symmetry that is visible
when the structures are viewed along the smectic layer
normal. In fact, the tilt directions in different layers are
antisymmetric with respect to the middle of the period.
This property defines the chirality of the short-pitch de-
formed helix structures of these subphases as well as a
characteristic plane with respect to which the director
tilting directions of all smectic layers are arranged sym-
metrically [36]. In the 3-layer field-induced superlattice
structure in the temperature region of SmC∗

A(qT=1/3),
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FIG. 1: (Color online) Electric field effects in (a) SmC∗, (b)
SmC∗

A, (c) qT=1/3, and (d) qT=1/2. The averaged tilt plane
direction is perpendicular to the applied electric field in ferro-
electric (a) and ferrielectric (c). It may become parallel to the
electric field in antiferroelectric (b) and (d); at the same time,
the directors in the unit cell may show some small asymmetric
change to produce induced polarization in the initial averaged
tilt direction, which is observed as the pretransitional effect
in the antiferroelectric phases [38–40, 48–50].
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we can check numerically, using Eq. (17) on the assump-
tion of a small deviation from the Ising structure, that
the unit cell actually aligns as illustrated in Fig. 1(c). It
is also intuitively clear that the averaged tilt plane direc-
tion is arranged perpendicularly to the applied electric
field.
In this way we can put

ϕ1 = φ0 +
δ

2
, ϕ2 = φ0 + π , ϕ3 = φ0 −

δ

2
. (22)

and obtain the free energy given in Eq. (17) as a func-
tion of φ0 and δ. By minimizing the free energy with
respect to φ0 and δ, in fact, we determine these variables
as follows:

φ0 = 0 ,

δ = −
8(1 + 2g)(χcpcf/B)

(1 + g − 2g2)(6 + T̃ + Ẽ) + (χcpcf/B){(1 + 2g)(cf/cp) + g(cp/cf)}
.

(23)

Since Ẽ contains the product of cpE and the electric field
is applied along the y axis, φ0=0 indicates that the aver-
aged tilt plane direction is perpendicular to the electric
field and the unit cell has positive spontaneous polariza-
tion for cp>0. Since δ and cpcf have opposite signs, the
short-pitch deformed helix is right-handed for cpcf<0 and
left-handed for cpcf>0.
In the 4-layer superlattice structure of antiferroelectric

SmC∗
A(qT=1/2), there also exists an averaged tilt plane

with respect to which the director tilting directions and
senses of all smectic layers are arranged symmetrically.
Contrary to the 3-layer superlattice structure of ferrielec-
tric SmC∗

A(qT=1/3), however, both director tilting senses
in the averaged tilt plane are equivalent; there is neither
a favorable nor unfavorable director tilting sense. It is
well known that the averaged tilt plane becomes parallel
to the electric field and at the same time, the directors

in the unit cell show some small asymmetric movement
indicating a pretransitional change from antiferroelectric
to ferroelectric as shown in Fig. 1(d). It would be con-
venient to put

ϕ1 = φ0−∆φ+
δ

2
,

ϕ3 = φ0+π+∆φ+
δ

2
,

ϕ2 = φ0+π+∆φ−
δ

2
,

ϕ4 = φ0+2π−∆φ−
δ

2
,

(24)

where φ0 is the initial average tilt plane direction at Ẽ=0,
∆φ the asymmetric deformation, and δ the distortion
angle representing the non-planar unit cell structure. In-
serting Eq. (24) into Eq. (17), we obtain the free energy
as a function of φ0, ∆φ and δ. By minimizing the free
energy with respect to these variables, we determine the
equilibrium values of φ0, ∆φ and δ as follows:

φ0 = ±
π

2
,

δ = −
χcpcf
B

,

∆φ = ±
Ẽ

2{2− T̃ + 2(cf/cp)(χcpcf/B) + g(cp/cf)(χcpcf/B)/(1 + 2g)}
.

(25)

As seen in Fig. 1(d), in fact, such a distortion produces
small induced spontaneous polarization along the initial
tilt-plane direction φ0=±π/2; the resulting polarization
makes the initial tilt-plane direction align along the ap-
plied electric field. Again, cp>0 corresponds to the pos-
itive polarization, and the short-pitch distorted helical
structure is right-handed for cf<0 whereas left-handed
for cf>0. Moreover, it is very characteristic that δ is

uniquely determined only by the fourth parameter and
does not depend on the temperature T̃ and the applied
electric field Ẽ as already pointed out in Ref. [36] when

Ẽ=0.
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IV. SEQUENTIAL EMERGENCE OF

FIELD-INDUCED SUBPHASES

A. Formulation

As illustrated in Fig. 1, electric field effects in antifer-
roelectric superlattice structures are quite different from
those in ferroelectric and ferrielectric superlattice struc-
tures. In the antiferroelectric case, the applied field may
produce some asymmetric distortion in the director ar-
rangements indicating a pretransitional change from an-
tiferroelectric to ferrielectirc or ferroelectric [38–40, 48–
50], and may cause the disappearance of the characteris-
tic plane with respect to which the director tilting direc-
tions of all smectic layers were arranged symmetrically
when no field was applied. In the ferrielectric case, on
the other hand, there is no reason to assume the disap-
pearance of the characteristic plane, although the applied
field may destroy the property due to the Emelyanenko-
Osipov LRILIs that the tilt directions in different layers
are antisymmetrical with respect to the middle of the pe-
riod; the applied field only interacts with the piezoelectric
polarization but not with the flexoelectric polarization as
is clear in Eqs. (17) and (18). It is not impertinent to
consider that the director tilting directions of all smec-
tic layers are arranged symmetrically with respect to the
characteristic plane in all field-induced superlattice struc-
tures that emerge on the higher field side of the 3-layer
qE=1/3 subphase; they must be ferrielectric as qE in-
creases with the applying field. This characteristic plane
can be chosen as the z − x plane and the positive sense
of the x axis is favorable for the director tilting when the
electric field is applied along the y axis and cp>0. The
unit cell aligns so that this symmetrical plane becomes
perpendicular to the applied electric field.
The applied field effect in the free energy of Eq. (17)

is written as

− Ẽ
1

t

t
∑

n=1

cosϕn

=− Ẽ
1

t

t
∑

n=1

cos(ϕ1 + ϕ1,n)

=− Ẽ
1

t

t
∑

n=1

cos

(

ϕ1 +

n−1
∑

k=1

ϕk,k+1

)

.

(26)

Notice that the other terms are the same as given in
Eq. (62) of Ref. [36] and are already written in terms of
ϕi,i+1 ≡ (ϕi+1 − ϕi)’s (i=1, 2, 3, ... , t − 1). There are
four cases in choosing ϕ1 on the basis of the presence of
the characteristic plane.

(i) When the t-layer unit cell under consideration has
a layer where the director tilting occurs parallel
to the characteristic plane and toward the positive
sense of the x axis, we can choose this layer and set
ϕ1=0◦.

(ii) Similarly, if the director tilting is toward the negative
sense of the x axis, we can set ϕ1=180◦.

(iii) When the t-layer unit cell has adjacent layers that
are arranged symmetrically with respect to the
characteristic plane and their averaged director tilt-
ing is along the positive sense of the x axis, we can
set ϕ1=−ϕ1,2/2.

(iv) Similarly, if the director tilting is along the negative
sense, we can set ϕ1=180◦ − ϕ1,2/2.

In this way, we can fix the orientation of the t-layer unit
cell in the applied electric field.
Now we try to obtain ϕi,i+1’s (i=1, 2, 3, ... , t−1) that

minimize the free energy given in Eq. (17). Performing
partial differentiation with respect to ϕi,i+1, we obtain
the following (t− 1) sets of equations:

2
χcpcf
B

i
∑

n=1

t
∑

m=i+1

f
(1)
m−n+1 cosϕn,m

+
χcpcf
B

i
∑

n=1

t
∑

m=i+1

{
cp
cf

fm−n+1

+
cf
cp

f
(2)
m−n+1 } sinϕn,m

+ sin(2ϕi,i+1) + sin(2

t−1
∑

n=1

ϕn,n+1)

+ T̃{sinϕi,i+1 + sin(

t−1
∑

n=1

ϕn,n+1)}

+ Ẽ {−S
δi,1
2

sin
ϕ1,2

2

+

t
∑

n=i+1

(1− S
δi,1
2

) sin(−S
ϕ1,2

2
+ ϕ1,n)}

= 0 .

(27)

The first four terms on the left-hand side that do not
depend on the applied field have already been obtained
in Eq. (65) of Ref. [36]. The last term represents the
electric field effect, where S is:

S =

{

0 (for case (i) and (ii))
1 (for case (iii) and (iv) .

(28)

Field-induced subphases may be non-planar, but the ac-
tual structure does not deviate largely from the corre-
sponding planar prototype. The angles ϕn,m may be split
into two parts:

ϕn,m =

m−1
∑

k=n

α
(0)
k +

m−1
∑

k=n

∆αk . (29)

Here the angles α
(0)
k ≡ ϕ

(0)
k,k+1 may be equal to 0 or π

and specify the corresponding planar structure, while the
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angles ∆αk ≡ ∆ϕk,k+1 are relatively small and hence
sin(∆αk) ≈ ∆αk.
In this way, we can linearize Eq. (27) with respect to

∆αi:

t−1
∑

j=1

ci,j ∆αj = qi . (30)

The right hand side qi is defined as,

qi = −2
χcpcf
B

i
∑

n=1

t
∑

m=i+1

f
(1)
m−n+1 cosϕ

0
n,m , (31)

and this is Eq. (68) of Ref. [36]. The left hand side ci,j
is a (t− 1) dimensional matrix defined as

for the lower off-diagonal elements (i > j):
j = 1, 2, · · · , t− 2 and i = j + 1, j + 2, · · · , t− 1,

c
(lower)
i,j =

χcpcf
B

j
∑

n=1

t
∑

m=i+1

(
cp
cf
fm−n+1

+
cf
cp

f
(2)
m−n+1) cosϕ

0
n,m

+ 2 + T̃ cosα0
t

± Ẽ

(

1− S
δj,1
2

) t
∑

n=i+1

cosϕ0
1,n ,

(32)

for the diagonal elements (i = j):
i = j = 1, 2, · · · , t− 1,

c
(diagonal)
i,j =

χcpcf
B

i
∑

n=1

t
∑

m=i+1

(
cp
cf
fm−n+1

+
cf
cp

f
(2)
m−n+1) cosϕ

0
n,m

+ 4 + T̃ (cosα0
i + cosα0

t )

± Ẽ (1− S
δi,1
2

)(1 − S
δj,1
2

)(S δi,1δj,1

+

t
∑

n=i+1

cosϕ
(0)
1,n) ,

(33)

and for the upper off-diagonal elements (i < j):
i = 1, 2, · · · , t− 2 and j = i+ 1, i+ 2, · · · , t− 1,

c
(upper)
i,j =

χcpcf
B

i
∑

n=1

t
∑

m=j+1

(
cp
cf
fm−n+1

+
cf
cp

f
(2)
m−n+1) cosϕ

0
n,m

+ 2 + T̃ cosα0
t

± Ẽ

(

1− S
δi,1
2

) t
∑

n=j+1

cosϕ0
1,n ,

(34)

where the plus and minus signs before Ẽ represent the
case (i) and (iii) and the case (ii) and (vi), respectively.

The last terms containing Ẽ in Eqs. (32)–(34) show the
effect of an applied electric field, which result from the
last term of Eq. (27); the other terms independent of Ẽ
have already been given in Eq. (69) of Ref. [36], although
there exist some typographical errors in the original pub-
lication [36, 51].

B. Numerical calculations

Now let us consider what superlattice structures are
stabilized to become field-induced subphases on the
higher field side of the 3-layer qE=1/3 subphase, partic-
ularly in the temperature region where the ferrielectric
qT=1/3 subphase stably exists at zero electric field Ẽ=0.
Given the tilting sense R or L in a t-layer unit cell by

assigning 0 or π for α
(0)
k ≡ ϕ

(0)
k,k+1 in Eq. (29), we can use

Eqs. (30)-(34) to uniquely determine the corresponding
small deviation angles ∆αk ≡ ∆ϕk,k+1 that minimize the
dimensionless free energy of Eq. (17). After checking all

the possible sequences of α
(0)
k , we can expect to obtain

an optimal field-induced superlattice structure with the
t-layer unit cell. Then by comparing the free energies of
the optimal structures with different-size unit cells with
one another, we can determine the field-induced subphase
that has the globally minimal free energy at a given ap-
plied electric field Ẽ for a particular choice of the other
four model parameters.

Taking all the possible structures into account is an
orthodox way to determine the field-induced subphases
that have the global minimal free energy. Pursuing sim-
ply this way is, however, obstructed by a large number
of the structures to be examined. The field-induced sub-
phase observed by microbeam RXRS has an unexpected
exceptional unit cell as large as containing 15 smectic
layers, although the planar structure could not be suc-
cessfully determined because the counting statistics was
insufficient [33]. We need to check the free energy for
field-induced superlattice structures with unit cells con-
sisting of up to 15 smectic layers. The actual number of
structures becomes much less than 215, because of the pe-
riodic boundary conditions and other equivalence prop-
erties, but is still more than 1000.

Instead of performing such comprehensive calculations,
therefore, here we choose a more intuitive way on the ba-
sis of recent experimental findings by microbeam RXRS
about the planar structure of the field-induced subphase
with 12-layer unit cell of qE=2/3. The unit cell can be
regarded as a much simpler array of four building blocks,
two ferrielectric and two ferroelectric. Each block would
be originally the ferrielectric 3-layer unit cell of the sub-
phase qT=1/3 stabilized by the LRILIs but the consecu-
tive two of which are modified to become ferroelectric by
an applied electric field. There are three ways to choose
the ferrielectric 3-layer unit cell of qT=1/3. In any case,
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FIG. 2: (Color online) Nine planar superlattice composite structures used in the free energy calculation. We only need to

calculate the free energy given in Eq. (17) using α
(0)
k

in Eq. (29) for these nine, if we assume that any field-induced subphase in
the temperature region of qT=1/3 consists of an orderly array of the 3-layer ferrielectric and ferroelectric blocks, and that the
largest unit cells are of 15-layer periodicity (5 blocks) with simple qE ’s in lower terms up to 7/9; notice that we have disregarded
for qE ’s in higher terms than 7/9 (either in numerator or denominator), i.e. 7/15, 11/15 and 13/15. Hereafter we designate
these nine as qEn=1, qEn=2, · · · , qEn=9.

the unit cell contains only one unfavorable L layer which
the applied electric filed may change into the favorable
R layer, and the resulting unit cell becomes the unique
ferroelectric block; hence the choice of the 3-layer unit
cell of qT=1/3 is not essential.
It is not impertinent to generalize the conclusion about

the characteristic composite structure of the 12-layer
qE=2/3 subphase. Let us consider that any field-induced
subphase in the temperature region of qT=1/3 consists
of an orderly array of the ferrielectric and ferroelec-
tric blocks, and that the relative ratio of the ferroelec-
tric block becomes larger with increasing applied electric
field. We need to consider five different sizes of the com-
posite superlattice structures: The single-block (3-layer)
structure has qE=1/3 and is basically the temperature-
induced qT=1/3 subphase. The 2-block (6-layer) struc-
ture has qE=2/3. There exist two 3-block (9-layer) struc-
tures that have qE=5/9 and 7/9, respectively. Similarly
there are three 4-block (12-layer) structures that have
qE=1/2, 2/3, and 5/6, respectively. In the case of 5-
block (15-layer) structures, qE ’s are 7/15, 2/3, 11/15,
and 13/15, which are not fractions in lower terms, ex-

cept for qE=2/3. We have a disregard for these fractions
in higher terms like 7/15, 11/15, and 13/15 by simply
assuming that unit cells with qE ’s in lower terms must
be observed easily. This way of simplification extremely
reduces the number of the planar superlattice structures
to be examined when we search for a field-induced sub-
phase. We only need to calculate the free energy given in

Eq. (17) using α
(0)
k in Eq. (29) for the planar superlattice

structures shown in Fig. 2 as well as for SmC∗. Hereafter
we designate these nine as qEn=1, qEn=2, · · · , qEn=9.

Actual calculations were performed for parameter val-
ues used in the classical paper [36, 51], χcpcf/B=−0.12

and cf/cp=−1.0. Thus we reproduced their g−T̃ phase
diagram and chose 9 points for studying the electric field
effect as shown in Fig. 3. Table I illustrates calculated
dimensionless free energies for g = 0.1 and T̃ = −0.18;
similar results are obtained for the other g and T̃ val-
ues investigated. We begin with the limits of our anal-
ysis. Apparently, the direct field-induced transition oc-
curs from qEn=1 to SmC∗ and no sequential transitions
among field-induced subphases are observed. This must
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TABLE I: Calculated dimensionless free energy densities F̃t for nine possible superlattice structures shown in Fig. 2 as well as
SmC∗ at T̃=−0.18 for g=0.1. Aside from qEn9 and SmC∗, qEn1 has the smallest F̃t up to Ẽ=0.676, but first qEn4, secondly
qEn6, and then qEn8 stabilize at Ẽ=0.677, 0.681, and 0.684, respectively, as indicated by the corresponding F̃t’s shown in
boldface. Notice, however, that the direct transition from qEn=1 to qEn=9 always occurs when it is included. For details, see
text.

Ẽ qEn1 qEn2 qEn3 qEn4 qEn5 qEn6 qEn7 qEn8 qEn9 SmC∗

qE=1/3 qE=1/2 qE=5/9 qE=3/5 qE=3/5 qE=2/3 qE=2/3 qE=7/9 qE=5/6 qE=1
3-layer 12-layer 9-layer 15-layer 15-layer 12-layer 6-layer 9-layer 12-layer 1-layer

0 -1.31933 -1.20682 -1.16855 -1.14093 -1.13772 -1.09517 -1.09117 -1.01818 -0.98139. -0.87
0.1 -1.35237 -1.25617 -1.22349 -1.19996 -1.19710 -1.16104 -1.15732 -1.09545 -1.06423 -0.97
0.2 -1.38542 -1.30561 -1.27851 -1.25923 -1.25655 -1.22706 -1.22351 -1.17279 -1.14718 -1.07
0.3 -1.41848 -1.35511 -1.33356 -1.31864 -1.31607 -1.29320 -1.28974 -1.25019 -1.23020 -1.17
0.4 -1.45155 -1.40466 -1.38866 -1.37815 -1.37563 -1.35941 -1.35601 -1.32763 -1.31326 -1.27
0.5 -1.48463 -1.45425 -1.44381 -1.43773 -1.43523 -1.42568 -1.42231 -1.40511 -1.39636 -1.37
0.6 -1.51771 -1.50387 -1.49898 -1.49736 -1.49486 -1.49200 -1.48864 -1.48262 -1.47948 -1.47

0.676 -1.54286 -1.54161 -1.54094 -1.54271 -1.54020 -1.54243 -1.53906 -1.54154 -1.54267 -1.546
0.677 -1.54319 -1.54210 -1.54149 -1.54330 -1.54080 -1.54309 -1.53973 -1.54232 -1.54350 -1.547
0.680 -1.54419 -1.54359 -1.54315 -1.54509 -1.54259 -1.54508 -1.54172 -1.54464 -1.54600 -1.550
0.681 -1.54452 -1.54409 -1.54370 -1.54569 -1.54318 -1.54575 -1.54238 -1.54542 -1.54683 -1.551
0.683 -1.54518 -1.54508 -1.54480 -1.54688 -1.54438 -1.54708 -1.54371 -1.54697 -1.54849 -1.553
0.684 -1.54551 -1.54558 -1.55360 -1.54748 -1.54497 -1.54774 -1.54437 -1.54775 -1.54932 -1.554
0.7 -1.55081 -1.55353 -1.55419 -1.55703 -1.55452 -1.55836 -1.55499 -1.56015 -1.56263 -1.57
0.8 -1.58391 -1.60321 -1.60942 -1.61674 -1.61421 -1.62474 -1.62136 -1.63771 -1.64579 -1.67
0.9 -1.61702 -1.65291 -1.66467 -1.67647 -1.67391 -1.69115 -1.68775 -1.71528 -1.72897 -1.77
1 -1.65013 -1.70263 -1.71995 -1.73622 -1.73364 -1.75758 -1.75416 -1.79287 -1.81216 -1.87

~
T

g

FIG. 3: (Color online) Reproduced g−T̃ phase diagram with
parameter values of χcpcf/B=−0.12 and cf/cp=−1.0 [36, 51],
and chosen 9 points in red for studying the electric field effect:
T̃=−0.24, −0.21, and −0.18 at g=0.1; T̃=−0.21, −0.16, and
−0.09 at g=0.2; and T̃=−0.09, −0.02, and 0.05 at g=0.3.

be caused by the fact that the free energy of actual SmC∗

is not appropriately given by Eq. (19). All the sub-
phases are not planar and have the microscopic short-
pitch highly distorted helical structures, whereas SmC∗

is considered to be perfectly planar. Since the frustration
actually occurs among SmC∗

A, SmC∗, and SmA [8, 27],
the discrete flexoelectric effect produces the helical struc-

ture even in SmC∗. The free energy of SmC∗ calcu-
lated by Eq. (19) must be lower than that of actual
field-induced unwound SmC∗, and hence the direct field-
induced transition from qEn=1 to SmC∗ is always ob-
served as illustrated in Table I. A more elaborate treat-
ment should be made in the near future by taking into
account the three-phase frustration among SmC∗

A, SmC∗,
and SmA as well as the temperature-dependent tilt an-
gle θ. The direct field-induced transition from qEn=1 to
qEn=9, the structure of which is quite similar to SmC∗, is
also observed and invades the stability range of the other
subphases which may participate into the sequential field-
induced transitions. We have, therefore, a disregard for
qEn=9 (qE=5/6) as well as SmC∗ in the following.

Among the remaining eight field-induced superlattice
structures, qEn=1, qEn=2, · · · , qEn=8, the most sta-
ble qEn=1 is basically the temperature-induced qT=1/3

subphase at Ẽ=0; it exists in a wide field range up
to Ẽ=0.676 and then makes the field-induced transi-
tion to qEn=4 at Ẽ=0.677. The field-induced transition
from qEn=4 to qEn=6 is observed at Ẽ=0.681. The
qEn=6 field-induced subphase has the 12-layer unit cell
of qE=2/3 and exists as the secondly stable field-induced
subphase for all the g values and temperatures investi-
gated. The thirdly stable field-induced subphase may be
qEn=4 with the 15-layer unit cell of qE=3/5 in all the
temperatures investigated for g=0.1 and 0.2. Its stabil-
ity range of Ẽ is narrower in g=0.2 than in 0.1; it is
not stabilized for g=0.3. Another field-induced transi-
tion from qEn=6 to qEn=8 may occur at 0.684. The
qEn=8 field-induced subphase has the 9-layer unit cell of
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FIG. 4: (Color online) Calculated ϕi’s for qEn=4 at Ẽ=0.573 and for qEn=6 at Ẽ=0.574. Other parameters used are at

g = 0.2, T̃=−0.09, χcpcf/B = −0.12, and cp/cf = −1.0. The relevant dimensionless free energies are −1.5113 for qEn=1 at

Ẽ=0.572, −1.51166 for qEn=4 at Ẽ=0.573, and −1.51228 for qEn=6 at Ẽ=0.574. The electric field is applied along the y-axis
and it is assumed that cp > 0 and hence that the spontaneous polarization is positive and the microscopic short-pitch distorted
helix is right-handed. The tilt directions in different layers are symmetrical with respect to the middle of the period indicated
by closed red circles; this property defines the chirality of these subphases.

qE=7/9. Since qEn=8 is rather close to SmC∗ and its
qE is hardly regarded as a fraction in lower terms, it may
not exist as a single independent stable subphase; it may
overlap with other similar field-induced subphases. The
remaining qEn=2, 3, 5, and 7 are not stabilized at all
and hence do not exist as the field-induced subphases.

Figure 4 shows the microscopic short-pitch helical
structures of the qEn=4 and qEn=6 subphases with the
15-layer and 12-layer unit cells, respectively. The cal-
culations were made in the linearized approximation ex-
plained in Sec. IVB. The qEn=4 helix makes three ro-
tations in the 15-layer unit cell, whereas the qEn=6 helix
makes two rotations in the 12-layer unit cell. The di-
rector tilting directions of all smectic layers are arranged
symmetrically with respect to the z−x plane. As we ex-
pected, the deviation from the planar structures is small
in both subphases. At the same time, we notice that the
deviation is slightly larger in the qEn=4 helix than in the
qEn=6 helix, when we compare both helices carefully. As

a measure of the deviation, we calculated

Dev =
1

t

t
∑

i=1

| sinφi | , (35)

and actually obtained Dev=0.067 andDev=0.063 for the
qEn=4 and qEn=6 helices, respectively.

V. DISCUSSIONS

The calculated results are entirely consistent with the
recent microbeam RXRS data [33]. The experiments
were performed using a slightly unusual compound that
has chiral centers in both terminal chains and a bromine
atom in its central core part; the chemical structure is
given in Fig. 5. The phase sequence is, however, quite
ordinary [52]:

SmC∗
A – 1/3 – 1/2 – SmC∗ – SmC∗

α – SmA – Iso .
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FIG. 5: The compound Iida et al. used in the recent mi-
crobeam RXRS experiments [33]. The two chiral centers are
(S, S). They noticed the emergence of the field-induced sub-
phases that have unbelievably large 12- and 15-layer unit cells.

The prototypal subphases, qT=1/3 and 1/2, emerge be-
tween the main phases, SmC∗

A and SmC∗; hence it is le-
gitimate to consider that the subphases are produced by
the frustration between antiferroelectric SmC∗

A and fer-
roelectric SmC∗ and to use the approximation that the
tilt angle is relatively large, spatially uniform, and tem-
perature independent. As explained in Sec. II, in fact, we
have calculated the free energy based on this approxima-
tion relying on the LRILIs introduced by Emelyanenko
and Osipov [36], disregarding that the actual frustration
occurs among the three main phases, SmC∗

A, SmC∗, and
SmA [8]. Furthermore, the calculations have been per-
formed for field-induced superlattice structures that may
emerge on the higher field side of the 3-layer qE=1/3 sub-
phase. The microbeam RXRS data were taken in three
different temperature regions of SmC∗

A (140◦C), qT=1/3
(144◦C), and qT=1/2 (145.1 and 146◦C); all of them show
the nearly same tendency that field-induced superlattice
subphases may emerge on the higher field side of the
3-layer qE=1/3 subphase, except for the data at 146◦C;
hence we choose the most elaborate data at 140◦C shown
in Fig. 7 of Ref. [33] and compare them with the calcu-
lated results in the following.
The experimental results indicate that the 3-layer peri-

odicity prevails in a wide electric field range, and that not
only the 12-layer but also the 15-layer periodicity are in-
separably observed as spotty patterns in a narrow electric
field region, above which the spotty patterns change into
a diffuse streak pattern just before the field-induced tran-
sition to SmC∗ occurs. The 3-layer periodicity must ba-
sically result from the qEn=1 field-induced superlattice
structure, i. e. the 3-layer unit cell of the temperature-
induced qT=1/3 subphase together with its behavior in
an applied electric field described in Sec. III. As exem-
plified in Table I, the stability range of qEn=1 is pretty
wide. It stably exists up to Ẽ=0.676 and then three field-
induced transitions stabilize qEn=4 at Ẽ=0.677, qEn=6
at Ẽ=0.681, and qEn=8 at Ẽ=0.684 sequentially. The
field-induced subphases qEn=4 and qEn=6 have the 15-
layer unit cell of qE=3/5 and the 12-layer unit cell of
qE=2/3, respectively; their stability ranges are very nar-
row. As explained in Sec. IV B, qEn=8 is rather close to
SmC∗ and may not be observed as a single independent
subphase due to overlapping with other subphases.
In this way, the observed 15-layer and 12-layer peri-

odic spotty patterns are naturally correlated to the field-
induced subphases qEn=4 and qEn=6 in Table I, re-
spectively; the observed diffuse streak pattern may result

from some overlapped field-induced subphases including
qEn=8, which have large unit cells and complex qE ’s in
higher terms and become inevitably disordered by a num-
ber of factors. The experimentally confirmed facts that
the 9-layer and 6-layer periodicities were not observed
are correlated to the calculated results that qEn=3 and
qEn=7 are not stabilized in Table I. Experimentally,
the microbeam RXRS could not confirm the existence
of qEn=2 consisting of four 3-layer blocks, three ferri-
electric and one ferroelectric, which produce almost the
same satellite peak intensity distribution (strong m/3-
order satellites) as the original 3-layer qE=1/3 phase,
qEn=1. The calculated results illustrated in Table I show
that qEn=2, the 12-layer field-induced superlattice struc-
ture of qE=1/2, does not stably exist as a field-induced
subpahse.

Now let us move on to the satellite peak intensity
distribution patterns further. By using the Osipov-
Gorkunov formula [53] to obtain RXRS intensities for
all possible planar structures with 12-layer periodicity,
as illustrated in Fig. 8 of Ref. [33], it was concluded that
only two planar structures with qE=2/3 and 1/6 were
consistent to the experimentally observed intensity distri-
bution. Since the 12-layer structure was produced by the
field-induced transition from the 3-layer structure with
qE=1/3 in all the temperatures investigated, except for
146◦C, the 12-layer structure with qE=1/6 was consid-
ered improbable [33]. Notice that the remaining 12-layer
structure with qE=2/3 is exactly the same as the most
stable calculated qEn=6 with the 12-layer unit cell shown
in Fig. 2.

Regarding the 15-layer unit cell, the RXRS data given
in Fig. 7 of Ref. [33] clearly indicates the emergence of
a field-induced subphase with a 15-layer unit cell but
could not determine its planar structure because the sig-
nal intensity is weak. However, the RXRS data is con-
sistent with the calculated result that an applied electric
field may stabilize qEn=4 but not qEn=5. The Osipov-
Gorkunov formula [53] indicates that the RXRS intensi-
ties of 4/15 and 6/15 are about 1/4 of the intensity of
5/15 in qEn=4, whereas the intensities are about 1/24 in
qEn=5. As clearly seen in Fig. 7 of Ref. [33], the RXRS
intensities of 4/15 and 6/15 are closer to 1/4 and hence
we can conclude that the applied electric field stabilizes
qEn=4.

Figure 4 shows that the deviation from the planar
structure in the qEn=6 subphase is slightly smaller
than that in the qEn=4 subphase, and in fact, the
measure of deviation defined by Eq. (35) is smaller
in the qEn=6 subphase than that in the qEn=4 sub-
phase. Suppose we observe the Electric-Field-Induced
Birefringence (EFIB) at 144◦C by increasing applied
electric field, EFIB first rises sharply due to the un-
winding of the macroscopic long-pitch helical structure.
When the field-induced qEn=1 subphase prevails, EFIB
stays almost constant in a wide applied electric field
range. Just before the field-induced transition to un-
wound SmC∗ occurs, EFIB once decreases slightly then
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increases again when qEn=4 and qEn=6 emerge consec-
utively in a narrow electric field range. In the Electric
Field−Temperature (E−T ) phase diagram, characteris-
tic sigmoid-shaped briefringence contours are expected
to be observed in the neighborhood of subsequent de-
creasing and increasing. Although in different materi-
als, Sandhya et al. actually observed the sigmoid-shaped
contours in the MHPOCBC-MHPOOCBC binary mix-
ture system as given in Fig. 2(i)-(k) of Ref. [4]. They
referred to the emergence of several field-induced sub-
phases but did not suggest such large unit cells of 12- and
15-layer periodicity shown in Fig. 4. Their microscopic
short-pitch distorted helical structures have not yet been
verified experimentally by using polarized RXRS experi-
ments.
In this way the prototypal quasi-molecular model

based on the effective LRILIs proposed by Emelyanenko
and Osipov [36] can explain the sequential emergence
of the field-induced subphases with exceptionally large
unit cells consisting of 12 and 15 smectic layers. In the
qT=1/3 temperature region, the field-induced subphases
may consist of several blocks, each of which would be
originally the ferrielectric 3-layer unit cell of the subphase
qT=1/3 stabilized by the LRILIs but some of which are
modified to become ferroelectric by an applied electric
field; they are appropriately specified by their qE num-
bers given in Eq. (2), which may increase monotonically
from 1/3 to 1 with increasing applied electric field. It
also predicts the highly distorted microscopic short-pitch
helical director arrangements in the field-induced sub-

phases and that the deviation from the planar structure
in qEn=4 is larger than that in qEn=6; EFIB may de-
crease slightly and then increase again as actually ob-
served although in different materials [4]. A weak point
of this simplest way of treating lies in the fact that SmC∗

is considered to be perfectly planar in the prototypal
quasi-molecular model. Actually, however, the discrete
flexoelectric effect produces the helical structure even in
SmC∗, since the frustration occurs among SmC∗

A, SmC∗,
and SmA. A more elaborate treatment should be made
in the near future by taking into account the three-phase
frustration as well as the temperature-dependent tilt an-
gle θ as actually made at Ẽ=0 preliminarily [7–9, 27].
This treatment may also explain the characteristic evo-
lution of the subphase emergence observed in several bi-
nary mixture systems [2, 4].
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