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The self-consistent probabilistic approach has proven itself powerful in studying the percolation
behavior of interdependent or multiplex networks without tracking the percolation process through
each cascading step. In order to understand how directed dependency links impact criticality,
we employ this approach to study the percolation properties of networks with both undirected
connectivity links and directed dependency links. We find that when a random network with a given
degree distribution undergoes a second-order phase transition, the critical point and the unstable
regime surrounding the second-order phase transition regime are determined by the proportion of
nodes that do not depend on any other nodes. Moreover, we also find that the triple point and
the boundary between first- and second-order transitions are determined by the proportion of nodes
that depend on no more than one node. This implies that it is maybe general for multiplex network
systems, some important properties of phase transitions can be determined only by a few parameters.
We illustrate our findings using Erdős-Rényi (ER) networks.

PACS numbers: 89.75.Hc, 89.75.Fb, 64.60.ah

I. INTRODUCTION

Complex networks science has become an effective tool
for modeling complex systems. It treats system entities
as nodes and the mutually supporting or cooperating re-
lations between the entities as connectivity links [1–12].
In many systems, nodes that survive and fail together
form dependency groups through dependency links. De-
pendency links denote the damaging or destructive re-
lations among entities [13–21]. Compared to ordinary
networks [5, 6, 10], networks with dependency groups or
links are more vulnerable and subject to catastrophic col-
lapse [22, 23]. The previous works have studied the net-
work system in which the dependency groups, with sizes
either fixed at two [22] or characterized by different clas-
sic distributions [23], are formed through undirected de-
pendency links. The outcome when the dependency links
are directed, however, is more general. For example, in a
financial network where each company has trading and
sales connections (connectivity links) with other compa-
nies, the connections enable the companies to interact
with others and function together as a global financial
market, and companies that belong to the same corpo-
rate group strongly depend on the parent company (i.e.
there are directed dependency links), but the reverse is
not true [24]. Another example is in a social network
in which people (followers) follow trends set by celebri-
ties (pioneers), e.g., popular singers and actors but the
reverse is not true [25].

We use a self-consistent probabilistic framework [26–
29] to study the percolation phase transitions in a ran-
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FIG. 1: (Color online) Demonstration of the synergy between
the percolation process and the dependency process that leads
to a cascade of failures. The network contains two types of
links: connectivity links (solid black lines) and directed de-
pendency links (dashed red arrows). (a)→(b) Initial failure: a
random node is removed. (c)→(e) Synergy between percola-
tion process and dependency process: nodes cut-off from the
giant component or depending on failed nodes are removed.
(f) Steady state: the surviving giant component contains four
nodes.

dom network A with both connectivity and directed de-
pendency links. Randomly removing a fraction 1 − p of
nodes in network A causes (i) connectivity links to be dis-
connected, causing some nodes and clusters to fail due to
the disconnection to the network giant component (per-
colation process), and (ii) failing nodes to make their
dependent nodes to also fail even though they are still
connected to the network giant component via connec-
tivity links (dependency process). Thus, the removal of
nodes in the percolation process leads to the failure of de-
pendent nodes in the dependency process, which in turn
initiates a new percolation process, which further sets off
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a dependency process, and so on. We show that this syn-
ergy between the percolation process and the dependency
process leads to a cascade of failures that continues until
no further nodes fail (See Fig. 1).

To fully capture the structure of network A, we intro-
duce the degree distribution P (k) and, in addition, the
directed dependency degree distribution Q(ko), which is
the probability that a randomly chosen node has ko di-
rected dependency links connecting to ko nodes which are
supporting this chosen node. In our model, when i de-
pends on ko nodes, we assume that if any one of these ko
nodes fails, node i will fail too (see Fig. 1). Usually, this
kind of multiplex has both first- and second-order phase
transitions [22, 23]. Here we find that Q(ko) strongly af-
fects the robustness of network A. Specifically, the per-
colation threshold pIIc , at which network A disintegrates
in a form of second-order phase transition, is determined
solely by Q(0) for a given Q(ko), and Q(0)+Q(1) charac-
terizes the boundary between the first-order phase tran-
sition and the second-order phase transition regime.

This paper is organized as the follows. In Sec.II we in-
troduce the general framework and develop the analytic
formulae to solve the influence of Q(ko) on the perco-
lation properties of a random network. In Sec.III, we
demonstrate these influences using an ER network.

II. GENERAL FRAMEWORK

For a random network A of size N with both connec-
tivity links and directed dependency links (see Fig. 1(a)),
as in Ref. [5], we introduce the generating function G0(z)
of the degree distribution P (k),

G0(z) =
∑
k

P (k)zk. (1)

Analogously, we have the generating function of the re-
lated branching processes [5],

G1(z) =
G

′

0(z)

G
′
0(1)

=
∑
k

kP (k)

〈k〉
zk−1. (2)

Similarly, we introduce the generating function for the
directed dependency degree distribution Q(ko) as

D(z) =
∑
ko

Q(ko)z
ko . (3)

We designate h(s) the probability distribution of the
number of nodes approachable along the directed depen-
dency links starting from a randomly chosen node in net-
work A. This allows us to write the generating function
H(z) for h(s), i.e.,

H(z) =
∑
s

h(s)zs. (4)

According to Ref.[30], H(z) also satisfies a self-consistent
condition of the form

H(z) = z ·D(H(z)). (5)

A random removal of a fraction 1− p of nodes triggers
a cascade of failures. When no more nodes fail, network
A reaches its final steady state. At this steady state, we
use the probabilistic approach [29] and define x to be the
probability that a randomly chosen connectivity link leads
to the giant component at one of its ends. If we randomly
choose a connectivity link l and find an arbitrary node n
by following l in an arbitrary direction, the probability
that node n has degree k is

kP (k)∑
k kP (k)

=
kP (k)

〈k〉
. (6)

For node n, the root of a directed cluster of size s, to
be part of the giant component, at least one of its other
k − 1 out-going connectivity links (other than the link
first chosen) leads to the giant component, provided that
every other s − 1 node is also in the giant component
because the disconnection of any one of these s−1 nodes
to the giant component will cause node n to lose support
and fail. Computing this probability, we can write out
the self-consistent equation for x as

x = p{
∑
k

kP (k)

〈k〉
[1− (1− x)k−1]} ×∑

s

{h(s){p
∑
k

P (k)[1− (1− x)k]}s−1}, (7)

where p is the probability that a node survives the initial
removal process, 1 − (1 − x)k−1 is the probability that
at least one of the other k − 1 connectivity links of node
n leads to the giant component, h(s) is the probability
that node n is the root of a directed cluster of size s, and
{p

∑
k P (k)[1−(1−x)k]}s−1 is the probability that every

other s− 1 node in the directed cluster supporting node
n is also in the giant component. Using the generating
functions defined in Eqs. (1), (2) and (4), we transform
Eq. (7) into the compact form

x =
1−G1(1− x)

1−G0(1− x)
·H(p[1−G0(1− x)]). (8)

which, by viewing p[1−G0(1− x)] as a whole and using
the property of H(z) outlined in Eq. (5), can also be
written as

x = p[1−G1(1−x)]·D[H(p(1−G0(1−x))] ≡ F (x, p). (9)

For a given p, x can be numerically calculated through
iteration with a proper initial value.

Correspondingly, using similar arguments, the proba-
bility P∞(p) that a randomly chosen node n in the steady
state of network A is in the giant component is

P∞(p) = p{
∑
k

P (k)[1− (1− x)k]} ×∑
s

h(s) · {p
∑
k

P (k)[1− (1− x)k]}s−1

= H(p[1−G0(1− x)]), (10)
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where 1 − (1 − x)k is the probability that at least one
of the k connectivity links of node n leads to the giant
component. Note that P∞(p) is also the normalized size
of the giant component of network A at the steady state.

We find that there is no giant component at the steady
state of network A, i.e., P∞(p) = 0 when p is smaller than
a critical probability pIIc and above the threshold, the
giant component appears and its size increases continu-
ously from 0 as p increases. This is typical second-order
phase transition behavior and as p → pIIc , P∞(pIIc ) =
H(pIIc [1−G0(1− x)])→ 0, which suggests x→ 0. Thus
we can take the Taylor expansion of Eq. (9) with x→ 0
to obtain pIIc as (see Appendix A),

pIIc =
1

Q(0)G
′
1(1)

=
〈k〉

Q(0) 〈k(k − 1)〉
, (11)

which is consistent with our previous result reported in
Ref.[25] and depends on Q(0) only but not any other
terms from Q(ko).

In some cases, however, there is no giant component
at the steady state of network A, i.e., P∞(p) = 0 when
p is smaller than a critical probability pIc but above the
threshold, the giant component suddenly appears and its
size increases abruptly from 0 as p increases. This is
typical first-order phase transition behavior. When p =
pIc , the straight line y = x and the curve y = F (x, p)
from Eq. (9) will tangentially touch each other at (xc, xc)
[25]. Thus, the condition corresponding to the first-order
transition is that the derivatives of both sides of Eq. (9)
with respect to x are equal,

1 =
dF (x, p)

dx
|x = xc, p = pIc . (12)

Due to the complexity of Eqs. (9) and (12), numeric
methods are generally used to get pIc .

Note pIc = pIIc corresponds to the case where the phase
transition changes from first-order to second-order when
the conditions for both the first- and second-order tran-
sitions are satisfied simultaneously. By substituting pIIc
from Eq. (11) into Eq. (12) and further evaluating x, we
obtain the boundary between the first-order and second-
order phase transitions, which is characterized by (see
Appendix B),

Q(1) =
Q(0)G

′′

1 (1)

2G
′
0(1)

=
Q(0) 〈k(k − 1)(k − 2)〉

2 〈k〉2
. (13)

Thus, the boundary between first- and second-order tran-
sitions is determined only by the proportion of nodes that
do not depend on more than one node, i.e., the boundary
is solely determined by Q(0) and Q(1) but not any other
terms from Q(ko). This implies that the triple point – the
intersection of first order phase transition, second order
phase transition and the unstable regime is also deter-
mined by Q(0) and Q(1).

When removing any fraction of nodes results in the to-
tal collapse of network A, i.e., when pIIc ≥ 1, the network

is unstable. By requiring pIIc = 1 and using Eq. (11), we
can obtain the boundary between the second-order phase
transition and the unstable state,

Q(0) =
1

G
′
1(1)

=
〈k〉

〈k(k − 1)〉
, (14)

which depends solely on the proportion of nodes that do
not depend on other nodes at all, i.e., Q(0).

Similarly, by requiring pIc = 1 in Eq. (12), we use
numerical calculations to find the boundary between
the first-order phase transition and the unstable state.
Therefore, the complete boundary between the unstable
state and the phase transition state is achieved by joining
these two boundaries together. Moreover, substituting
Eq. (13) into Eq. (14), we could obtain the explicit for-
mula of the triple point which is the intersection of these
two boundaries:

Q(1) =
〈k(k − 1)(k − 2)〉
2 〈k〉 〈k(k − 1)〉

(15)

Note that for scale-free networks with power law de-
gree distribution P (k) ∝ k−γ and γ ∈ (2, 3], both
its second moment 〈k(k − 1)〉 and its third moment
〈k(k − 1)(k − 2)〉 are divergent. This implies that pIIc =
0 for any Q(0) according to Eq. (11) and the regime of the
second order phase transition shrinks towards the origin.
Thus for scale free networks, the situation becomes a lit-
tle bit simple. Therefore, if Q(0) > 0 one could always
see the second-order phase transition with pIIc = 0 and
if Q(0) = 0 the system undergoes unstable or first-order
phase transition.

III. RESULTS ON ER NETWORKS

Section II provided the general framework for random
networks with an arbitrary degree distribution P (k). We
here illustrate it using an ER network [31–33] with a Pois-

son degree distribution P (k) = e−〈k〉〈k〉k/k! where 〈k〉 is
the average degree. We choose this network because it
is representative of random networks, and the generating
function corresponding to the degree distribution P (k) is
G0(z) = e〈k〉(z−1).

A. Second-order phase transitions

Plugging G
′

1(1) = 〈k〉 into Eq. (11), we get the second-
order phase transition point pIIc ,

pIIc =
1

Q(0) 〈k〉
. (16)

Therefore, for ER networks, the critical point of second-
order phase transition is indeed determined solely by
Q(0) and its average degree. We support our analyt-
ical results by simulations. We choose 〈k〉 = 8 and
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FIG. 2: (Color online) The size of the giant component
P∞(p), as a function of the fraction of nodes that remain
after random removal, p, for ER networks with 〈k〉 = 8 and
D(z) = Q(0) +Q(1)z +Q(2)z2. The symbols represent simu-
lation results of 104 nodes and the dashed lines show the the-
oretical predictions from Eq. (10). The percolation threshold
pIIc is uniquely determined by Q(0).

D(z) = Q(0) + Q(1)z + Q(2)z2 with Q(0) fixed at 0.4
and Q(1), Q(2) tunable. Fig. 2 shows the size of the gi-
ant component P∞(p) as a function of p with the given
〈k〉 and D(z). Note that in all cases simulation results
(symbols) agree well with numerical results (dotted lines)
and the curves of P∞(p) converge at a fixed value of
pIIc = 0.3125 as predicted by Eq. (16). This convergence
of P∞(p) curves is possible because pIIc is determined
solely by Q(0), which is fixed to be 0.4 in Fig. 2. Note
that if there is no directed dependency links in the net-
work, i.e., Q(0) = 1, we will get pIIc = 1/ 〈k〉, which is
consistent with the well-known result obtained in Ref. [3].

B. First-order phase transitions

When networks have a greater proportion of directed
dependency links, an abrupt transition can occur instead
of a continuous transition demonstrated in Fig. 2. To get
the pIc for the onset of this abrupt transition, we equate
the derivatives of both sides of Eq. (9) with respect to x,
i.e.,

1 =
d{p(1− e−〈k〉x) ·D[H(p(1− e−〈k〉x)}

dx
|x=xc,p=pIc

,

(17)
where we used the equtions G0(z) = G1(z) = e〈k〉(z−1).
Using Eqs. (9) and (17), we apply numerical methods to
get pIc .

With D(z) = Q(0) +Q(1)z+Q(2)z2, Fig. 3 shows the
size of the giant component P∞(p) as a function of p by
comparing simulation results and theoretical predictions.
Note that they agree with each other very well. Fig. 3
shows that with 〈k〉 = 5 and Q(0) + Q(1) = 1, when
Q(0) = 0.4, P∞(p) undergoes a second-order phase tran-
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FIG. 3: (Color Online) The size of the giant component P∞ as
a function of the fraction of nodes that remain after random
removal, p, for ER networks. Here we used D(z) = Q(0) +
Q(1)z with 〈k〉 = 5 (� and ? ) and D(z) = Q(0) + Q(1)z +
Q(2)z2 with 〈k〉 = 10 (© and O). The symbols represent
simulation results of 104 nodes and the dashed lines are the
theoretical predictions from Eq. (10). With a relatively larger
Q(0), the network undergoes a second-order phase transition
at pIIc , which only depends on Q(0). However for relatively
smaller Q(0) and larger Q(1) and Q(2), the network undergoes
a first-order phase transition.

sition at pIIc = 0.5 (�), but when Q(0) = 0.2, P∞(p)
exhibits behavior of a first-order phase transition at pIc ,
satisfying Eq. (17) (F). In addition, when 〈k〉 = 10,
Q(0) = 0.2, Q(1) = 0.7 and Q(2) = 0.1, P∞(p) under-
goes a second-order phase transition at pIIc = 0.5 (©),
but when Q(0) = 0.1, Q(1) = 0.8 and Q(2) = 0.1, P∞(p)
undergoes a first-order phase transition at pIc predicted
by Eq. (17) (O).

C. Boundaries of phase diagram

We fix the average degree 〈k〉 and from Eq. (16) we
conclude that the smaller Q(0) in the network, the big-
ger the pIIc value. If Q(0) is properly small that pIIc ≈ 1,
which corresponds to the case in which the removal of any
fraction of nodes causes a second-order phase transition
that totally disintegrates network A. Thus, by requiring
pIIc = 1, and using Eq. (16) we obtain the boundary be-
tween the second-order phase transition and the unstable
state,

1

〈k〉Q(0)
= 1. (18)

In addition, using Eq. (13), we obtain the boundary be-
tween the first-order and second-order phase transitions
of network A,

Q(1) =
〈k〉Q(0)

2
. (19)
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FIG. 4: (Color online) Comparison between simulation (sym-
bols) and theory (lines) for P∞(pc) as a function of Q(1) for
different D(z) (D(z) = Q(0) + Q(1)z + Q(2)z2) while keep-
ing Q(0) + Q(1) = 0.9 and 〈k〉 = 10. At the first-order
phase transition point pIc , P∞(pc) is nonzero; whereas at the
second-order phase transition point pIIc and P∞(pc) is zero.
From Eq. (19) the boundary between first-order phase transi-
tion and second-order phase transition is only dependent on
Q(0) + Q(1), thus at Q(1)c = 0.75 for this case.

Using D(z) = Q(0) +Q(1)z +Q(2)z2 +Q(3)z3 where
Q(0) + Q(1) = 0.9 and 〈k〉 = 10, Fig. 4 plots P∞(pc)
as a function of Q(1) by comparing simulation and nu-
merical results. The critical value of Q(1)c falls onto
Q(1)c = 0.75 as predicted by Eq. (19), delimiting two
different transition regimes. Specifically, if Q(1) < 0.75,
P∞(pc) = 0, which indicates the presence of a second-
order phase transition, but if Q(1) > 0.75, P∞(pc) >
0, which indicates the presence of a first-order phase
transition. We also consider a special case in which
Q(0) + Q(1) = M and use Eq. (19) to determine the
boundary between the first-order phase transition and
the second-order phase transition,

Q(1) =
M 〈k〉
〈k〉+ 2

. (20)

In addition, in terms of M , Eq. (18) delivers the bound-
ary between the second-order phase transition and un-
stable state,

Q(1) =
M 〈k〉 − 1

〈k〉
. (21)

Thus, in the coordinate system of 〈k〉-Q(1), using
Eqs. (20) and (21) we can plot the phase diagram of
network A under random failures, with these two bound-
aries converging at the triple point ( 2

2M−1 ,
1
2 ) (the solid

red dot in Fig. 5). Because 〈k〉 > 0 always holds, when
M ≤ 1

2 this intersection point is non-physical, indicating
that the network will not be subject to first-order phase
transitions under attack irregardless of the form of P (k),
but if M > 1

2 , the network will be subject to first-order
phase transitions.
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FIG. 5: (Color online) The fraction of nodes that have one
dependent node Q(1) as a function of the average degree 〈k〉
with Q(0) + Q(1) = 9

10
. The dashed lines are theoretical

results obtained from Eqs. (20) (green) and (21) (red) with
intersection points at ( 2

2M−1
, 1
2
). The dashed blue line is the

boundary between first-order phase transition and unstable
system, obtained numerically. Here the dashed red and green
lines only depend on m0 whereas the blue lines (both solid and
dashed) depend on the specific details of Q(ko) other than M .

Fig. 5 shows the boundaries in the phase diagram with
M = 9

10 >
1
2 , where the boundaries between first-order

phase transitions and the unstable state are determined
numerically. Note that, when M is fixed, the bound-
ary between the second-order phase transition and the
unstable state (dashed red line) as well as the bound-
ary between the first-order and second-order phase tran-
sitions (dashed green line) are also fixed because they
depend only on M , but the boundary between the first-
order phase transition and the unstable state (dashed
blue line) is subject to the details of Q(ko). For example,
when Q(0) +Q(1) = 9

10 , a shuffle of the remaining terms
in Q(ko) causes a shift in the boundary line, shown as
the displacement of the solid blue line to the dashed blue
line in Fig. 5.

IV. CONCLUSIONS

In summary, we present an analytical formalism for
studying random networks with both connectivity links
and directed dependency links under random node fail-
ures. Using a probabilistic approach, we find that the
directed dependency links greatly reduce the robustness
of a network. We show that the system disintegrates
in a form of second-order phase transition at a critical
threshold and the boundary between second-order phase
transition and unstable regimes solely determined by the
proportion of nodes that do not depend on other nodes.
Our framework also provides the solution for the bound-
ary between the first-order and second-order phase tran-
sitions, which is characterized by the proportion of nodes
that depend on no more than one node.
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Appendix A

If p→ pIIc , x→ 0. From Eq. (9) we have

1−G1(1− x) = G
′

1(1)x− G
′′

1 (1)

2
x2 +O(x3), (A1)

1−G0(1− x) = G
′

0(1)x− G0
′′(1)

2
x2 +O(x3), (A2)

and

D{H{p[1−G0(1− x)]}} = Q(0) + pQ(1)h(1)G
′

0(1)x

+O(x2). (A3)

Using Eqs. (A1), (A2) and (A3), we can write Eq. (9) as

x = pQ(0)G
′

1(1)x+ p[pQ(1)h(1)G
′

0(1)G
′

1(1)

−Q(0)G
′′

1 (1)

2
]x2 +O(x3). (A4)

Since x ∈ (0, 1), we can divide both sides of Eq. (A4) by
x, and obtain

1 = pQ(0)G
′

1(1) + p[pQ(1)h(1)G
′

0(1)G
′

1(1)

−Q(0)G
′′

1 (1)

2
]x+O(x2). (A5)

As x→ 0, taking the limits of both sides of Eq. (A5) we
get

pIIc =
1

Q(0)G
′
1(1)

. (A6)

Appendix B

Putting Eq. (A6) back into Eq. (A5), we get

Q(1)h(1)G
′

0(1)

Q(0)
x =

Q(0)G
′′

1 (1)

2
x+O(x2). (B1)

To simplify Eq. (B1), we first take the derivatives of both
sides of Eq. (5) with respect to x and obtain

H
′
(z) = D(H(z))− z ∂(D(H(z)))

∂(H(z))
H

′
(z). (B2)

Plugging z = 0 into Eq. (B2), we get H
′
(0) = D(H(0)) =

D(0) = Q(0). Using Eq. (4), we easily obtain H
′
(0) =

h(1) and thus h(1) = Q(0), which would reduce Eq. (B1)
as

Q(1)x =
Q(0)G

′′

1 (1)

2G
′
0(1)

x+O(x2). (B3)

Up to this point, if x→ xt = 0, network A undergoes a
second-order phase transition and thus Eq. (B3) clearly
holds, but if x → xt 6= 0, network A undergoes a first-
order phase transition. On the boundary between the
first-order and the second-order phase transitions, we get
a nonzero xt, but it is negligibly small. Here, we can treat
O(xt) ≈ 0 and obtain the condition characterizing this
boundary as

Q(1) =
Q(0)G

′′

1 (1)

2G
′
0(1)

. (B4)
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