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The kinetic preference of actin-binding proteins to actin filaments is altered by external forces
on the filament. Such an altered kinetic preference is largely responsible for remodeling the actin
cytoskeletal structure in response to intracellular forces. During remodeling, actin-binding proteins
and actin filaments interact under isothermal conditions, because the cells are homeostatic. In such a
temperature homeostatic state, we can rigorously and thermodynamically link the chemical potential
of actin-binding proteins to stresses on the actin filaments. From this relationship, we can construct a
physical model that explains the force-dependent kinetic preference of actin-binding proteins to actin
filaments. To confirm the model, we have analyzed the mechanosensitive alternation of the kinetic
preference of Arp2/3 and cofilin to actin filaments. We show that this model captures the qualitative
responses of these actin-binding proteins to the forces, as observed experimentally. Moreover, our
theoretical results demonstrate that depending on the structural parameters of the binding region,
actin-binding proteins can show different kinetic responses even to the same mechanical signal
tension, in which the double-helix nature of the actin filament also plays a critical role in a stretch-
twist coupling of the filament.

Subject Areas: Biological Physics, Statistical Physics

I. INTRODUCTION

Actin is a ubiquitous, multiple-role protein in eukary-
otic cells [1–3]. The assemblage of actin molecules into
the actin cytoskeleton is mediated by actin-binding pro-
teins (ABPs) [4–6]. Some ABPs bind to or dissoci-
ate from actin filaments (F-actin) in a mechanosensi-
tive manner. Force spectroscopy using optical tweez-
ers indicates that a non-covalent bond between F-actin
and myosin II behaves as a catch bond, whose life-
time increases when stretched by mechanical forces [7].
Other studies have shown that tension in F-actin pre-
vents cofilin binding prior to severing the F-actin [8], and
that myosin II is recruited to stretched F-actin on the cell
cortex [9]. F-actin branch formations induced by Arp2/3
binding can be biased by the curvature of the mother fil-
ament [10]. Thus, the mechanosensitive kinetics of ABPs
on F-actin are no longer disputed. However, the mech-
anisms of the mechanosensitive kinetics of ABP–actin
binding remain poorly understood. Elucidating these
mechanisms is important for understanding how the actin
cytoskeletal structure is modified by intracellular forces.
To elucidate the mechanism of mechanosensitive kinet-
ics, researchers have focused on the catch-bond behav-
ior in dissociation pathways of the ligand–receptor bond
(the so called catch-bond model) [11, 12]. The catch-
bond model, which is an extension of Kramers’ reaction–
rate theory, successfully explains how the pulling ligand
prolongs the bond lifetime, as observed under single-
molecule force spectroscopy [7, 12]. However, the catch-
bond model is limited to dissociation kinetics in the pres-
ence of a pulling ligand and cannot reveal how the kinetic
preference of ABPs to F-actin changes under mechani-
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cal forces on the F-actin. Thus, we present a physical
model that describes this mechanosensitive alternation
of kinetic preferences. Using this model, we predict the
number of ABPs bound to F-actin under given mechan-
ical conditions.

II. KINETIC PREFERENCE EXPRESSED BY
CHEMICAL POTENTIAL

The number of ABPs bound to F-actin can be deter-
mined by kinetically balancing the binding and unbind-
ing processes between ABPs and F-actin. The balance
is represented by an equilibrium constant. From a sta-
tistical mechanics perspective, the equilibrium constant
quantifies the chemical potential difference between the
bound and unbound states. The ABP–F-actin system is
considered as a two-state system of bound and unbound
states of the ABP–F-actin complex. State transitions
can proceed from the unbound to the bound state or
vice versa. The preferred direction of the transition de-
pends on the chemical potential difference, ∆µ, between
the bound and the unbound ABPs:

∆µ = µb − µu , (1)

where µb and µu denote the bound and unbound states,
respectively.
The sign of ∆µ determines the preferred state of the

ABPs under the given mechanical conditions. For in-
stance, positive (negative) ∆µ indicates an increase in the
number of unbound (bound) ABPs (Fig. 1). Our physi-
cal model expresses the change in the chemical potential
difference, ∆µ, under an altered mechanical condition.
Two assumptions are imposed in the model. The ki-

netic assumption dictates that the chemical potential
of the unbound state, µu, is unchanged throughout the
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binding process. This implies that the number of un-
bound proteins in the cytosol is sufficiently large and re-
mains essentially constant, despite the dynamic exchange
of bound and unbound proteins.
The mechanics assumption describes the F-actin as a

continuous elastic cylinder for estimating the deforma-
tion energy (Fig. 2A). This implies that the atomic-
level energy changes of F-actin correlate well with the
continuum-level energy changes. We focus on the linear
elastic regime, wherein the F-actin deformation is the
sum of the axial, bending, and torsional deformations.
We consider an axial force exerted along the actin fila-
ment and conduct analogous analyses on the bending and
torsional moments of the filament.
The axial forces induce the elastic stress σ within the

ABP–actin complex. A stress change dσ alters the chem-
ical potential dµb of the bound ABPs. This relationship,
given by the Gibbs–Duhem equation [13], constrains the
intensive parameters in the thermodynamic system. Un-
der isothermal conditions, the chemical potential change
satisfies

vdσ + dµb = 0 , (2)

where v is the volume of the binding region of the ABP–
actin complex within the actin filament. Equation (2)
means that the intensive variables (stress and chemical
potentials) cannot change independently.
To fully express the chemical potential µb, we note that

the linear elastic deformation of the actin filament obeys
Hooke’s law:

σ = Eǫ , (3)

where E and ǫ are the Young’s modulus and axial strain
of the ABP–actin complex filament, respectively.
Integrating Eq. (2), we obtain

µb(ǫ) = µb(ǫi)−
v0E

2
(ǫ− ǫi) (ǫ+ ǫi + 2) , (4)

where µb(ǫi) is the chemical potential under the inher-
ent strain ǫi induced by the binding of an ABP to a free
filament, and v0 is the volume of the binding region in
the stress–free state (Fig. 2B). According to Eq. (4),
the strain ǫ decreases the chemical potential. The chem-
ical potential difference, ∆µ(ǫ), is directly obtained by
subtracting µu from µb(ǫ).
We now model the case of moments exerted on the

actin filament. A bending moment on the actin filament
induces a surface strain ǫ, which is a function of the di-
ameter d and curvature, c, of the filament:

ǫ = −
cd

2
. (5)

Here, positive curvature denotes that the normal vector
of the curvature is interior looking (Fig. 2C). By sub-
stituting Eq. (5) into Eq. (4), the chemical potential of
ABPs on a bent actin filament becomes a function of the
curvature c:

µb(c) = µb(ci)−
v0Ed

8
(c− ci) (cd+ cid− 4) , (6)

where ci = −2ǫi/d is the inherent curvature.
Finally, we model the case of torque Tθ exerted on the

actin filament. The corresponding Gibbs-Duhem equa-
tion under the isothermal condition is given by

θdTθ + dµb = 0 . (7)

To fully express µb, we again assume a linear elastic tor-
sional deformation of the actin filament:

Tθ =
κθ

δ0
(8)

where the torsional angle θ is defined along the axial
length δ0 of the binding region, and κ denotes the tor-
sional rigidity (Fig. 2D). Integrating Eq. (7), we obtain

µb(θ) = µb(θi)−
κ

2δ0

(

θ2 − θ2i
)

(9)

where µb(θi) is the chemical potential at an inherent tor-
sional angle θi, induced by an ABP binding to a free
filament.

III. BRANCH FORMATION INDUCED BY THE
ARP2/3 COMPLEX PREFERENTIALLY FROM
THE EXTENSIONAL STRAIN OF THE ACTIN

FILAMENT

Preferential branch formation by the Arp2/3 on the
convex face of a curved actin filament has been observed
in vitro [10]. In this study, the relative branch density
was quantified by the probability density ratio of the
curvatures at the branch point to the curvature of the
mother filament. The relative branch density monoton-
ically increased with negative curvature, indicating that
the extensional side of the Arp2/3-binding site of F-actin
promotes either the binding of the Arp2/3 complex to F-
actin, and/or the activation of bound Arp2/3 complex.
The activation of the bound Arp2/3 complex is enhanced
by nucleation promoting factors (NPFs) [14–16], while
neither NPFs nor binding to the side of F-actin are nec-
essary for the Arp2/3 complex to achieve the active con-
formation [17]. The extent of NPF stimulation is also not
affected by the F-actin surface that the Arp2/3 complex
binds to [15]. Therefore, we focus on the former possi-
bility that the extensional side of F-actin promotes the
binding of the Arp2/3 complex to F-actin.
To explain this mechanosensitive branch formation by

Arp2/3 binding to the bent filament, our model calcu-
lates the chemical potential difference between the bound
and unbound states of the Arp2/3-NPF-F-actin com-
plex [15]. We consider a major chemical pathway in the
branch nucleation [14, 15], and define the chemical po-
tential difference between the bound and unbound states
between the Arp2/3-NPF complex and F-actin (see Ap-
pendix A). Here, in the experiment [10], as F-actin was
immobilized on a surface before incubation of branch nu-
cleation, we neglected a possibility that the curvatures
were promoted by branch formations. In terms of the
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chemical potential, the relative branch density P̃ (c) is
given by

P̃ (c) =
1

Π
exp [−β∆µ(c)] , (10)

where

Π =

∫

exp [−β∆µ(c)]Pmf(c)dc. (11)

Here, Pmf(c) is the probability density of the mother fil-
ament curvature, and the thermal energy is defined as
β−1 = kBT . Equation (10) is derived in the Appendix
A.
According to the experimental data [10], the relative

branch density is the unity at zero curvature. Therefore,
the constant Π is computed as

Π = exp [β∆µ(0)] , (12)

and Eq.(10) becomes

P̃ (c) = exp
[

−β(µb(c)− µb(0))
]

, (13)

where we assume that the unbound-Arp2/3-NPF chem-
ical potential µu is constant and independent of the F-
actin curvature. Most of model parameters were obtained
from experimental data of other studies (see Table I).
The only unknown parameter was the binding region vol-
ume v0. To predict this parameter, we minimized the
least–squares of error between the model and experimen-
tal data. If the mathematical expression was incorrect,
our model could not replicate the qualitative phenomena
even after fitting all parameters.
Our model qualitatively captures the dependence of

the relative branch density on the mother filament curva-
ture (Fig. 3); namely, the increased density at negative
curvatures. Thus, the mathematical expression of the
model adequately explains the mechanosensitive branch
formation. Moreover, it provides novel microscopic in-
sight into the preferential branch formation. The max-
imum and minimum chemical potentials over the mod-
eled range differ by nearly kBT , comparable to the en-
ergy of one salt bridge between two amino acids [18].
Therefore, the net breakage or net additional formation
of one salt bridge may rectify curvature-biased branch
formation. Because the model assumes that the axial
strain modifies the chemical potential energy to satisfy
the Gibbs–Duhem equation, we speculate that the un-
bound state can be converted to the bound state merely
by stretching the filament; bending may not be necessary.
A shift in the average curvature of the filament breaks

the symmetry of the bending fluctuation with respect to
the curvature sign. Preferential branch formations un-
der such asymmetric conditions have been investigated
by the fluctuation gating (FG) model [10]. The FG
model imposes a threshold curvature cth beyond which
the Arp2/3 stably binds and initiates branching. The
asymmetry of the fluctuating curvature can bias the
probabilities of stable binding and branching. Thus, the
FG model also captures the qualitative dependence of

the relative branch density on the filament curvature.
However, our proposed and the FG models would dif-
ferently predict the branch formations on a tensile fila-
ment. The FG model predicts that a branch formation
cannot be promoted or strongly suppressed because the
axial tensile force reduces the bending fluctuation of the
filament [19]. In contrast, our model predicts that an ex-
tensional strain on the tensile filament will trigger branch
formation where, by substituting the predicted value of
v0 into Eq. (4), we estimate that the tensile force of 100
pN on F-actin increases the equilibrium constant Ke by
24% when compared with that of the stress free state.
Thus, both models require validation by the experimen-
tal observations of Arp2/3–induced branch formation on
tensile filaments. Such observations present an exciting
experimental challenge.

IV. COFILIN-ACTIN BINDING SUPPRESSED
BY UNTWISTING ACTIN FILAMENT

When actin filaments are decorated by cofilin
molecules, they are additionally twisted by 5◦ per 2.75
nm [20], suggesting that changing the pitch of the helical
actin filament affects the cofilin–actin binding. In fact,
tension in the actin filament prevents cofilin from binding
to the filament [8]. Moreover, on account of the double
helical nature of actin filaments, the tension generates a
torsional moment on the filament through stretch–twist
coupling [21, 22]. Using our model, we investigate how
changes in the axial strain and pitch of the actin helix
upon cofilin-actin binding alter the chemical potential
difference.
We consider both the binding and unbinding of cofilin

on the filament. At chemical equilibrium, the relative
cofilin–bound density P̃ (ǫ, θ) defined in the previous sec-
tion:

P̃ (ǫ, θ) =
1

Π
exp[−β∆µ(ǫ, θ)], (14)

where

Π =

∫ ∫

exp[−β∆µ(ǫ, θ)]Pmf(ǫ, θ)dǫdθ, (15)

∆µ(ǫ, θ) = ∆µ(ǫ) + ∆µ(θ). (16)

Here, Pmf(ǫ, θ) denotes the probability density under ax-
ial strain ǫ at the torsional angle θ of the mother filament.
Because the binding region volume v0 is unknown, we

predict how the chemical potential difference responds to
the axial strain and helical pitch in three regimes: (A)
v0E ≪ κ/δ0, (B) v0E ∼ κ/δ0, and (C) v0E ≫ κ/δ0,
where v0E and κ/δ are competing energy terms. To
analyze the effect of axial strain and helical pitch on
the chemical potential difference, we present the contour
plots of the change in chemical potential difference, de-
fined as d∆µ(ǫ, θ) = ∆µ(ǫ, θ) − ∆µ(ǫi, θi) (see Fig. 4).
Because a tensile force increases the axial strain on the
filament and untwists the helical pitch [22], the chem-
ical potential difference changes along the helical pitch
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axis (from right to left) and along the strain axis (from
bottom to up) in Fig. 4.
More specifically, the chemical potential difference in-

creases as the helical pitch untwists and decreases as the
axial strain increases. To explain the tension–induced
suppression of cofilin–actin binding, the chemical poten-
tial difference should increase under tensile force. There-
fore, the axial strain should contribute much less to the
chemical potential difference than the untwisting of the
helical pitch, implying that v0E ≤ κ/δ0 (panel A and B
of Fig. 4). Hereafter, we neglect the axial strain contri-
bution and discuss the relative cofilin-bound density as
the torsional fluctuation reduces under tension.
The severing of the actin filaments by cofilin is pre-

vented or delayed by very small forces (several piconew-
tons) [8]. Because a tensile force of several piconew-
tons will scarcely change the helical pitch, we question
whether a slight untwisting of the helix in our model can
replicate the tension-induced suppression of cofilin–actin
binding. Experimentally, a 5–pN tensile force reduces
the torsional fluctuation by approximately 60% [8], indi-
cating that the torsional rigidity was approximately 2.5
times higher under tension than in the tension–free state.
Therefore, we investigated the effect of torsional rigidity
on the relative cofilin-bound density P̃ (θ). The results
are plotted in Fig. 5, where the relative density is nor-
malized by its value at the inherent helix pitch.
According to this figure, the untwisting of the heli-

cal pitch induces a steeper change in P̃ (θ) under higher
torsional rigidity (tension) than under lower torsional
rigidity (tension–free). In the tense state, untwisting of
the helix by 0.7 (deg/2.75 nm) nearly halves the relative
cofilin-bound density; in the relaxed state, an untwisting
of approximately 2.6 (deg/2.75 nm) is required to halve
the relative cofilin–bound density. Thus, our theoretical
model suggests that high torsional rigidity (equivalently,
low torsional fluctuation) plays a pivotal role in suppress-
ing cofilin–actin binding.
Because cofilin binding increases fluctuation of F-actin

[23], and because a positive correlation between cofilin
binding and fluctuation of F-actin was presented using
single–molecule imaging analysis [24], we further focus
on the relationship between cofilin bindings and the fluc-
tuation of F-actin. Based on Eq. (9), we obtain a math-
ematical equation expressing how the on–rate of cofilin
binding to the actin filament is altered by the torsional
fluctuation as follows.

kon

k
(r)
on

=

√

〈θ2r 〉

〈θ2〉
exp

(

−β
κrθ

2
i

2δ0

(

〈θ2r 〉

〈θ2〉
− 1

))

(17)

Here, 〈θ2〉 is the variance of the torsional angle, kon is
the on–rate of cofilin binding, and super- and subscript
r indicate values at an arbitrary reference state r. We
give a derivation of Eq (17) in the Appendix B. In the
derivation, we find that the on-rate of cofilin depends on
the torsional fluctuation of F-actin, unless the chemical
potential difference is independent of the torsional an-
gle. Therefore, the dependence of the on-rate on torsional

fluctuation is expected to show evidence for a dependence
of the chemical potential difference on the torsional an-
gle.
Figure 6 shows good agreement between the experi-

mental result and our model prediction, where we do not
fit parameters in Eq. (17) to the data, but just employ
values measured experimentally in previous studies [23–
25]. Because cofilin would access F-actin at its favored
torsional angle θi by chance, a decrease of torsional fluc-
tuation of F-actin results in a decrease of probability that
cofilin is able to access F-actin at θi, leading to a decrease
of the on-rate.
Here, because Hayakawa et al. analyzed the single-

molecule imaging data in terms of their originally defined
parameter, index of fluctuation (IF), instead of torsional
fluctuation [24], we explain how we plot Fig. 6 as fol-
lows. At first, because IF was calculated based on the
standard deviation of the fluorescence intensity of each
pixel along the filament [24], IF represent mixtures of lon-
gitudinal, bending and torsional fluctuations of F-actin,
where the pixel size was 85 nm, which is approximately
double spacing of a crossover of the filament helix. At this
pixel scale, torsional fluctuation contributes primarily to
IF rather than longitudinal and bending fluctuations, im-
plying IF ∝

√

〈θ2〉. This is because Young’s modulus is
very high and the persistence length of the actin and
cofilactin filaments are approximately 10 µm and 2 µm,
respectively [23], indicating that F-actin is straight and
unchanged at the length of the pixel scale. Then, we nor-
malized the magnitude of the index of fluctuation by IF =
4.5 as the reference state, namely,

√

〈θ2〉 / 〈θ2r 〉 = IF/4.5.
This is because the on–rate at the reference state (IF =
4.5) is 0.08, which is almost the same as the mean value of
the on–rate measured in [24]. Thus, we could essentially
adopt the value of torsional rigidity without requiring the
external force measured in [23, 25] as the value of κr.

V. DISCUSSION

We proposed a physical model based on the Gibbs–
Duhem equation. Our model explains how mechanical
forces alter the kinetic preference of ABPs to F-actin.
Moreover, the model captures the qualitative dependence
of the relative branch density on the mother filament cur-
vature, as experimentally observed in Arp2/3–induced
actin branching. Our model also suggests that Arp2/3–
actin binding can be promoted by stretching an actin
filament. Following the successful theoretical demonstra-
tion of curvature-biased branching, we applied the model
to the suppression of cofilin binding by tense actin. We
found that the tension–induced untwisting of the F-actin
helix sufficiently suppresses cofilin–actin binding. Then,
based on the model, we have obtained the theoretical re-
lationship between the on-rate of cofilin binding and the
torsional fluctuation of F-actin. The theoretical relation-
ship was confirmed by the corresponding experimental
data without fitting any model parameters, showing good
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agreement between the model and its corresponding ex-
periment. The reduced torsional fluctuation is essential
for suppressing the binding of cofilin.

We suggest that, depending on the ABPs, the ABP–
actin system might respond differently (i.e., might pro-
mote or suppress binding) to the same mechanical sig-
nal tension. The double–helix nature of F-actin plays a
critical role in these complementary responses because it
allows the conversions of the mechanical signal tension to
another mechanical signal, torsion. These two mechani-
cal deformations of F-actin (stretch and torsion) can be
recognized by various ABPs. Because the mechanical de-
formation that mainly changes the chemical potential dif-
ference depends on the volume v0 and the axial length δ0
of the binding region, ABPs may be evolutionary adapted
to certain values of v0 and δ0; for instance, v0E ≤ κ/δ0
and v0E ≫ κ/δ0 may suppress cofilin–actin binding and
promote Arp2/3–actin binding, respectively. The latter
might also promote actin–myosin II binding, as myosin
II likely binds to stretched F-actin [9]. Therefore, to bet-
ter understand the mechanosensitive ABP–actin kinetics
from the molecular to kinetic levels, we must relate struc-
tural information on F-actin binding sites to physical in-
formation, quantified by v0 and δ0.

Our model represents the mechanical properties of F-
actin by the constitutive equations of elasticity. There-
fore, it can be rendered applicable to other molecular
systems by selecting an alternative constitutive equation.
In the presence of ATP, kinesin preferentially binds near
other bound kinesin molecules at the plus-end of the mi-
crotubule [26]. If the binding probability were quanti-
fied as a function of distance between the two adjacent
bound kinesins, our model might predict whether kinesin
can recognize microtubule distortions induced by an ad-
jacently bound kinesin.

Finally, to our knowledge, there are only a few
experimental studies that describe quantitatively the
mechanosensitive kinetic preference (except the catch-
slip-bond behavior), and currently, all existing quanti-
tative data can be described by mechanosensitivities of
branching [10] and severing [24] of F-actin, which we
could explain using our model. Lack of experimental
data currently hampers interpretations of results describ-
ing the kinetics of ABPs together with the (microscopic)
mechanical state of F-actin, such as strain, curvature and
torsion. Because single-molecule imaging techniques are
still growing rapidly, there could be opportunities for
testing our model by possible future experiments that
quantify either the on-rate or off-rate of ABPs with re-
spect to the mechanical state of F-actin. There might
also be unawareness of the emergence of mechanosensi-
tive kinetics in mechanically stimulated F-actin. This is
due to the lack of theoretical concepts. Namely, there
is a body of experimental data describing the off-rate of
ABPs (ligand) stimulated mechanically in which these
are motivated by the theoretical concept of the catch-
bond model (which expresses the off-rate of a stimulated
ligand), while this is not the case of F-actin (receptor).

We expect that our model offers another approach (be-
sides catch-bond model) based on physics to understand
mechanosensitive kinetics.
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TABLE I. Parameters

Symbol Value Unit Description Ref.
T 300 K Temperature [10]
E 1.8× 109 Pa Young’s modulus of actin filament [27]
d 5.6× 10−9 m Diameter of actin filament [27]
v0 2.23 × 10−28 m3 Volume of Arp2/3-F-actin binding region n/aa

κ 5× 10−27 Nm2 Torsional rigidity of F-actin with tensile force [8]b

κ 2× 10−27 Nm2 Torsional rigidity of F-actin without external force [23, 25]
δ0 3.7× 10−9 m Axial length of the cofilin-F-actin binding region [28]c

ǫi 0.0 - Inherent cofilin-F-actin strain [20]d

θi 1.17× 10−1 rad Inherent cofilin-F-actin torsion angle in the length δ0 [20]

a Predicted in this study
b Estimated from the torsional fluctuation
c Measured distance between α-carbons in residues K326 and K336 at the pointed and barbed subunits, respectively, based on the PDB
file from Ref. [28].

d No significant difference in the axial rise per subunit between F-actin and cofilin–F-actin.

∆µ > 0∆µ < 0

ABP

Actin filament

FIG. 1. Chemical potential difference, ∆µ, is defined by subtracting the chemical potential in the bound state from in
the unbound state. Therefore, negative and positive ∆µ denotes an increase in the number of bound and unbound ABPs,
respectively.
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v0

ABP

Actin filament

c > 0

c < 0
δ0

θ

A B

C D

FIG. 2. Schematics of our model: (A) F-actin is modeled as a continuous elastic cylinder. (B) The volume v0 of the binding
region in the actin filament in the stress–free state. (C) Definition of the sign of the curvature c at two possible ABP-bound
sides. (D) The torsional angle θ is defined along the axial length δ0 of the binding region.
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Appendix A: Reduced chemical pathway in
branching formation

Arp2/3-induced branch formation proceeds in three
steps: the Arp2/3 complex and nucleation promoting
factor (NPF) bind to F-actin, branch nucleation is ac-
tivated from the Arp2/3–NPF–F-actin complex, and the
daughter filament elongates [14, 15]. Because the elon-
gation step proceeds from the distal side of the bound
Arp2/3–NPF complex away from its tethering site on F-
actin, and because the extent of NPF stimulation is not
affected by its tethering surface of F-actin [15], we spec-
ulate that the curvature of F-actin affects the binding
steps predominantly. Although there are several possi-
ble pathways from Arp2/3, NPF and actins to branched

F-actin, the major pathway is considered to be the fol-
lowing [14, 15]:

Arp2/3-NPF + ABS
kon
⇋

koff

Arp2/3-NPF-ABS (A1)

Arp2/3-NPF-ABS
kac
⇀ (Arp2/3-NPF)∗-ABS (A2)

Here, ABS indicates an Arp2/3 binding site on the F-
actin surface. Activated bound states of the Arp2/3–
NPF–F-actin complex are denoted by (Arp2/3–NPF)∗–
ABS. The corresponding kinetic equations are given by

d

dt
[Arp2/3-NPF-ABS] = kon[Arp2/3-NPF][ABS]− koff [Arp2/3-NPF-ABS]− kac[Arp2/3-NPF-ABS] , (A3)

d

dt
[(Arp2/3-NPF)∗-ABS] = kac[Arp2/3-NPF-ABS] . (A4)

Square brackets [·] indicate the density of quantity ·. Be-
cause the efficiency of activating bound Arp2/3 is very
low even at maximally activating concentrations of NPF
and the off–rate is very high (kac/koff ≪ 1) [15], we can
approximate Eq. (A3) as follows.

d

dt
[Arp2/3-NPF-ABS]

≃ kon[Arp2/3-NPF][ABS]− koff [Arp2/3-NPF-ABS]

(A5)

Thus, in the chemical equilibrium, a balance between
binding and unbinding of Arp2/3-NPF and F-actin, and
initial reactants and final products are related by

[(Arp2/3-NPF)∗-ABS]eq

= λKe[Arp2/3-NPF]eq[ABS]eq , (A6)

λ = kacτ (A7)

Ke =
kon
koff

, (A8)

where λ and Ke are the efficiency of branching activation
and the equilibrium constant, respectively. τ is incuba-
tion time (cf. 70–120 s [10]). The chemical potential of
this reduced process can be related to the equilibrium
constant:

∆µ = −
1

β
lnKe . (A9)

In deriving the above relationship, we ignored the cur-
vature of the mother filament. By the same approach,
we now derive the corresponding chemical process on the
filaments of curvature c, thereby rewriting the densities

as

ρA := [Arp2/3-NPF] , (A10)

ρF(c) := [ABS] at the curvature c, (A11)

ρFA(c) := [Arp2/3-NPF-ABS] at c, (A12)

ρFA∗(c) := [(Arp2/3-NPF)∗-ABS] at c, (A13)

the kinetic equation of the reduced chemical process be-
comes

d

dt
ρFA(c) = kon(c)ρAρF(c)− koff(c)ρFA(c) (A14)

d

dt
ρFA∗(c) = kacρFA(c) (A15)

where the kinetic constants kon(c) and koff(c) also depend
on the curvature c.
Considering that most of the binding sites are not oc-

cupied by Arp2/3 complexes, we approximate the density
of free binding sites at curvature c by the total density
of binding sites at the same curvature.

ρF(c) ≃ ρtotalF (c) (A16)

Then,

d

dt
ρFA(c) ≃ kon(c)ρAρ

total
F (c)− koff(c)ρFA(c)(A17)

In chemical equilibria, the equilibrium density of reac-
tants and product is given by

ρFA∗(c) = λ exp(−β∆µ(c))ρAρ
total
F (c) (A18)

here,

∆µ(c) = −
1

β
lnKe(c) . (A19)
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The fraction P (c) of branches at curvature c is then de-
fined as

P (c) :=
ρFA∗(c)

∫

ρFA∗(c)dc
(A20)

=
exp(−β∆µ(c))Pmf(c)

∫

exp(−β∆µ(c))Pmf (c)dc
. (A21)

Here, from Eq. (A20) to Eq. (A21), we canceled λ be-
cause it appeared both in the numerator and denomina-
tor of the equations.
Pmf(c) denotes the density of Arp2/3 binding sites on

F-actin at curvature c, relative to the total density of the
binding sites:

Pmf(c) :=
ρtotal
F

(c)

NF
(A22)

where the total binding site density NF is independent
of curvature. Thus, the relative branch density P̃ (c) is
mathematically described by

P̃ (c) :=
P (c)

Pmf(c)
(A23)

=
1

Π
exp(−β∆µ(c)) (A24)

where the normalization constant Π is

Π =

∫

exp(−β∆µ(c))Pmf (c)dc . (A25)

Appendix B: On–rate of cofilin binding

A positive correlation between the on–rate of cofilin
binding and fluctuation of F-actin was presented experi-
mentally [24]. To elucidate this correlation based on our
model, we expressed the on–rate, kon, as a function of
torsional fluctuation of F-actin based on our model. As
shown in the experiment [24], the off-rate, koff , was al-
most constant regardless of the fluctuation. Therefore,
the dependence of the on–rate on the fluctuation can be
derived from the dependence of the equilibrium constant,
Ke, on the fluctuation (cf. Ke = kon/koff ). Because
Hayakawa et al. analyzed the data in terms of the mag-
nitude of fluctuation, we should be able to derive the
equilibrium constant at a given magnitude of the fluctu-
ation. Thus, the ensemble average ofKe(θ) shall be taken
with respect to torsional angle θ at constant κ (equiva-
lently, constant magnitude of fluctuation) as follows.

Ke =

∫

Pf(θ) exp (−β∆µ (θ)) dθ (B1)

Pf (θ) =
1

Z
exp

(

−β
κθ2

2δ0

)

(B2)

Z =

∫

exp

(

−β
κθ2

2δ0

)

dθ (B3)

Here, Pf(θ) is the probability density of F-actin for tor-
sion angle θ, which adopts the Boltzmann distribution,
and Z is the partition function. Note that, if the chem-
ical potential difference ∆µ(θ) is not dependent on the
torsional angle θ, Eq. (B1) indicates that Ke can be a
constant regardless of the torsional rigidity (equivalently,
the torsional fluctuation). This is not the case with the
experiment. Thus, we expect that the dependence of the
on-rate on the fluctuation represents evidence for the de-
pendence of ∆µ(θ) on θ.

Taking into account the rotational symmetry of the
F-actin helix, integrations in Eqs. (B1) and (B3) are
performed in the interval [−π : π], and thus,

Ke = 2πZ−1 exp

(

−β

(

∆µ(θi) +
κθ2i
2δ0

))

. (B4)

Upon calculation, we substitute Eq. (9) into ∆µ(θ) on
the right hand side of Eq. (B1).

Because βκ/δ0 is of the order of 102, the exponential
term in Eq. (B3) decreases steeply as |θ| increases. Thus,
the integration interval can be changed to an infinite in-
terval, and thus we can simply calculate the partition
function,

Z =

√

2πδ0
βκ

. (B5)

Since Hayakawa et al. expressed the fluctuation by their
originally defined parameter “index of fluctuation” (IF),
we should normalize the torsional fluctuation to com-
pare the model prediction with the experimental results.
We choose an arbitrary reference state r, and then nor-
malized the equilibrium constant Ke by its value at the
reference state.

Ke

K
(r)
e

=

√

κ

κr
exp

(

−β
κrθ

2
i

2δ

(

κ

κr
− 1

))

(B6)

=

√

〈θ2r 〉

〈θ2〉
exp

(

−β
κrθ

2
i

2δ

(

〈θ2r 〉

〈θ2〉
− 1

))

(B7)

From Eq. (B6) to Eq. (B7), we used the law of equipar-
tition of energy, κ 〈θ2〉 = 1/β. Finally, using the exper-
imental evidence that koff is almost constant regardless
of the fluctuation, we obtain Eq. (17) as follows.

Ke

K
(r)
e

=
konk

(r)
off

k
(r)
on koff

(B8)

=
kon

k
(r)
on

(B9)
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