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Estimation of the Diffusion Constant from Intermittent Trajectories with Variable Position
Uncertainties

Peter K. Relich, Mark J. Olah, Patrick J. Cutler, Keith A. Lidke

The movement of a particle described by Brownian motion is quantified by a single parameter, D, the diffu-
sion constant. The estimation of D from a discrete sequence of noisy observations is a fundamental problem in
biological single particle tracking experiments since it can report on the environment and/or the state of the par-
ticle itself via the hydrodynamic radius. Here, we present a method to estimateD that takes into account several
effects that occur in practice, important for correct estimation of D, and that have hitherto not been combined
together for estimation of D. These effects are motion blur from finite integration time of the camera, intermit-
tent trajectories, and time-dependent localization uncertainty. Our estimation procedure, a maximum likelihood
estimation with an information based confidence interval, follows directly from the likelihood expression for a
discretely observed Brownian trajectory that explicitly includes these effects. We begin with the formulation of
the likelihood expression and then present three methods to find the exact solution. Each method has its own
advantages in either computational robustness, theoretical insight, or the estimation of hidden variables. The
Fisher information for this likelihood distribution is calculated and analyzed to show that localization uncer-
tainties impose a lower bound on the estimation of D. Confidence intervals are established and then used to
evaluate our estimator on simulated data with experimentally relevant camera effects to demonstrate the benefit
of incorporating variable localization errors.



I. INTRODUCTION

Single Particle Tracking (SPT) is a method to observe and classify the motion of individual particles as trajectories:
estimates of a particle’s position in a sequence of discrete measurement times. In the field of biological microscopy,
SPT has been used for finding and analyzing protein motion in heterogeneous environments like the cellular mem-
brane [1, 2] and cytoplasm [3, 4]. The SPT trajectory information can be used to resolve variations in the individual
motion of molecules that would otherwise be lost in ensemble imaging techniques.

In the analysis of trajectories, the pure Brownian motion model is often the first model used to describe a trajectory
in the absence of prior information about particle behavior. The behavior of a single particle dominated by Brownian
motion can be described by a normal distribution with the variance term proportional to a single physical scale param-
eter, D, the diffusion constant, which makes Brownian motion the simplest model for describing stochastic motion.
More complicated behavior could potentially be modeled as Brownian motion with discrete changes in the diffusion
constant that could be identified with change point analysis [5]. The estimation of the diffusion constant of a particle
from discrete, noisy, and possibly short particle trajectories is a fundamental problem in single particle tracking.

In this manuscript, we focus on the likelihood distribution of D. We present a maximum-likelihood-based approach
for estimating the diffusion constant of a particle conditional on information from an SPT trajectory that includes the
individual localization error for each position in the trajectory, the time of the observation, and the camera integration
time. Our approach is based on a direct solution to the likelihood equation for the observation of a particular trajectory.
The need for such an estimation procedure has evolved out of the rapid progress that has been made in SPT analysis
techniques over the last few years [6–10]. On the experimental side of this problem, fluorescent probes are subjected
to the phenomenon of fluorescence intermittency, where probes stochastically switch between emission states over
various time scales. The effects of stochastic switching of emission states typically results in inter-frame blinking
or a variability in photon emissions from frame to frame that is poorly described by a single Poisson distribution.
The phenomena of fluorescence intermittency has guided the development of emitter localization techniques so that
they can not only accurately resolve the location of an emitter to tens of nanometers, but can also reliably estimate
the localization error of single molecules [11]. Even in the case where a probe is specifically designed to minimize
the effect of fluorescence intermittency (e.g., giant quantum dots [12]), the signal to noise ratio of a particle can still
vary significantly from frame to frame in an image sequence due to environmental factors such as varying background
signals or photo-bleaching of a redundantly labeled receptor. All of these factors cause the point emitter localization
estimation accuracy to fluctuate from frame-to-frame. We have therefore developed an estimator that takes into account
the available localization variance estimates to accurately weight the influence of each localization data point in the
estimate.

A. Background and Related Work

Historically, one of the primary techniques for estimating the diffusion constant from trajectories relied on a linear
regression of the mean-squared-displacement (MSD) of the tracked particle coordinates as a function of time-lag [13].
In the absence of measurement errors, the observed MSD for pure Brownian motion scales linearly with time-lag
and intersects at the origin, allowing the direct recovery of the diffusion constant from a linear regression on the well
sampled data points. It has been shown that a regression of the MSD with an offset parameter can be interpreted to
account for the cumulative effects of static [14] and dynamic measurement errors [15]. If the MSD is built using the
same data points for multiple time lags, the correlation between MSD values must also be taken into account in the
regression [13, 16, 17]. Although it seems theoretically possible to include individual localization error in the MSD
regression, to date this has not been described.

A separate line of work has focused on maximum likelihood approaches to the estimation procedure. A maximum
likelihood estimator works by finding the maximum of a likelihood function L(D) = P (O |D) that gives the proba-
bility of observing a particular trajectory O, given a diffusion constant D. Ideally this probability should incorporate
both the variable localization errors of the trajectory and the effect of motion-blur. The motion-blur effect arises from
the fact that each localization is performed on data that is acquired over some non-zero exposure time. Typically
camera sensors integrate the signal over the exposure time resulting in a blurring of the particle image. This blurring
has important numerical effects on the likelihood function [18]. A specific solution to the likelihood function has been
accurately derived that incorporates the effects of motion-blur but with the caveat that only a single global localization
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error estimate is used as an input or estimated [17, 19]. This MLE estimator is a more robust alternative to the MSD-
based estimators because it can incorporate information from each jump directly into the likelihood, unlike the MSD
analysis which averages over most of the information before subsequently fitting with a linear regression. Subsequent
work has extended the MLE approach to deal with non-uniformly spaced or intermittent trajectories [20], however the
associated software implementation did not incorporate the effects of motion blur. Maximum likelihood estimators are
not the only class of diffusion estimators that have evolved recently; continued development on displacement-based
estimators has resulted in an estimator that incorporates the effects of covariances between sequentially observed
displacements [21].

In this work we provide a generalized solution to the likelihood function, incorporating variable localization errors
and variable displacement periods, which results in an improvement in estimation accuracy for short trajectories, tra-
jectories with large variations in localization accuracy, and trajectories with intermittently spaced measurements. In
Sec. II we formulate the diffusion likelihood function to directly incorporate the effects of motion-blur, variable local-
ization errors, and intermittent or non-uniformly spaced observations in time. We present three independent solutions
to this likelihood function. The first derivation, the recursive method (Sec. III A), is a sequential integration of the
nuisance parameters and provides the fastest numerical implementation. The second derivation, the Laplace method
(Sec. III B), utilizes a second order Taylor expansion to express the likelihood as a multivariate Gaussian in the basis
of integration. The Laplace method additionally returns the maximum likelihood values of the true positions given
a sampled D. The third derivation, the Markov method (Sec. III C), calculates the characteristic function in order to
express the likelihood in the basis of displacements. The Markov method allows us to verify that the generalized form
of the expression derived in [19] is the same distribution as the expressions derived in this manuscript. The Markov
method was also instrumental in determining the coefficients necessary to reduce the computational complexity of all
the methods (Appendix C). Each of these derivations leads to an independent, numerically accurate computational
algorithm for estimating the likelihood of D (Sec. IV), making full use of all the information contained in a noisy tra-
jectory. The resulting likelihood calculation allows for robust computations in specific problems, such as a maximum
likelihood estimator, confidence intervals, or change point analysis.

The likelihood distribution is then applied to an information based analysis (Sec. V) to find a robust parametrization
of the likelihood distribution. We chose to parameterize the likelihood distribution by a log-normal approximation
consisting of the maximum likelihood estimate (MLE) and the observed information. The log-normal approximation
subsequently allows us to develop a simple, approximate confidence interval on D estimates. We tested the methods
against an experimentally relevant simulation (Sec. VI B) with varying background values to show the performance
improvement when dealing with trajectories with naturally-generated variable localization errors. The significance
of the observed information as a likelihood distribution parameter is investigated more deeply in Sec. VII A and the
predictive power of the expected information is investigated in Sec. VII B. Finally, we use the intuition gained from
the previous sections to evaluate the effectiveness of the MLE analysis in Sec. VII C. The corresponding parameters
calculated from our likelihood distribution are compared to parameters calculated from the likelihood distribution
described in [20]. It is shown that our improved likelihood distribution results in an MLE estimator that is more robust
than prior MLE implementations under experimentally relevant conditions.

II. PROBLEM FORMULATION

If a diffusing particle is accurately and exactly observed at a discrete sequence ofN positions X = {xi}Ni=1 at times
ti, then P (X |D), the probability of sequence X given diffusion constant D and initial position x1, is

P (X |D) =

N−1∏
i=1

P (xi+1 |xi) . (1)

In Eq. 1, P (xi+1 |xi) = P (xi+1 |xi, D) is the probability density of each discrete jump from xi → xi+1 over time
step δti = ti+1 − ti given diffusion constant D. We will omit explicit representation of D whenever we refer to the
transition probability density, P (xi+1 |xi), because it is assumed here that a diffusion process parameterized by a
single D is the only generator of positional displacements for a perfectly measured trajectory.

When measured experimentally, however, the true positions X are never known exactly, but are conditionally related
to observed positions O by some set of probability density functions describing the localization uncertainty. If the
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measurements are obtained from signals that are collected at instantaneous periods, such as a camera with small
exposure times relative to the elapsed periods between the image acquisitions (tε � δti), then the conditional expected
value of each oi is a function of the corresponding xi. Therefore the conditional probability density of each oi is
described by P (oi |xi,vi) where here we take vi to mean the variance of a normally distributed uncertainty. For
instantaneous measurements, O is related to X in the joint distribution

P (O,X |V, D) =

N∏
i=1

P (oi |xi,vi)
N−1∏
j=1

P (xj+1 |xj) . (2)

In many experiments, the exposure time, tε, of the camera is a significant fraction of the period between image
acquisitions so that Eq. 2 is no longer an accurate description of the joint distribution. When exposure times are
non-negligible, O no longer represents a set of instantaneous measurements but rather a set of time-integrated mea-
surements. The integration of the image signal over a finite exposure period consequently implies that the conditional
expectation value of each oi must be described by at least two of the instantaneous positions from X, one position
prior to and one position after the acquisition of the associated oi. For instantaneous measurements, each oi is de-
scribed as a function of the corresponding xi. To maintain a convention so that Eq. 2 is a special case of a more
general distribution, we will define the integrated measurements for each oi as functions of both xi and xi+1. In our
description of the problem, the acquisition of oi begins instantaneously after the true but unknown xi and ends after
an elapsed time tε before the true but unknown xi+1. Under this experimental model, P (O,X |V, D), the combined
likelihood of the observed positions O and the actual positions X is a product of the observation probability densi-
ties P (oi |xi,xi+1,vi, D) and the diffusion transition probability densities P (xi+1 |xi) for each of the N observed
positions and displacements,

P (O,X |V, D) =

N∏
i=1

P (oi |xi,xi+1,vi, D)P (xi+1 |xi) . (3)

For simplicity, we omit explicit representations of V in all subsequent probability distributions as it is assumed that
the localization estimator returns both V and O together. Furthermore, we will simplify the representation of the
observational probability distributions with the definition P (oi |xi,xi+1) = P (oi |xi,xi+1,vi, D). Note that our
convention for establishing Eq. 3 implies that N + 1 elements of X are required to describe N elements of O. Since
X is unknown for experimental data, we integrate Eq. 3 over all possible X to marginalize out the dependence on X,
and write the diffusion likelihood as an integral over the space of all X-values,

P (O |D) =

∫
dXP (O,X |D) =

∫
dX

N∏
i=1

P (oi |xi,xi+1)P (xi+1 |xi) .

Experimental data typically involves trajectories with two or three spatial dimensions. For diffusion in an isotropic
medium with the assumption that particle uncertainties are given as normal distributions with no covariance among
the spatial dimensions, the probability distribution of a particular displacement in each dimension is separable. Thus,
if Υ is the number of dimensions, then

P (O |D) =

Υ∏
n=1

P (On |D) . (4)

Hence, it is sufficient to only consider the estimation problem in the one-dimensional (1D) case O = {oi}Ni=1, which
is represented as

P (O |D) =

∫
RN+1

dX

N∏
i=1

P (oi |xi, xi+1)P (xi+1 |xi) . (5)
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A. Accounting for the effects of exposure time integration

Equation 5 is the fundamental description of the likelihood of diffusion constant D given observations O. Unfor-
tunately, solving for this expression explicitly is difficult because Eq. 5 has every oi term defined as conditionally
dependent on both xi and xi+1. The conditional dependence arises because the estimate of oi’s position is typically
made from data collected over an exposure time 0 < tε ≤ (ti+1−ti) between time points ti and ti+1 which are associ-
ated to xi and xi+1 respectively. If the observational apparatus is a camera sensor, the signal will be integrated over the
frame, resulting in a motion-blurred image of the moving particle. If X is known then the probability density of an oi
is conditional upon the particle’s true position before the photon acquisition at the beginning of the frame (xi) and the
particle’s true position after the photon acquisition at the beginning of the subsequent frame (xi+1) (Appendix B). The
probability density calculated in Appendix B is useful for performing motion-blurred diffusion simulations without
trajectory sub-sampling.

In the case where the exposure time tε � δti, the motion-blur effect is no longer present, so the observed location
oi depends only on position xi as in Eq. 2. The corresponding 1D representation is

P (O |D) =

∫
RN

dX

N∏
i=1

P (oi |xi)
N−1∏
j=1

P (xj+1 |xj) . (6)

Without the additional dependence on xi+1, the methods required to solve the integral in Eq. 6 are simpler. In order
to use this simpler representation for any non-zero tε, we will transform Eq. 5 into a form which resembles Eq. 6, and
seek functionsM(oi, xi) and T (xj+1, xj) such that

P (O |D) =

∫
RN+1

dX

N∏
i=1

P (oi |xi, xi+1)P (xi+1 |xi) =

∫
RN

dX

N∏
i=1

M(oi, xi)

N−1∏
j=1

T (xj+1, xj). (7)

The function T (xi+1, xi) stands for the transition function; it is simply P (xi+1 |xi), the probability of a particle
diffusing with constant D moving from xi to xi+1, over time δti. The functionM(oi, xi) stands for the measurement
function and it encapsulates the net effect of both the measurement localization error and the motion-blur. The details
of the representation equivalence of Eq. 7 are important for correctness, but they also unnecessarily complicate the
exposition, and so can be found in Appendix C. Prior work [15, 16, 19] investigated the motion-blur effects of exposure
time integration, and found that the effect can be represented as an effective decrease in variance of the measurement
localization error, dependent on diffusion constant D and exposure time tε. Our derivation agrees with the effective
correction factors investigated and derived in [15, 16, 19], but also provides a form for the diffusion likelihood that is
directly amenable to the solution techniques we employ in Secs. III A, III B, and III C.

The result of the transformation of Eq. 7 is that the effective measurement functionMi and the transition function
Ti take the form of normalized Gaussians. We use the notation

N (a, a0, η) =
1√
2πη

exp

[
− (a− a0)2

2η

]
.

to represent the normalized Gaussian function with variance η = σ2 centered around mean a0 considered as a function
of a, a0, and η. Using this notation, we can succinctly represent the measurement and transition functions as,

Ti = Ti(xi+1, xi) =N (xi+1, xi, ωi(D)), for 1 ≤ i ≤ N − 1, and (8)
Mi =Mi(oi, xi) =N (oi, xi, εi(D)), for 1 ≤ i ≤ N. (9)

The transition functions (Eq. 8), are unaffected by the motion blur transformation and their Gaussian representation
follows directly from the normally distributed displacements of diffusive processes, hence the variance is ωi(D) =
2Dδti.

For the measurement functions (Eq. 9), the variance εi(D), is the variance due to measurement error, vi, combined
with a correction for the effect of motion-blur that is dependent on the diffusion constant D and exposure time tε,
giving εi(D) = vi − Dtε/3. The factor of 1/3 comes from the limit of continuous integration of photon emissions
over averaged Brownian trajectories (Appendix C). It is important to note that the independence of tε and δti allows
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for gaps in the trajectories, since δti could span a duration of multiple frames but tε is the fixed exposure time of a
single frame.

The result is that Eq. 7 allows us to express the likelihood function exactly in a simple form that deals directly with
variable localization error, motion-blur effects, and missing or irregularly spaced trajectory localizations,

P (O |D) =

∫
RN

dX

N∏
i=1

Mi

N−1∏
j=1

Tj . (10)

III. LIKELIHOOD DERIVATIONS

A. Recursive Method

The notation for the transition and measurement functions allows us to define the likelihood function L(D), by
writing Eq. 10 in a form that emphasizes the dependencies on each marginalized position xi,

L(D) = P (O |D) =

∫
dxNMN

∫
dxN−1MN−1TN−1 . . .

∫
dx2M2T2

∫
dx1M1T1. (11)

The form of Eq. 11 leads to a direct recursive solution, taking into account the properties of integrals over products
of normalized Gaussian functions. Define Li as the sub-integrand of L(D) considering only the first i observations,

L1(D,x2) =

∫
M1T1dx1 ,

Li(D,xi+1) =

∫
MiTiLi−1dxi , 2 ≤ i ≤ N − 1

L(D) = LN (D) =

∫
MNLN−1dxN .

Solving the integrals Li sequentially, we find the resulting integrand is always in the form of a Gaussian with
recursive variables dependent on the previous integrand. The recursive variables can be found by manipulating the
quadratic components of the Gaussian functions (Appendix A) so that the initial variables are defined as

µ1 = o1, η1 = ε1 + ω1, and α1 = η1 + ε2, (12)

and for 2 ≤ i ≤ N − 1, the recursive variables are

µi =
µi−1εi + ηi−1oi

αi−1
, ηi =

ηi−1εi
αi−1

+ ωi, and αi = ηi + εi+1. (13)

Finally, this allows us to express our integrands Li as

L1 = N (x2, µ1, η1)

Li = N (xi+1, µi, ηi)

i−1∏
k=1

N (ok+1, µk, αk), 2 ≤ i ≤ N − 1

L(D) = LN =

N−1∏
k=1

N (ok+1, µk, αk).

(14)

Equation 14 is the final form of the recursive solution for L(D) which is simply the product of N − 1 normalized
Gaussians each of which has parameters which come from a recursive relationship on oi, εi, and ωi.
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B. Laplace Method

The Laplace method allows for an independent solution for Eq. 10, based on integrating the second moment of the
Taylor expansion of the exponential component of a function. Given that the second moment of a Taylor expansion
is quadratic, the resulting function under the integral is always a Gaussian function. Another caveat to the Laplace
method is that the Taylor expansion has to occur about the peak of the exponential, so that the first moment of the
Taylor expansion goes to 0. To perform the Laplace method, we express our likelihood L(D) = P (O |D) in terms of
exponential and non-exponential components

L(D) =

∫
dX f(X) =

∫
dX h(X) exp [−g(X)],

where f(x) is simply the integrand of Eq. 10,

f(X) = h(X) exp [−g(X)] =

N∏
i=1

Mi

N−1∏
j=1

Tj . (15)

Thus, using equations 9 and 8, we see that h = h(X) is independent of X and g(X) is quadratic in X ,

h =

N∏
i=1

1√
2πεi

N−1∏
i=1

1√
2πωi

,

g(X) =

N∑
i=1

(oi − xi)2

2εi
+

N−1∑
i=1

(xi+1 − xi)2

2ωi
.

The maximum likelihood estimate X̂ of the actual positions X , given D and O will be wherever the integrand is
maximized, and since g(X) ≥ 0, we have X̂ = argmaxX f(X) = argminX g(X). Now, given that g(X) is quadratic,
a second order Taylor expansion of g about X̂ is exact and the Laplace method will provide an exact solution for L(D)
as the integral can be shown to take the form of a standard Gaussian integral. Furthermore, since h is independent of
X , we know that−∇∇ ln f(X) = ∇∇g(X) = M , whereM can be thought of as the inverse of the covariance matrix
for the multivariate Gaussian, or equivalently as the Hessian matrix of− ln f(X). SubstitutingM for∇∇g(X) leaves
us with a Gaussian integral with the solution,

L(D) = f(X̂)

∫
dX exp

[
−1

2
(X − X̂)ᵀM(X − X̂)

]
= f(X̂)

√
(2π)N

detM
. (16)

We also require X̂ to compute Eq. 16, which can be solved for with the relation −∇ ln f(X̂) = 0 (Appendix D),
giving

X̂ = M−1Θ, (17)

where Θ := {θi = oi/εi}Ni=1.

C. Markov Method

In this section we present a derivation of the likelihood function L(D) utilizing a technique that was named and
generalized by Chandrasekhar [22]. Markov’s method allows us to transform P (O |D) (Eq. 10) from a function of the
N observed positions O = {oi}Ni=1 into a function of the N − 1 discrete steps (displacements) between subsequent
observations

S = {si = oi+1 − oi}N−1
i=1 .
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This is possible because the spatial invariance of diffusion means L(D) depends not on the absolute spatial positions
O, but only their relative displacements, S. Thus we should expect that P (O |D) can also be expressed as P (S |D).
However, the definition of P (O |D) in Eq. 11 cannot be directly transformed into a function on S. This is where
Markov’s method allows us to solve for a function P (S |D) = P (O |D) for a given D value. For a particular fixed S
and dS of interest, the value of P (S |D) dS gives the probability that variable S′ is within the bounds

S − 1

2
dS ≤ S′ ≤ S +

1

2
dS . (18)

More formally, P (S |D) dS is the integral over the hyper-volume dS around the point of interest S. Letting S′

represent the variable integrated over,

P (S |D) dS =

∫ S+ 1
2 dS

S− 1
2 dS

dS′ P (O |D) .

The issue remains that P (O |D) is expressed in a basis of O rather than of S, and integrating with respect to bounds
in a different basis is non-trivial. In order to circumvent the integration issue, Markov utilized a product of Dirichlet
integrals [22] to expand the limits of integration to all space. The resulting expression is then factored and the limit of
an infinitesimal dS is taken to produce the following expression

P (S |D) dS =
dS

(2π)N−1

∫
dρ exp [−ıρᵀS]Λ(ρ). (19)

where we can interpret Λ(ρ) as the characteristic function of P (O |D) in the S′ basis and it has the form

Λ(ρ) =

∫
dS′ exp [ıρᵀS′]P (O |D) = exp

[
−1

2
ρᵀΣρ

]
. (20)

Where the covariance matrix Σ is symmetric tri-diagonal, with non-zero elements

Σi,i = ωi + εi + εi+1

Σi,i+1 = Σi+1,i = −εi+1.
(21)

The expression in Eq. 20 is well known as the characteristic function of a multivariate Gaussian. Substituting Eq. 20
into Eq. 19, integrating the expression and then factoring out dS gives

L(D) = P (S |D) =
1√

(2π)N−1 det Σ
exp

[
−1

2
SᵀΣ−1S

]
. (22)

IV. NUMERICAL LIKELIHOOD CALCULATION

We have presented three independent solutions to the experimental diffusion likelihoodL(D) (Eq. 11): the recursive
method (Sec. III A), the Laplace method (Sec. III B), and the Markov method (Sec. III C). While each method requires
separate consideration, several features are common to all of the implementations. The separability of the problem
allows us to estimate diffusion constants for any dimensional inputs using the 1D algorithms (Eq. 4). The inputs to
the algorithms are: (1) the observed particle locations, O = {oi}Ni=1; (2) the observation times T = {ti}Ni=1; (3) the
measurement standard error for each observation

√
V = {√vi}Ni=1; (4) the exposure of each frame tε; and (5) one

or more diffusion constants D at which to evaluate the likelihood. The output for each D value is ln[L(D)]. The
logarithm of the likelihood makes the computation of products and exponentials much faster, and avoids the problem
of numerical underflow for very small values of L(D). Additionally, because the logarithm is a strictly monotonically
increasing function, argmaxD L(D) = argmaxD ln[L(D)], so the maximum likelihood estimate is identical for the
log-likelihood.
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A. Recursive Method

The recursive algorithm follows directly from the recursively defined variables (Eqs. 12 and 13), and the expression
of L(D) as a product of Gaussians (Eq. 14). The recursive expressions for αi, ηi, and µi, are causal (the i-terms
depend only on the (i− 1)-terms), enabling their computation in a simple for-loop over N . Noting that the logarithm
of a normalized Gaussian is

ln N (a, b, v) = −1

2

[
ln(2π) + ln(v) +

(a− b)2

v

]
, (23)

we apply Eq. 23 directly to Eq. 14 to arrive at a computationally efficient form for the recursive solution of the log-
likelihood

lnL(D) =

N−1∑
i=1

ln N (oi+1, µi, αi) = −1

2

[
(N − 1) ln(2π) +

N−1∑
i=1

ln(αi) +

N−1∑
i=1

(oi+1 − µi)2

αi

]
.

Of all the methods, the recursive method is the simplest to implement and the most computationally efficient and
numerically stable.

B. Laplace Method

The computational core of the Laplace method centers around the Hessian matrix M (Eq. D3). This matrix is
symmetric tri-diagonal, which means all non-zero elements are on the main diagonal and the diagonals immediately
above and below. Using M we can solve the linear system X̂ = M−1Θ (Eq. 17) to obtain the maximum likelihood
estimates X̂ for the true particle locations. Typically, solving large linear systems is expensive but since M is tri-
diagonal there are algorithms to solve this system in linear time [23].

Given a solution for X̂ , we can use the definition of f(X) in Eq. 15 along with Eq. 23 to compute

ln f(X̂) = −1

2

[
N∑
i=1

ln(2πεi) +

N∑
i=1

(oi − x̂i)2

εi
+

N−1∑
i=1

ln(2πωi) +

N−1∑
i=1

(x̂i+1 − x̂i)2

ωi

]
. (24)

Finally we can compute the log-likelihood using the Laplace solution of Eq. 16, finding that

lnL(D) = ln f(X̂) +
N

2
ln(2π)− 1

2
ln detM

= −1

2

[
(N − 1) ln(2π) +

N−1∑
i=1

ln(ωi) +

N−1∑
i=1

(x̂i+1 − x̂i)2

ωi
+

N∑
i=1

ln(εi) +

N∑
i=1

(oi − x̂i)2

εi
+ ln detM

]
.

(25)
The log-determinant of the tri-diagonal matrix M can also be computed in linear time [23].

C. Markov Method

Finally, the Markov method computation like the Laplace method, is centered around matrix computations. In this
case, the matrix of interest is theN−1 dimensional covariance matrix Σ (Eq. 21), which also happens to be symmetric
tri-diagonal, so the same linear-time algorithms used in the Laplace method are applicable.

For the Markov method computation we first solve the linear system Φ = Σ−1S, then apply this solution along with
the tri-diagonal log-determinant algorithm to compute the logarithm of the likelihood expression from Eq. 22, giving

lnL(D) = −1

2
[(N − 1) ln(2π) + SᵀΦ + ln det Σ] .
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V. THE MLE AND THE OBSERVED INFORMATION

Typically, normal approximations are applied to likelihood distributions to generate simple confidence intervals
about the maximum likelihood estimate (MLE) [24]. However, in the case of diffusion estimation, a log-normal
approximation is preferred over the normal approximation of the likelihood distribution because the log transformation
of D extends the acceptable interval from [0,∞) in D space to (−∞,∞) in lnD space; this prevents the possibility
of confidence intervals that allow negative values of D. The log-normal approximation is generally a more accurate
parametrization of L(D) than the normal approximation. The log-normal approximation comes about from a second
order Taylor expansion about some fixed value ln D̂ in lnD space; the normal approximation comes from a second
order Taylor expansion about D̂ in D space.

If ln D̂ is defined as the log of the MLE, then the first derivative of the Taylor expansion vanishes for all D̂ > 0 so
that the second order Taylor expansion can be described by two parameters, D̂ and K̃(ln D̂) = − ∂2

∂ ln D̂2
ln L̃(ln D̂).

The parameter K̃(ln D̂) is strictly positive and is known as the observed Fisher information [25] when D̂ is the MLE.
Here ln K̃(ln D̂) is simply referred to as the observed information and is dimensionless in lnD space. The likelihood
is invariant to transformation of variables [24], but the observed information is not. For all software implementa-
tions [26], we calculate the observed information in lnD space as

K̃(ln D̂) = D̂2K(D̂),

where the solution to K(D̂), the observed information in D space, is derived in Appendix E.
The log-normal approximation is described by the log-likelihood ratio statistic (LLR) [27] as

−2 ln

(
L(D)

L(D̂)

)
≈ K̃(ln D̂)(lnD − ln D̂)2. (26)

When the log-normal approximation accurately describes the true likelihood, the LLR described by Eq. 26 is chi-
square distributed; which implies that the square root of the statistic is normally distributed. For the normally dis-
tributed statistic the probability that an interval from −∞ up to some value A contains the lnD that generated the
corresponding trajectory is

P (lnD ≤ A) ≈
∫ A

−∞
d(lnD) N (lnD, ln D̂, K̃(ln D̂)) =

1

2

1 + erf

 A− ln D̂√
2K̃(ln D̂)

 .
Since the log-normal approximation is symmetric in lnD space, the corresponding C · 100% confidence interval in D
space defined by endpoints B± is

B± = exp

[
ln D̂ ±

√
2K̃(ln D̂) · erf−1(C)

]
. (27)

VI. ANALYSIS METHODS

In the following sections, we establish various metrics for quantifying the performance of the MLE and the associ-
ated confidence intervals. Subsection VI A describes the importance of the expectation of the observed information,
which can be used to quantify the average estimation quality of all trajectories that share a set of fixed parameters.
Subsection VI B is a description of the diffusion simulation we developed for testing our likelihood distribution against
the likelihood distribution proposed in [20]. The implementation of the MLE analysis given our likelihood distribution
and the distribution in [20] is described in subsection VI C and conditions for recognizing estimator failure is described
in subsection VI D.
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A. The Expected Information

The expected Fisher information [28], that we abbreviate as the information, is a measure for our ability to estimate
D̂ for all O-realizations of a trajectory when all other parameters are held fixed. Here, the information is defined as

Ĩ(ln D̂) =
〈
K̃(ln D̂)

〉
=

∫
dS K̃(ln D̂)P

(
S | D̂

)
,

where the measurement variances, V are fixed, and S are the step displacements. Trajectories with different localiza-
tion variances will have different information values. A solution to I(D̂) from the recursive method is described in
Appendix F.

The information is plotted over various trajectory conditions as a function of D̂ with fixed parameters V , T , and
tε. The information in lnD space is bounded by a maximum value of (N − 1)/2 for any trajectory of length N ;
the maximum information is obtained when measurement errors are negligible. When the information is maximal
the MLE analysis will work for all trajectories that share the same fixed parameters; conversely, an information of 0
implies that the corresponding likelihood functions have no unique maximum, and hence the MLE estimator will fail.
The information, as a function of D̂ when all other trajectory parameters are fixed, takes on a sigmoid shape where
finite information values correspond to D̂ values that can be returned by an MLE for a given set of measurement
parameters. Furthermore, information plots are useful in predicting when the additional precision from sophisticated
likelihood distributions are significant or negligible. In this manuscript we find values of D̂ where the information
is asymptotically equal to (N − 1)/2 so that the effects of correlated measurement errors have a negligible effect
on the shape of the likelihood distribution, highlighting regions where approximated likelihood distributions perform
asymptotically as well.

B. Gaussian Lattice Background Diffusion Simulation

To demonstrate the robustness of the MLE estimate and the corresponding log-normal parametrization, we de-
veloped a diffusion simulator [26] that simulates all of the measurement errors that accompany a camera-recorded
fluorophore without relying on the probability densities from our derivations in Appendix B. To do this, individual
photon emission times are drawn from exponential wait times with a pre-defined emission rate of 200 photons per full
frame exposure so that the resulting images of the fluorophore have Poisson distributed photon counts. The particle is
allowed to diffuse freely so that an emitted photon position is randomly chosen from a normally distributed deviation
from the actual position of the particle at the emission time. The standard deviation of the photons from the true
particle position was set at 100 nm. Fluorescence intermittency is simulated via a continuous two state process, where
the particle is either in an emission state or a dark state. Photon emissions are only possible during the emission state;
when the particle is in the dark state, there are no photon emissions. The transition between emission and dark states
occurs independently of the camera frame time, so a particle could go dark mid-frame, which allows for the possibility
of very dim localizations. The transition rate was 0.2 per frame to transition from the dark state to the emission state
and 0.05 per frame to transition from the emission state to the dark state.

An important feature we incorporated into our simulation was a background characterized by equally spaced out-of-
focus emitters. This simulates the common problem of observing in-focus molecules in the presence of out-of-focus
background fluorescence. The out of focus emitters have an effective sigma of 500 nm with a mean emission rate of
2000 photons per frame. The lattice was spaced so that each background object was 2 µm apart. Our intention for
choosing this type of background pattern is to guarantee that a diffusing particle will randomly traverse regions of high
and low background noise, ensuring that the associated fit precision will vary naturally over a trajectory.

All trajectory trials were simulated over an exposure period of 100 camera frames at a frame rate of 100 Hz to
simulate the shorter trajectories that would benefit the most from our ability to use all available localization error
information. The pixel size of the image is 100 nm and the diffusion coefficient is simulated from 10−4 µm2 s−1 to
10−1 µm2 s−1. Every trajectory began at a random position to ensure that a particular set of background values were
not favored.

The variance of the position estimates for diffusion analysis are calculated from the theoretical Cramer-Rao lower
bound (CRLB), the minimal variance of an unbiased estimator of the localization parameters. The inputs for the
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CRLB calculation were: particle positions calculated from the averaged position of the photon locations of a given
frame, the expected model background value of a 7x7 pixel region surrounding the particle position, and the expected
photon emissions, which in this instance is 200 photons times the fraction of the frame time spent in the emission
state. The CRLB calculations are based on the supplemental text and software from [11]. The localized positions are
then calculated by taking the average position of the photons and perturbing that position by a random displacement
drawn from a normal distribution with a variance equal to the localization CRLB. With this approach, we can assume
the hypothetical localization method is theoretically optimal without focusing on specific localization software.
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FIG. 1. A sample trajectory created with our diffusion simulations. Plot (A) is a sample trajectory (solid line) overlaid on a single
realization of the out-of-focus fluorescence. A noise realization of the moving particle can be seen in the upper right corner of the
trajectory. The particle in this instance is moving at 10−1 µm2 s−1 at an acquisition rate of 100 Hz so that this trajectory realization
spans a greater region of the background. Plot (B) shows the localization errors of the localized particle at each frame. Since there is
fluorescence intermittency, some frames do not have localizations and therefore an associated localization error is not represented.
The frames with significantly higher uncertainties occur when the particle transitions between the bright and dark states during a
frame acquisition.

The Gaussian lattice simulation was run with 20 log-spacedD parameters from 10−4µm2 s−1 to 10−1µm2 s−1 with
104 trajectories sampled for each D. The trajectories were analyzed individually to produce corresponding MLE and
observed information values. The MLEs with positive observed information values were then used to determine 68%
and 95% confidence intervals from the log-normal parametrization (Eq. 27).

C. MLE Analysis Approaches

The MLE, observed information, and confidence intervals were calculated from three types of analysis approaches.
The first approach is the likelihood distribution as described in Sec. III with variable localization errors and trajectory
intermittencies and will be referred to as Variable Error Analysis (VEA). The second approach follows the analysis
in [20], and will be referred to as the Mean Error Analysis (MEA). In our computation of the respective likelihood
distributions, both the MEA and VEA methods are performed using a MATLAB implementation of the recursive
method (Sec. IV A), except that the MEA version only uses the effective mean localization error

√
〈V 〉. In our

simulations, vi are drawn from a path dependent distribution, so we defined a different 〈vi〉 =
∑N
i=1 vi/N for each

trajectory. The existence of occasional dim localizations in the trajectories can result in very poor values for the
reduced error, leading to significant errors in the MEA. An intrepid researcher, limited to an MEA approach, would
likely filter out localizations that were exceptionally bad; so we implemented a third analysis approach for comparison,
the Filtered Mean Error Analysis (FMEA). For the FMEA, any localization error that was greater than half a pixel
squared was omitted so that the resulting trajectory has the reasonable but ad hoc restriction vi < 0.5 px2.
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For the corresponding analysis, the value of 〈V 〉 used for all figures was determined from the FMEA approach to
be approximately 1.37× 10−4 µm2 so that the corresponding localization error is 12 nm. Furthermore, the reference
time unit in the figures (τ ) was set to the length of a single frame 0.01 s.

D. Critical Failures

MLE analysis is not applicable for all trajectories that have been recorded from SPT experiments. If the observed
information at D̂ is not positive, then it means either the analysis software [26] has not found the correct MLE, or the
likelihood function has a maximum at D = 0, or it is flat to numerical precision in the neighborhood of the maximum.
In any of these instances, the log-normal approximation is no longer an accurate parametrization of the corresponding
likelihood distribution. We deal with these trajectories by classifying them as ‘critical failures’ and they are omitted
from subsequent MLE analysis (Fig. 5B).

The MLE analysis software [26] runs a bounded optimization to find D̂ in the interval (10−8, 108), which ensures
that D̂ > 0 in our analysis. Once D̂ is returned, the corresponding observed information is calculated. If D̂ does
not correspond to a unique MLE or the actual MLE is defined at D < 10−8, then the observed information at the
estimator’s D̂ will not be positive. The trajectories that are associated with a K̃(ln D̂) ≤ 0 are defined as critical
failures and are not considered because the returned D̂ values for these trajectories are guaranteed to make the results
of any hypothesis testing worse. The critical failure rate, the fraction of trajectories unsuitable for MLE analysis, is a
metric for MLE analysis reliability for a given set of trajectory conditions.

VII. RESULTS

A. Noise Free Trajectory Parametrization

When there is no measurement error K(D̂) = I(D̂), which means that there is an asymptotic limit where general
statements can be made regarding both the quality of the approximate confidence intervals and the effect of trajectory
intermittencies on the estimator quality. In the absence of measurement error, the likelihood expression reduces to

L0(D) =

N−1∏
i=1

N (oi+1, oi, ωi) ∀εi = 0,

where the subscript 0 in L0(D) denotes the distinction that all εi in the data are negligible. In this limit, the Taylor
expansion of L0(D) in lnD space can be re-factored into a simple expression for the exact LLR (the approximate
LLR is defined in Eq. 26).

−2 ln

(
L0(D)

L0(D̂)

)
= 2Ĩ0(ln D̂)

[
D̂

D
− ln

(
D̂

D

)
− 1

]
. (28)

The quantity in the brackets in Eq. 28 is known as the Stein loss [29] and perfectly describes the shape of L0(D).
When there is no measurement error, the expected information in ln D̂ space, Ĩ0(ln D̂), describes the width of the
distribution for both the log-normal approximation in Eq. 26 and the exact LLR in Eq. 28. Also, Ĩ0(ln D̂) = (N−1)/2
regardless of δti. This implies that the only parameter that affects the estimate quality in the absence of measurement
error is the number of observations, N . The information value of noiseless trajectories, (N − 1)/2, is an upper-
bound on the possible observed information value for noisy trajectories of length N . Consequently, the independence
of the information from δti implies that the effect of trajectory intermittencies on the quality of an estimator must
be intrinsically linked to measurement error. In other words, information is a function of the number of particle
observations which can be reduced by measurement error at each observation. Intermittencies reduce the influence
of measurement error because the larger temporal spacing between observations from intermittency results in a larger
expected squared displacement of the diffusing particle.
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FIG. 2. The exact LLR as described by Eq. 28 (solid line), the log-normal approximation described by Eq. 26 (dashed line), and the
corresponding normal approximation (dash–dotted line) in the ideal, no measurement error limit. When | ln(D̂/D)| < 0.5, the log-
normal approximation is a good fit to the actual log-likelihood and is within 3% of the true value. The log-normal approximation
is always closer to the LLR than the normal approximation.

The distributions from Eq. 26, Eq. 28, and a normal approximation (described by precision I(D̂) and mean D̂)
are divided by Ĩ(ln D̂) and plotted in Fig. 2 to determine a good theoretical bound for the approximate confidence
intervals. When the log-normal based confidence intervals have a range | ln(D̂/D)| < 0.5, then the log-normal
approximation is in very good agreement with the exact likelihood. The deviance between the exact LLR and the
log-normal approximation at both end points grows substantially when | ln(D̂/D)| > 1, so that ranges outside of
±1 in dimensionless ln(D̂/D) space are not expected to satisfy confidence interval tests. The normal approximation
deviates from the LLR faster than the log-normal approximation, so its usefulness is limited to narrower confidence
intervals.

B. The Expected Information for Noisy Trajectories

To better understand the results from our simulations (Sec. VI B), it is necessary to understand the behavior of the
information in the presence of measurement error. We plot the information, Ĩ(ln D̂), to understand how the log-normal
parameterizations will typically behave given an arbitraryO. Although our likelihood derivations can incorporate non-
scalar V and trajectory intermittency, we will first restrict ourselves to the constant error, 〈V 〉, and non-intermittent
observation cases.
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FIG. 3. Plots of the information at various ratios of D̂t/ 〈V 〉. Plot (A) is a qualitative representation of the information without
dynamic error (solid line) and with dynamic error from a full frame exposure time (dashed line). Plot (A) has three intervals
delimited by the approximate values α and β: when D̂t/ 〈V 〉 > β, the information is in good agreement with the no error
scenario; when α < D̂t/ 〈V 〉 < β, the associated observed information values have the highest variance; when D̂t/ 〈V 〉 < α,
the information is so poor that a different form of analysis should be considered for meaningful interpretations. Plot (B) is the
information curve with various trajectory lengths with data acquired under a full frame exposure time. The approximate value
of α would shift further to the left for longer trajectories. The approximate value of β appears to be constant since all curves
asymptote at the same value, so the negligible error limit is dictated only by the magnitude of the measurement error. The crossover
in information quality per displacement in plot (B) when 〈V 〉 = D̂tε/6 is due to the effects of correlated observations with full
frame exposure times.

In the constant error case, the information scales with ln(D̂t/ 〈V 〉) proportional to an inverse quadratic function [17]
as observed in Fig. 3. The information curves asymptote to values of (N − 1)/2 when D̂t/ 〈V 〉 → ∞, and to 0 when
D̂t/ 〈V 〉 → 0. Due to the inverse quadratic shape in Fig. 3A, we see three distinct regimes where the information
behaves differently on a local level. When D̂t/ 〈V 〉 � 1, the observed error is nearly equal to the expected information
so the Stein loss described in Eq. 28 is a better representation of the likelihood distribution than the log-normal
approximation. When D̂t/ 〈V 〉 ≈ 1, the observed information for individual trajectories fluctuates about the expected
information with a larger variance. The log-normal approximation becomes a better parametrization than the Stein loss
when the effect of measurement error becomes significant because the higher-order terms of the Taylor expansion on
L̃(lnD) are no longer represented by the information. When 〈V 〉 becomes large, the observed information approaches
zero, which implies that MLE analysis may not be possible for many trajectories with those parameter values.

Trajectories with variable localization errors will have information curves that deviate from the curve calculated
from the 〈V 〉 and in general do not follow an inverse quadratic function. A method that only characterizes a 〈V 〉
where the full V is available is expected to deviate in quality from a method that considers V for variance estimates
and confidence intervals. The expected deviation is demonstrated in Fig. 4, where the maximum and minimum values
of the Fisher information are plotted for trajectory ensembles with random localization errors drawn from a uniform
distribution and categorized by the same average 〈V 〉. For the ratios of D̂t/ 〈V 〉, the solid curve returns an information
value comparable to the lowest possible information realization given a random distribution of localization errors. This
implies that in most cases, the returned diffusion estimate from a likelihood distribution that only recognizes a single
〈V 〉 will have a lower precision than a likelihood distribution that accounts for the entire vector V associated with
the trajectory. Furthermore, intermittencies are considered inseparable from variable localization errors because a
likelihood distribution that describes a trajectory with constant error and intermittencies can be re-factored to describe
a trajectory with variable error and no intermittency.
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C. Simulation Results
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FIG. 5. Plots of the MLE distributions as well as the critical failure rate for the ensemble of trajectories corresponding to a
particular D value. Plot (A) compares the performance of the VEA and FMEA approaches relative to the expected performance
of an unbiased, optimal estimator. The CRLB for the unbiased optimal estimator is calculated for non-intermittent trajectories
with constant localization error and a length of 100 observations. The CRLB is then used as a fiducial 95% interval (vertical
lines) calculated as a deviation of 1.96 ×

√
CRLB about a mean relative error of 0. The VEA approach is represented by its

average deviation from the simulated D (solid line) and an interval that contains 95% of the returned D̂ values (circles). The
FMEA approach is represented by its average deviation from the simulated D (dashed line) and an interval that contains 95% of
the returned D̂ values (diamonds). The MEA approach was biased for all represented conditions and had a variance orders of
magnitude larger than the VEA method and was omitted from this plot as a result. The VEA approach is superior to the CRLB
fiducial until the bias manifests itself at Dτ/ 〈V 〉 < 10−2. Plot (B) shows the critical failure rates of all three approaches. The
critical failure rate is the fraction of trajectories that did not return a positive observed information from each sampledD value. The
critical failure rate shows that when Dτ/ 〈V 〉 < 10−3 over 50% of the simulated trajectories were unsuitable for MLE analysis.
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In Fig. 5A, the relative error between the mean D̂ estimates and the simulated D parameters were plotted to verify
the quality of the approaches. The MEA approach was completely omitted from Fig. 5A because its bias was orders
of magnitude greater than the other methods for smaller but relevant Dτ/ 〈V 〉 values. A fiducial CRLB interval of
relative errors for theoretically unbiased estimates from trajectories with length 100 and constant variance 〈V 〉 was
plotted in Fig. 5A for comparison. The CRLB interval in D space is somewhat misleading because it was calculated
from the normal approximation so it has intervals that extend into negative D space when Dτ/ 〈V 〉 < 10−1; this is
an artifact from parameterizing the interval in a basis with boundaries. The FMEA interval quickly diverges from the
CRLB interval which implies that in this simulation, the ensemble of trajectories cannot be parameterized well by a
single 〈V 〉 when Dτ/ 〈V 〉 < 10−1. The VEA approach is more robust with a smaller variance because it incorporates
more information from the trajectory and is practically an unbiased estimator until Dτ/ 〈V 〉 < 10−2, at which point
a noticeable bias manifests. Figure 5B shows the critical failure rate of all three approaches; that is, the percentage
of negative observed information quantities returned from the ensemble of trajectories after the MLE was estimated
(Sec. VI D). The trajectories with a negative observed information were discarded because the returned D̂ was not a
true maxima of the likelihood; in this case, a meaningful analysis cannot be performed with only a second order Taylor
expansion on these particular trajectories and in such instances a Bayesian approach may be preferable. The presence
of dim localizations adversely impacts the MEA so the critical failure rate is noticeably larger than the other methods
when Dτ/ 〈V 〉 ≈ 10−2. The FMEA and VEA approaches have statistically comparable failure rates which implies
that the loss of information from discarding data in the FMEA approach is preferable to the miss-characterization of
poor localizations in the MEA approach.
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FIG. 6. Plots of confidence interval analysis for the VEA, MEA, and FMEA approaches. Confidence intervals were drawn for every
trajectory and an interval was considered successful if the trueD parameter was inside the interval. Plot (A) shows the success rates
of both the 68% and 95% interval for all three methods. The VEA confidence interval is in good agreement with the corresponding
success rate until Dτ/ 〈V 〉 < 10−2. In the region where the VEA interval is successful, the FMEA interval is on average 4% low
for both confidence values, but asymptotes to agreement as Dτ/ 〈V 〉 gets large. The MEA interval is on average 10% lower than
the expected success rates and does not asymptote to the correct success rate. Plot (B) shows the range of the 68% interval from D̂
in lnD space. The MEA interval is adversely affected by dim localizations and did not approach a stable value with 104 trajectory
samples for any of the simulated values of D. The mean interval range for both the VEA and FMEA approaches are similar, but
the VEA approach was narrower. The range of the good agreement value observed in Fig. 2 is plotted as a fiducial range for the
theoretical good agreement value of the log-normal approximation to the actual likelihood distribution.

From Eq. 27, confidence interval performance at 68% and 95% are shown in Fig. 6. The results show that the
confidence intervals are in good agreement with the results observed in sec. VII A (Fig. 2) for interval ranges that are
within the dimensionless limit of | ln(D̂/D)| < 1 (Fig. 6B). The VEA method performs well at trajectory lengths
just under 100 observations for values of Dτ/ 〈V 〉 > 10−2. The FMEA and MEA intervals appeared to generally
underestimate the expected confidence level and should thus be treated with skepticism when making statements
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regarding the estimate if variable localization errors are disregarded in diffusion analysis. Interestingly enough, Fig. 6B
shows that the range of the confidence intervals of the VEA and FMEA approaches are within good agreement of
their corresponding likelihood distributions as seen in Fig. 2 when Dτ/ 〈V 〉 > 10−1. When Dτ/ 〈V 〉 < 10−3

for trajectories with N < 100, the mean dimensionless interval ranges for all approaches are greater than 2, which
corresponds to the poor performance of the confidence intervals seen in Fig. 6A as well as the asymmetric mismatch
between the log-normal approximation and the true log likelihood as seen in Fig. 2.

VIII. DISCUSSION AND CONCLUSION

We have developed a method for reliable diffusion estimates for single-particle trajectory analysis that for the first
time can fully incorporate the realistic effects of noisy data and variable localization errors. The most important
contributions of this manuscript are: (1) the explicit solutions to a likelihood expression incorporating variable local-
ization error that leads directly to efficient computational algorithms (Eq. 10); (2) the confirmation that a log-normal
approximation to the likelihood function around the MLE enables calculation of more accurate confidence intervals
for uncertainty quantification on a per trajectory basis than was previously possible; and (3) a demonstration of experi-
mentally relevant conditions where our likelihood expression is noticeably more reliable than the likelihood expression
derived in previous work.

The manuscript offers three detailed analytical solutions and associated computational algorithms to the likelihood
expression in order to provide a basis for future developments in single-particle trajectory analysis. Although the
recursive method was used exclusively when performing the analysis in Sec. VII, there exists published literature for
the Fisher information in the basis of the Markov method [30]. Additionally, the Laplace method has the advantage
that the expected true positions X̂ are computed along with the likelihood; this may be useful for those interested in
estimating a MLE trajectory for subsequent analysis beyond simple estimates of D. Furthermore, the Markov method is
crucial for deriving the terms εi in the componentsMi given knowledge of the true underlying probability distribution.

We applied a log-normal approximation to the likelihood distribution in order to generate simple confidence intervals
for uncertainty quantification. The log-normal approximation was shown in simulation (Fig. 2) to be a more accurate
approximation to the true log-likelihood than the normal approximation, thus allowing us to use the point-estimate
MLE and observed information to compute accurate confidence intervals. A dimensionless value of | ln(D̂/D)| < 1
was found to be a useful threshold below which the confidence intervals are reliable (Fig. 6). Thus, the simple log-
normal approximation to the shape of the likelihood function is only useful a bounded distance away from D̂. When
the value of Dτ is very small compared with 〈V 〉, it is possible the likelihood has a maximum arbitrarily close to 0,
in which case, the first derivative fails to vanish at the MLE and the observed information becomes meaningless; this
behavior was observed in simulation and corresponded to our analysis of the expected Fisher information.

The analysis of the expected information was crucial for showing that there exists a resolution limit on the smallest
D̂ that can be reliably calculated given a particular V (and τ ); it was also shown that this limit could be extended by
increasing the trajectory length. The effect of motion-blur was shown to reduce the information as well, but that effect
was only noticeable when the quantity 〈V 〉 was small enough to make εi a negative value. Finally, we have shown that
the expected information from previously reported likelihood expressions that only incorporate a scalar localization
variance 〈V 〉 is always less than the expected information from our improved likelihood expression that fully utilizes
all of the vector-valued localization variances, V .

Incorporating variable localization errors into the likelihood expression greatly improves the MLE estimators’ pre-
cision, robustness, and ability to report reliable confidence intervals under conditions similar to those encountered in
real microscopy experiments. Our direct analytical approach to evaluation of the likelihood expression is computa-
tionally simple and generally useful for extension to future work on this topic. A Bayesian approach could further
improve the limits of estimation by incorporating prior knowledge and making use of the full posterior distribution of
the parameter estimate, but the MLE-based point estimate approach we describe already provides a large improvement
upon what was originally considered the lower limits of D̂ estimation for experimental trajectories [17], and more
importantly is able to accurately detect when diffusion estimates for individual trajectories are reliable by using the
observed information and corresponding confidence intervals.
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Appendix A: Gaussian Properties

The normalized Gaussian function is represented as

N (a, a0, η) =
1√
2πη

exp

[
− (a− a0)2

2η

]
.

The Gaussian function is symmetric with respect to the first two position parameters, so that N (a, b, v) = N (b, a, v),
and the variance of the function is given by the third parameter. Also, the normalization factor ensures that the Gaussian
integrated over all space with respect to either of its position parameters is unity,∫ ∞

−∞
da N (a, b, v) =

∫ ∞
−∞

db N (a, b, v) = 1.

As a corollary, a normalized Gaussian has a useful scaling identity, for q > 0,

N (a, b, v) = qN (qa, qb, q2v).

Next, consider the case of the product of two normalized Gaussians sharing a common position parameter, which
can be rewritten as a product of two normalized Gaussians where the common parameter only appears in one of the
two,

N (x, µ1, η1)N (x, µ2, η2) = N (µ1, µ2, η1 + η2)N (x, µ′, η′), (A1)

where,

µ′ =
µ1η2 + µ2η1

η1 + η2
and, η′ =

η1η2

η1 + η2
.

Using Eq. A1, the integral of the product of two normalized Gaussians over a shared position parameter is itself a
normalized Gaussian in the other two (unintegrated) position parameters,∫

dx N (x, µ1, η1)N (x, µ2, η2) = N (µ1, µ2, η1 + η2)

∫
dx N (x, µ′, η′) = N (µ1, µ2, η1 + η2). (A2)

With two successive applications of Eq. A1, the product of three Gaussians which share a common position parameter
becomes,

N (x, µ1, η1)N (x, µ2, η2)N (x, µ3, η3) = N (µ1, µ2, η1 + η2)N (µ3, µ
′, η′ + η3)N (x, µ′′, η′′),

where µ′′ =
µ′η3 + µ3η

′

η′ + η3
,

and η′′ =
η′η3

η′ + η3
.

(A3)

Finally, Eq. A3 allows the integral of three normalized Gaussians over a shared position parameter to reduce to∫
dx N (x, µ1, η1)N (x, µ2, η2)N (x, µ3, η3) = N (µ1, µ2, η1 + η2)N (µ3, µ

′, γ),

where γ =
η1η2 + η1η3 + η2η3

η1 + η2
.

(A4)
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Appendix B: The Probability Density of a Time Averaged Position

Given D, the probability density of a transition from point a to point b separated by a time T is P (b | a) =
N (b, a, 2DT ). If an intermediate point, y(t), sampled at a time t < T is considered, the joint probability density
of a transition from a to y(t) and then from y(t) to b is

P (y(t), a, b) = N (y(t), a, 2Dt)N (b, y(t), 2D(T − t))

= N (b, a, 2DT )N
(
y(t), a

(
1− t

T

)
+ b

t

T
, 2D

t

T
(T − t)

)
.

The probability density of the variable y(t), preconditioned on the end points, a and b, is then

P (y(t) | b, a) = N
(
y(t), a

(
1− t

T

)
+ b

t

T
, 2D

t

T
(T − t)

)
. (B1)

Eq. B1 is the probability density for what is known as a Brownian bridge [31], or Brownian motion with preconditioned
end points. It has a mean and covariance defined as

〈y(t)〉 = a

(
1− t

T

)
+ b

t

T

cov[y(t), y(s)] = 2D

(
s− st

T

)
for s ≤ t ≤ T.

It is now of interest to find the probability density for a quantity that describes an integrated average of y(t) such that

ȳ =
1

tε

∫ tε

t=0

dt y(t).

Since each y(t) is a normally distributed random variable, y(t) is a Gaussian process, and the time averaged integral of
a Gaussian process, ȳ, is also a normally distributed random variable. Therefore, from Isserlis theorem [32] only the
first two moments of ȳ are needed to determine its probability distribution. The first moment is 〈ȳ〉 = (1− α)a+ αb,
where for notational convenience, we define α = tε/2T . It follows that the second moment is

〈
ȳ2
〉

= 〈ȳ〉2 +
1

t2ε

∫ tε

t=0

dt

∫ tε

s=0

ds cov[y(t), y(s)].

Therefore, the variance for ȳ is

〈
ȳ2
〉
− 〈ȳ〉2 = 2Dtε

[
1

3
− α

2

]
.

Given that ȳ must be normally distributed and its first two moments are known,

P (ȳ | a, b) = N (ȳ, 〈ȳ〉 ,
〈
ȳ2
〉
− 〈ȳ〉2) = N

(
ȳ, (1− α)a+ αb, 2Dtε

[
1

3
− α

2

])
.

For single molecule localization, a time averaged position is related to a localized observation by a normal Gaussian
function so that

P (o | a, b) =

∫
dȳ P (o | ȳ)P (ȳ | a, b) = N

(
o, (1− α)a+ αb, v + 2Dtε

[
1

3
− α

2

])
. (B2)
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Appendix C: Time Averaged Probabilities to Measurement Functions

In Sec. III C, Markov’s approach showed the following relationship for a multivariate Gaussian Σi,j = 〈sisj〉, where
Σ is the covariance matrix of a multivariate Gaussian function describing the vector of random variables S = {si =

oi+1 − oi}N−1
i=1 . If the moments of S are known, the parameter εi for the simpler expression can be derived given that

〈sisi+1〉 = −εi+1 was shown to be true for the formalism with the simpler expression as derived in Sec. III C. Starting
from Eq. B2 for an arbitrary oi,

P (oi |xi, xi+1) = N
(
oi, (1− αi)xi + αixi+1, vi + 2Dtε

[
1

3
− αi

2

])
where vi is defined as the localization variance and αi = tε/(2δti). From the properties of a Gaussian function with
0 mean

〈oi − (1− αi)xi − αixi+1〉 = 0,〈
(oi − (1− αi)xi − αixi+1)2

〉
= vi + 2Dtε

[
1

3
− αi

2

]
. (C1)

Which implies

〈oi − xi〉 = 0

〈oi − xi|X〉 = αi(xi+1 − xi)〈
(oi − xi)2

〉
= vi + 2Dtε

1

3
.

〈oi+1 − oi〉 = 〈si〉 = 0. (C2)

Given Eq. C2, 〈sisi+1〉 = −εi+1 = 2Dtε/6− vi+1. Additionally, it follows that

〈
s2
i

〉
= wi + εi + εi+1 = 2Dδti − 4Dtε

1

6
+ vi + vi+1.

Therefore, εi(D) = vi−2Dtε/6, which is the variance correction discovered in earlier diffusion estimation papers [15,
18, 19].

Appendix D: Laplace Method MLE Positions

Recalling the objective function in the Laplace method

−ln(f(X)) =

N∑
i=1

[
1

2
ln(2πεi) +

(oi − xi)2

2εi

]
+

N−1∑
i=1

[
1

2
ln(2πωi) +

(xi+1 − xi)2

2ωi

]
, (D1)

the gradient of Eq. D1 is

−∂lnf
∂x1

=
(x1 − o1)

ε1
+

(x1 − x2)

ω1

−∂lnf
∂xi

=
(xi − oi)

εi
+

(xi − xi−1)

ωi−1
+

(xi − xi+1)

ωi

−∂lnf
∂xN

=
(xN − oN )

εN
+

(xN − xN−1)

ωN−1
, (D2)
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where i ∈ 2 : N − 1. The Hessian −ln∇∇f(X̂) = M , of Eq. D1 has the non-zero elements

M1,1 = − ∂2lnf
∂x1∂x1

=
1

ε1
+

1

ω1

Mi,i = − ∂2lnf
∂xi∂xi

=
1

εi
+

1

ωi−1
+

1

ωi

MN,N = − ∂2lnf
∂xN∂xN

=
1

εN
+

1

ωN−1

Mi,i+1 = − ∂2lnf
∂xi∂xi+1

= − 1

ωi

Mi,i−1 = − ∂2lnf
∂xi∂xi−1

= − 1

ωi−1
. (D3)

Setting the gradient in Eq. D2 equal to 0 and moving the constants to the left hand side of the equation gives

o1

ε1
=
x̂1

ε1
+

(x̂1 − x̂2)

ω1

oi
εi

=
x̂i
εi

+
(x̂i − x̂i−1)

ωi−1
+

(x̂i − x̂i+1)

ωi
oN
εN

=
x̂N
εN

+
(x̂N − x̂N−1)

ωN−1
.

With additional factoring, the expression becomes

o1

ε1
= x̂1

(
1

ε1
+

1

ω1

)
+ x̂2

(
−1

ω1

)
oi
εi

= x̂i

(
1

εi
+

1

ωi−1
+

1

ωi

)
+ x̂i−1

(
−1

ωi−1

)
+ x̂i+1

(
−1

ωi

)
oN
εN

= x̂N

(
1

εN
+

1

ωN−1

)
+ x̂N−1

(
−1

ωN−1

)
.

The factored expression on the right can be expressed in terms of a vector product of the Hessian matrix and the
maximum likelihood of the true positions, MX̂ . Multiplying by the inverse Hessian matrix results in the solution
X̂ = M−1Θ, where the components of Θ are θi = oi/εi.

Appendix E: An Observed Information Calculation

The observed information is necessary for calculating reliable confidence intervals around the MLE. With the re-
cursive solution, the observed information can be solved for recursively in linear time

K(D̂) =
∂2

∂D̂2

N−1∑
i=1

1

2
ln(2παi) +

(oi+1 − µi)2

2αi

=

N−1∑
i=1

1

2αi

{
∂2αi

∂D̂2
−
(
∂αi

∂D̂

)2
1

αi

}
+

(oi+1 − µi)2

α2
i

[(
∂αi

∂D̂

)2
1

αi
− 1

2

∂2αi

∂D̂2

]

+
1

αi

{
(oi+1 − µi)

[
2

αi

∂αi

∂D̂

∂µi

∂D̂
− ∂2µi

∂D̂2

]
+

(
∂µi

∂D̂

)2
}
,
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where the derivatives of αi and µi can be solved recursively given that the initial first and second derivatives are

∂2µ1

∂D̂2
= 0,

∂2α1

∂D̂2
= 0,

∂µ1

∂D̂
= 0,

∂α1

∂D̂
=
∂ε1

∂D̂
+
∂ε2

∂D̂
+
∂ω1

∂D̂
.

The recursions on the second derivatives are

∂2µi

∂D̂2
=

εi
αi−1

∂2µi−1

∂D̂2
+

2

αi−1

∂µi−1

∂D̂

[
∂εi

∂D̂
− εi
αi−1

∂αi−1

∂D̂

]
+

(oi − µi−1)

α2
i−1

[
2
∂εi

∂D̂

∂αi−1

∂D̂
− 2

εi
αi−1

(
∂αi−1

∂D̂

)2

+ εi
∂2αi−1

∂D̂2

]
,

∂2αi

∂D̂2
=

(
εi
αi−1

)2
∂2αi−1

∂D̂2
+

4εi
α2
i−1

∂εi

∂D̂

∂αi−1

∂D̂
− 2ε2

i

α3
i−1

(
∂αi−1

∂D̂

)2

− 2

αi−1

(
∂εi

∂D̂

)2

.

And, the recursion on the first derivatives are

∂µi

∂D̂
=

εi
αi−1

∂µi−1

∂D̂
+

(oi − µi−1)

αi−1

(
εi
αi−1

∂αi−1

∂D̂
− ∂εi

∂D̂

)
,

∂αi

∂D̂
=
∂ωi

∂D̂
+
∂εi+1

∂D̂
+
∂εi

∂D̂
+

εi
αi−1

(
εi
αi−1

∂αi−1

∂D̂
− 2

∂εi

∂D̂

)
.

Appendix F: An Expected Information Calculation

The expected information, conditional on vi can be represented as

I(D̂) =

〈
∂2

∂D̂2

N−1∑
i=1

1

2
ln(2παi) +

(oi+1 − µi)2

2αi

〉

=

N−1∑
i=1

1

2αi

[
∂2αi

∂D̂2
−
(
∂αi

∂D̂

)2
1

αi

]
+

〈
(oi+1 − µi)2

〉
α2
i

[(
∂αi

∂D̂

)2
1

αi
− 1

2

∂2αi

∂D̂2

]

+
1

αi

{
2

〈
(oi+1 − µi)

∂µi

∂D̂

〉
∂αi

∂D̂

1

αi
−
〈

(oi+1 − µi)
∂2µi

∂D̂2

〉
+

〈(
∂µi

∂D̂

)2
〉}

.

The Fisher information can be calculated recursively by evaluating each of the expectation values. The representation
of the recursive variables as separated Gaussians leads to the following relations〈

(oi+1 − µi)2
〉

= αi,

〈(oi+1 − µi)(oi − µi−1)〉 = 0.

The remaining non-zero expectation value has the initial condition〈(
∂2µ1

∂D̂2

)2
〉

= 0,

and can be solved recursively〈(
∂µi

∂D̂

)2
〉

=
1

αi−1

(
∂αi−1

∂D̂

εi
αi−1

− ∂εi

∂D̂

)2

+

(
εi
αi−1

)2
〈(

∂µi−1

∂D̂

)2
〉
.
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Then, I(D̂) reduces to

I(D̂) =

N−1∑
i=1

1

2α2
i

(
∂αi

∂D̂

)2

+
1

αi

〈(
∂µi

∂D̂

)2
〉
. (F1)
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