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ABSTRACT 

Three-dimensional semiflexible polymer networks are the structural building block of various 

biological and structural materials. Previous studies have primarily used two-dimensional models 

for understanding the behavior of these networks. In this work, we develop a three-dimensional 

non-affinity measure capable of providing direct comparison with continuum level homogenized 

quantities, i.e. strain field. The proposed non-affinity measure is capable of capturing possible 

anisotropic microstructure of the filamentous networks. This strain-based non-affinity measure is 

used to probe the mechanical behavior at different length scales and investigate the effects of 

network mechanical and microstructural properties. Specifically, it is found that while all non-

affinity measure components have a power-law variation with the probing length scale, the 

degree of non-affinity decreases with increasing the length scale of observation. Furthermore, the 

amount of non-affinity is a function of network fiber density, bending stiffness of the constituent 

filaments, and the network architecture. Finally, it is found that the two power-law scaling 

regimes previously reported for two-dimensional systems do not appear in three-dimensional 

networks. Also, unlike two-dimensional models, the exponent of the power law relation depends 

weakly on the density of the three-dimensional networks.  

 I. INTRODUCTION 
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There exists a large number of structural and biological materials whose microstructure appears 

as an interconnected network of randomly oriented filaments. Paper, felt, networks of carbon 

nanotubes are among structural materials and cytoskeleton and extracellular matrix of soft tissue 

are examples of biological materials [1-3]. For example, the cytoskeleton, an intertwined 

semiflexible filamentous network, provides the structural integrity of cells while contributing to 

the cellular functions such as division and migration [4-6]. Due to their preponderance and 

striking properties, semiflexible polymer networks have been the subject of much research over 

the past decades [2,3,7]. These filamentous structures are usually three-dimensional; 

nevertheless, many of previous studies are focused on two-dimensional random fiber networks 

because three-dimensional simulations are computationally challenging. The mechanical 

response of two- and three-dimensional networks is expected to be significantly different: two-

dimensional networks (often simulated by depositing randomly oriented fibers on plane) 

correspond to the isostatic threshold; nevertheless, three-dimensional networks are sub-isostatic 

and are likely to have bending dominated non-affine response. 

The mechanical behavior of filament-based network structures depends not only on the 

mechanical properties of individual constitutes but also on their microstructure. It is well-known 

that the deformation of disordered systems including random fiber networks when subjected to a 

uniform far-field loading is non-affine, i.e., the local strain field is not homogeneous. The non-

affine deformation allows a system to accommodate the applied deformation at a lower overall 

energy level compared to the energy that is expected from the affine assumption. Di-Donna and 

Lubensky used the correlation function of non-affine displacement components in order to 

investigate the degree of non-affinity in disordered domains [8]. They showed that while the 

spatial correlation function varies logarithmically with distance in two-dimension, it varies 
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inversely with distance in three-dimension. The degree of non-affinity of randomly crosslinked 

fibrous networks has been widely studied in two-dimension [9-16]. For example, Langer and Liu 

[17] quantified the non-affinity as the root mean square of the difference between the actual and 

affine displacement of all crosslinks. Head et al. [14] and Bai et al. [16] characterized non-

affinity using a two-point scalar measure, i.e. calculating the change in orientation of a vector 

between two nodes due to deformation. Onck et al. [11] used a similar scalar measure which is 

defined as the difference between affine and non-affine nodal displacement divided by the 

position vector of the respective node. Moreover, Hatami-Marbini and Picu [13] developed a 

two-dimensional measure of non-affinity. These previous studies have shown that the response 

of two-dimensional networks becomes more non-affine with decreasing the fiber number density 

and decreasing the rigidity of the fibrous constituents. Based on these observations, a new length 

scale in terms of the flexibility of the filaments and mean segment length of the network is 

defined to distinguish between affinely and non-affinely deformed two-dimensional networks 

[9,14]. It yet remains to be determined how well the above findings, pertinent to two-

dimensional models, could represent the properties of three-dimensional filamentous networks. 

The elastic properties of three-dimensional systems have also been investigated [18-23]. Because 

of the architecture and coordination number of these networks, the bending of filaments is 

expected to be significant. Thus, non-affine bending deformation is anticipated to play a more 

dominant role. The simulations by Huisman and Lubensky [18] supports this intuitive hypothesis 

and characterize non-affine bending-dominated elasticity of three-dimensional networks. 

Nevertheless, three dimensional lattice-based fiber network models, i.e. Phantom and generalized 

Kagome networks, suggest a crossover from the bending-dominated to the stretch-dominated 

response [20,21].  
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The present work investigates the mechanical properties of three-dimensional networks in a 

systematic way by creating a new strain-based three dimensional non-affinity measure. This non-

affinity parameter is used to determine the influence of network geometric properties and 

constituents’ material properties on degree of non-affinity of three-dimensional fibrous networks. 

Since this new measure of non-affinity characterizes the strain distribution in three-dimensional 

filamentous structures at different length scales, it provides necessary information for developing 

stochastic method to determine their “homogenized” mechanics [24]. Similar to two-dimensional 

fiber networks, we find a power-law variation of all non-affinity measure components with the 

probing length scale for a wide range of length scales. Nevertheless, we report that the two 

power-law scaling regimes previously reported for two-dimensional systems do not appear in 

three-dimensional networks. We also show that similar to previous experimental data [12], the 

exponent of the existing power-law relation depends on the characteristic length scales of the 

networks. Finally, we show that the proposed non-affinity measure is able to capture the 

dependence of the non-affine response on the fiber network architecture. 

II. THE MODEL 

Although real networks are composed of filaments with complex geometry, three-dimensional 

crosslinked networks in the present study are created by placing N straight fibers of length L0 of 

random orientation in a cubic region of size L3. All fibers are assumed to have a circular cross-

section with radius r and length L0. The shortest distance between each individual fibers is 

determined and a rigid permanent crosslink is defined between two fibers that are closer than a 

critical distance L crs / L0= 0.02. It is noted that this critical distance affects the distribution 

function of segment lengths. In the present study, the excluded volume effects are not 

considered. Furthermore, although the natural three-dimensional networks are usually composed 
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of filaments embedded in a solvent, we solely focus on the properties of the filamentous network 

in this work and ignore the network-solvent interaction [25]. In other words, we only seek to 

characterize the non-affinity of three-dimensional networks in terms of their architecture, fiber 

density, and elastic moduli of their individual filaments. Furthermore, we characterize the 

behavior of systems subjected to infinitesimal deformation in order to avoid nonlinear effects. 

Using the above assumptions, we write the energy of a three-dimensional filament at zero 

temperature as [26] 

( ) ( ) ( ) ( )2 22 22 2 2 21 1 1 1
2 2 2 2f w vU dl ds ds d v ds ds d w ds ds d ds dsφμ κ κ κ φ= + + +∫ ∫ ∫ ∫   (1) 

where s is the arc-length, dl/ds is the relative change in length, v and w are transverse 

displacements, φ is the angle of rotation, κw and κv are bending moduli, κφ is the torsional 

modulus, and μ is the stretching modulus. For an athermal filament with circular cross-section, 

the bending and torsional moduli are of the same order, i.e. κ = κw ~ κv ~ κφ 4
fE r∝  and the 

stretching modulus is given by μ 2
fE r∝  where Ef is the Young’s modulus of the individual 

filaments. It is noted that, although not studied here, the model can consider the thermal 

fluctuations by letting μ and κ be independent of each other [14].  Furthermore, it is noted that, 

similar to the observation of Zager et al. [22], we find that the torsional energy contribution is 

smaller than the bending energy contribution. 

The total energy of the network subjected to displacement boundary condition is written using 

Equation (1) and the solution (deformation of the nodes) is found by minimizing this total 

energy. Once the response of the system is obtained, the strain field (deformation gradients) at 

different probing length scales is computed by extending the two-dimensional strain gage based 
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rosette tensometry method to the three-dimension [13]. In three dimension, the strain matrix is 

fully determined by measuring the normal strain in six different directions. Briefly, consider six 

virtual strain gages with arbitrary unit directions, ( ) , 1..6i i =n , which forms a tetrahedron. The 

normal strain in the ith strain gage is represented by ( )( ) ( ) ( ) ( )

1 2 3

i i i i

ε ε ε=n n n nε  where  

( )
3

( )

1
,

i i
j k jk

k
nε ε

=

=∑n j=1..3 and i=1..6.   (2) 

For each tetrahedron, 
( )i

ε n and ( )in  are known. Therefore, a linear system of equations can be 

formed and solved for strain components , , 1..3,jk j kε =  which are equal to the deformation 

gradients ( ) 2j k k ju x u x∂ ∂ + ∂ ∂ .  

Here, sextuplets of nodes are first selected such that they form approximately an equilateral 

tetrahedron of edge size a. The normal strain along each side of the tetrahedron (virtual strain 

gage) is calculated from the nodal displacement. This strain value can be considered as the mean 

normal strain 
( ) ( )1 ( )
i i

a

a da
a

ε ε= ∫n n  over the length of the ith virtual strain gage. Moreover, the 

calculated strain matrix for each tetrahedron can be considered as the average non-affine strain 

field na na 1
jk jkl

V

dV
V

ε ε= = ∫ε  over the length scale l proportional to the volume 3 6 2V a=  of 

the tetrahedron, i.e. l~a. The corresponding affine strain components afε  are calculated from the 

affine estimate of the nodal displacement. It is noted that the affine strain matrix is equal to the 

applied far-field uniform strain at all length scales l.  The 3D non-affinity strain-based measure 

matrix ( )l  is defined as the fluctuation of the actual strain components (deformation gradients) 

relative to their affine estimates, i.e.  
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( ) ( )2 2af na ap( ) jk jk jk
l

l η ε ε ε= = − , j,k=1..3,     (3) 

where apε  is the applied far-field strain. The above strain-based non-affinity measure is 

independent of the applied far-field loading and gives the average of the displacement gradients 

over length scale l. Thus, in addition to being useful for investigating the effect of characteristic 

length scale on the non-affine response of the three-dimensional networks, it is very well-suited 

for investigating the “homogenized” mechanics of these networks at different length scales. 

The mechanical properties, i.e. stretching, bending, and torsional stiffness, of the cylindrical 

filaments are expressed in terms their radius and Young’s modulus. If the stretching modulus is 

used for normalization, a new characteristic length scale bl rκ μ= ∝  results. Another length 

scale is the mean segment length lc which distinguishes between densely or sparsely crosslinked 

filamentous networks. In addition to the characteristic length scales lc and lb, the length of 

filaments L0 and the size of the simulation box L may play a role. In this work, L0 is used to 

normalize all the length scales and filamentous networks with L/L0 from 2 to 10, lb/L0 from 10-3 

and 100, and lc/L0 from 0.025 (~N=3200) to 0.25 (~N=200) are considered.  

In order to investigate the possible influence of the network architecture on its non-affine 

behavior, networks with preferential fiber orientation are generated and their behavior is 

compared with those made up of uniformly distributed filaments [27]. The orientation tensor is 

used to quantify the preferential orientation of the filaments [28]. This tensor is computed by 

averaging the dyadic product of the orientation of all fibers, i.e.  

( )

( ) ( )

( )

, , 1..3

sin cos sin sin cos

i i
mn m n

i

O m nα α

θ φ θ φ θ

= =

=α
,    (4) 
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where θ and φ are, respectively, polar and azimuthal angles, and α
(i)

 is the orientation vector of 

the ith filament in the 3D space. For networks with uniform distribution of fiber orientation, the 

orientation tensor is given by 11 22 22 1/ 3,O O O= = = and 12 13 23 0O O O= = = . 

III. RESULTS 

Figure 1 plots the components of the non-affinity measure as a function of probing length scale l 

for three dimensional filamentous networks with a fiber number density of N=200 and lb/L0=10-3 

when subjected to a uniform strain ap
11ε ε=  in the x1 direction. All non-affinity measure 

components exhibit a power law scaling with the probing length scale l. Similar power law 

behavior is observed for all other networks; nonetheless, characteristic length scales of the 

networks affect the amount of non-affinity and the exponent of the power law relation (as 

discussed below). The presence of the power-law relation for the non-affinity measure (which is 

defined in terms of the fluctuations of the strain field) implies that there is no characteristic 

length scale over which the affine mechanical response could be separated from the non-affine 

behavior for three dimensional filamentous networks.  In the following, we investigate the 

effects of density of the system (as measured by lc/L0), the elasticity of the individual filaments 

(as measured by lb/L0), and the filament preferential orientation (as measured by Oij) on the non-

affine behavior.  

The influence of characteristic length scale lb on non-affine behavior of three dimensional fiber 

networks is shown in Figure 2.  In this plot, the first component of the non-affinity measure is 

plotted for systems of fiber number density N=200 (lc/L0~0.25) and lb /L0 = 10-3 to 100. With 

increasing the parameter lb (the bending stiffness of filaments), the amount of non-affinity 

decreases but becomes almost insensitive to this parameter for large values of lb/L0. The effect of 
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mean fiber length segment on the first component of the non-affinity is plotted in Figure 3. In 

this plot, three-dimensional networks with fiber number density of 200 to 3200 per unit volume 

(lc/L0~0.025 to 0.25) and lb/L0= 0.01 are subjected to uniform far-field uniaxial extension. It is 

seen that with increasing fiber number density (i.e. decreasing mean segment length), the 

behavior of the network becomes more affine. Figure 3 shows that the amount of non-affinity 

seems to saturate with increasing fiber number density, i.e. the non-affinity measure becomes 

less dependent on the fiber density when N > 1600. It is also seen that the scaling exponent of the 

power-law relation decreases with increasing the fiber number density, see inset of Figure 3. A 

similar trend is seen with increasing the bending rigidity of the filaments. This is an important 

observation which does not appear in the analysis of two-dimensional filamentous networks [13] 

but agrees with experimental data obtained on F-actin networks [12]. Liu et al. used tracking 

embedded probe particles to find the local strain field of F-actin networks experimentally. They 

then characterized the degree of non-affinity at a length scale r as <r2Δθ2>r/γ2 where Δθ is the 

change of angle of two particles separated by distance r and γ is the applied shear strain. They 

observed that with increasing the crosslink density (decreasing mean segment length lc), the non-

affinity is independent of applied strain γ, its magnitude decreases, and the exponent of the 

power-law increases. The present three-dimensional model captures all these experimental 

observations. Therefore, Liu et al.’s experimental measurements can be used a promising 

validation study for the present numerical simulations. It needs to be mentioned that the 

numerical results for dense systems (N>1600) are obtained from a smaller simulation box 

(L/L0~2). This prevented us from obtaining the amount of non-affinity at large probing length 

scales and is a limitation of the present study. This limitation might have also affected the 
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reported variation of the scaling exponent with density (inset of Figure 3) because of the size 

effect problem.    

Although non-affinity is more significant for systems with low density and/or less stiff filaments, 

Figures 2-3, the two power-law scaling regimes previously reported for two-dimensional systems 

[13,14,16] is absent in three-dimensional networks (within the range of parameters considered 

here). In Figure 4, the first component of non-affinity measure is plotted for two- and three-

dimensional networks of similar fiber number density N=150, 400, and 800. This plot shows that 

scaling exponent of the power-law behavior of three-dimensional networks is within the range of 

previously reported larger scaling exponents (1.65±0.05) for two-dimensional fiber networks. 

Nevertheless, the power-law scaling regime with the smaller scaling exponent (0.42±0.03) does 

not appear. The reason for this could be the fundamental difference between isostacity of two- 

and three-dimensional networks. In two-dimensional isostatic fiber networks, the scaling 

behavior changes at length scales smaller than a characteristic length scale r*/L0  ≈ 0.5 (Figure 4). 

This is because when the bending stiffness of the filaments increases, their contiguity becomes 

significant and the fiber segments behave similar to the element of a truss with central forces 

(stretching deformation). Nonetheless, three-dimensional networks with binary crosslinks have a 

connectivity well below iso-staticity and their behavior is bending dominated. Therefore, 

although the exponent reduces for dense three-dimensional fiber networks or those composed of 

fiber with higher bending rigidity, the connectivity of the structure is not enough (at least within 

the range of parameters of the present study) to cause the behavior of the network to become 

similar to that of the two-dimensional networks. This difference in the behavior of two- and 

three-dimensional networks is expected to be very important because an accurate 
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characterization of the scaling properties is a necessary step for developing stochastic methods 

that can be used to solve boundary value problems on three-dimensional fiber networks [24]. 

Parenthetically, a note is in place regarding previous studies on two-dimensional networks which 

showed that there exists a non-affinity length scale λ= λ(lb,lc) characterizing the transition from 

affine to non-affine response. This parameter has been expressed as λ= lc(lc/lb)z where z is a 

constant equal to 1/4, 1/3, and 2/5 based on mean field theories, numerical simulations, and, 

scaling arguments, respectively. Following Head et al.[9], we will use z=1/3 in order to calculate 

the non-affinity measure for the plots shown in Figure 4.  For two-dimensional networks with 

N=150, 400, and 800, L0/λ is equal to 2, 46, and 115 while it is much lower for the 

corresponding three-dimensional networks, i.e. 0.9, 2.2, 4.7, respectively. It is first noted that this 

length scale does not determine the existence of the single or two scaling regimes (it has been 

shown that the bending stiffness of the fibers, in two-dimensional networks, controls the scaling 

at the small length scale, see reference [13]). Furthermore, the three-dimensional networks may 

have a different form of λ= λ(lb,lc). Nevertheless, the significantly lower values of L0/λ for three-

dimensional networks compared to two-dimensional systems shown in Figure 4 is consistent 

with the observation that their behavior is more non-affine.       

It is noted although three-dimensional networks has one scaling regime, their mechanical 

behavior can still transition from non-affine bending dominated deformation to affine stretching 

regime depending on the degree of non-affinity measure. In order to check this, the solution of 

the networks subjected to affine deformation is obtained and is used to calculate the effective 

elasticity of the networks at length l=L or l/L=1. The affine uniaxial tension causes stretching 

and rotation of the fibers; thus, the behavior is dominated by only stretching modes. In Figure 5, 
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the ratio of the non-affine and affine energy estimates for networks with different fiber number 

density is plotted as a function of characteristic length lb/L0. It is seen that this ratio approaches 

one with increasing lb/L0 and the system tries to accommodate the applied deformation by 

stretching of the filaments. This is because the bending of filaments gets very costly as bl → ∞ . 

On the hand, the behavior of the networks is dominated by bending of filaments at small lb/L0 

because the stretching of the filaments requires more energy than their bending. For networks 

with fixed lb/L0, a similar behavior is expected as 0cl → . Despite the above discussion, special 

attention should be paid to the fact that three-dimensional networks with binary crosslinks are far 

from the critical Maxwell’s coordination number (connectivity); therefore, their stability is 

dependent on bending elasticity of filaments. In other words, the very large energetic cost of 

filaments does not necessarily inhibit these modes of deformation especially if they are required 

for the overall stability of the structure. This topic and the specific form of non-affinity length 

scale λ= λ(lb,lc) are currently under study and the findings will be reported in a separate 

publication. 

In addition to the dependence of the non-affinity on fiber number density (represented by lc), 

fiber properties (denoted by lb), the network architecture is also expected to affect the non-affine 

behavior of randomly crosslinked networks. In order to investigate the possible influence of 

network architecture on the non-affinity, we generated networks with preferential fiber 

orientation and studied their non-affine repose, Figure 6. In this plot, the fiber number density 

and fiber material properties are kept constant and three types of network architecture are 

considered: random, semi-random, and preferentially oriented. The average non-zero 

components of the orientation tensor for these networks are ( )11 22 22 0.33 ,O O O= = =  
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( )11 22 330.49, 0.02O O O= = = , and ( )11 22 0.50O O= = , respectively.  Figure 6c shows that while 

the network architecture has limited influence on the power-law variation of the non-affinity 

measure with the probing length scale, it significantly changes the amount of non-affinity. As the 

networks become more preferentially oriented, both non-affinity components η11 and η33 

increase. Nevertheless, the increase in η11 is much less than η33 component, which is expected 

considering the microstructure of the networks. The increase in η11 can be explained as 

following:  the filaments in preferentially orientated networks are primarily arranged in parallel 

x1- x2 plane with few fibers in x3 –direction (Figure 6b). Therefore, when loaded in x1-direction, 

the stacks of filaments in x1- x3 plane slide with respect to each other and cause an increase in 

non-affinity. On the other hand, when filaments are uniformly deposited in all directions, a 

sturdier structure is formed to resist the applied force and a more affine response is expected. 

Another interesting observation is that while the line representing η33 lies below the line for η11 

at all probing length scales, η33 component becomes larger than the η11 component when the 

networks become preferentially oriented. This can be explained by based on the network 

architecture. For the networks whose fibers are uniformly distributed, the applied strain in the x1-

direction causes the filaments to become preferentially oriented in this direction. Therefore, η11 > 

η33, i.e. the behavior is more affine in the direction of the applied load. Nevertheless, for 

networks called “preferentially oriented” in Figure 6, prior to the application of the external load, 

the fibers (as seen in x1- x3 plane, Figure 6b) are preferentially oriented in the x1 direction. 

Therefore, when these structures are subjected to uniaxial tensile strain ap
11ε ε= , it is easier for 

the filaments to move in the x3-direction, i.e. the behavior is more non-affine in this direction 

(η33 > η11). This discussion implies that the proposed non-affinity measure is able to capture the 
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possible anisotropy in the architecture of the fiber networks. This is important as it shows the 

potential application of the proposed non-affinity measure in inferring the microstructural 

information from displacement field measurements.  Other non-affinity measures do not often 

have this capability.  For example, consider one of the commonly-used scalar non-affinity 

measures defined as [8,14,17,20] 

( )
( )( )2

1 a a
i i i iap

c

u u u u
l ε

Γ = − −     (5) 

where iu  denotes the ith displacement component of a crosslink and  a
iu  represents its affine 

estimate. Using this non-affinity measure, we obtain Γ ≈ 82, 91, and 120 for networks called 

random, semi-random, and preferentially oriented in Figure 6. This measure, too, show that as 

the networks become preferentially oriented, their behavior becomes more non-affine (which 

agrees with the observed increase in the non-affinity components). Nevertheless, it is unable to 

provide any insight on the underlying cause of such an increase.  

 

IV. CONCLUSION 

In conclusion, it is shown here that mechanical response of three-dimensional networks is non-

affine at all length scale and their deformation is never exactly affine. Furthermore, it is found 

that the non-affinity strain components decay with distance following a power-law relation. 

Unlike two-dimensional networks, the strain-based non-affinity measure only shows one scaling 

regime and the exponent of the power law scaling is dependent on the characteristic length 

scales. In particular, the scaling exponent decreases with increasing the fiber number density as it 
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was observed previously in experimental measurements. It is noted that increasing the bending 

stiffness of the filaments and fiber number density reduce the amount of non-affinity and cause 

the overall behavior becomes more affine.  The network architecture does not significantly affect 

the power of the power-law variation of the non-affinity measure with the probing length scale; 

nevertheless, it significantly affect the amount of non-affinity.  The proposed non-affinity 

measure can be used to infer microstructural information of random fiber networks and similar 

systems from displacement field measurements. 
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Figure 1. The variation of normalized non-affinity components ηjk, j,k=1,2,3 as a function of 
normalized probing length scale for networks with fiber number density N=200 and lb/L0=0.001 

when subjected to uniaxial tensile strain ap
11ε ε=  
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Figure 2. The variation of the first component of the normalized non-affinity components η11 as 
a function of the normalized probing length scale for networks composed of fibers with different 

flexibility parameter lb/L0 and N=200, when subjected to uniaxial tensile strain ap
11ε ε=  
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Figure 3. The variation of the first component of the normalized non-affinity components η11 as 
a function of the normalized probing length scale for networks with lb/L0 = 0.01 and different 

fiber number densities N, when subjected to uniaxial tensile strain ap
11ε ε= . The inset shows the 

variation of the exponent of the power law scaling as a function of N. 
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Figure 4. The first component of non-affinity η11 as a function of the normalized probing length 
scale for two-dimensional and three-dimensional networks with lb/L0 = 0.01 and different fiber 

number densities N, when subjected to uniaxial tensile strain ap
11ε ε= . It is seen that the scaling 

regime with small exponent does not appear in three-dimensional networks. Moreover, at a given 
fiber number density, three-dimensional systems show significantly more non-affine behavior 

that their respective two-dimensional networks. 
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Figure 5. The influence of filament flexibility lb/L0 on the ratio of non-affine and affine total 
energy U

non-affine
/U

affine
of the three-dimensional networks with different fiber number density, 

when the network is subjected to uniaxial tensile strain ap
11ε ε=  
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Figure 6. The influence of fiber network microstructure on the first (η11) and third (η33) 
component of the normalized non-affinity measure for networks with lb/L0 = 0.01 and N=200 

when subjected to uniaxial tensile strain ap
11ε ε= . Three types of network architecture is 

considered: random, semi-random, and preferentially oriented. The representative microstructure 
of (a) random networks and (b) preferentially oriented networks is shown. (c) As the networks 

become preferentially oriented the non-affinity increases but the exponent of the power-law 
relation remains unaltered. The ratio of first (η11) and third (η33) non-affinity component is 

related to the degree of anisotropy as discussed in the text.   
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