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Abstract

One of the key clues to consider rainfall as a self-organized critical phenomenon is the existence

of power-law distributions for rain-event sizes. We have studied the problem of universality in the

exponents of these distributions by means of a suitable statistic whose distribution is inferred by

several variations of a permutational test. In contrast to more common approaches, our procedure

does not suffer from the difficulties of multiple testing and does not require the precise knowledge of

the uncertainties associated to the power-law exponents. When applied to seven sites monitored by

the Atmospheric Radiation Measurement Program the tests lead to the rejection of the universality

hypothesis, despite the fact that the exponents are rather close to each other. We discuss the reasons

of the rejection.

PACS numbers: 05.65.+b, 05.70.Jk, 64.60.Ht 92.40.E-
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I. INTRODUCTION

The concept of universality is “one of the most striking features of the theory of critical

phenomena” [1], giving sense to the extended use of modeling in statistical physics. Strictly,

it would mean that using a naive model one could derive all the critical exponents and

scaling functions of any real system displaying a second order phase transition, no matter

the complications of the interactions in the system, because critical exponents and scaling

functions should be “universal”. In practice, the name universality is somewhat pretentious

[2], and what one instead obtains are several “universality classes”, which are sets of systems

sharing the same behavior (in terms of critical exponents and scaling functions), depending

only, in equilibrium and for systems with short-range interactions, on the dimensionality

of space and the symmetry of the order parameter. This is in sharp contrast with the

behavior of other important properties, as for instance the critical temperature, justifying

the perplexity for the universality phenomenon.

The classification of many disparate systems into a relatively reduced number of univer-

sality classes is therefore a fundamental problem (analogous somehow to the construction of

the Mendeleev’s periodic table [2]), which relies on the accurate determination of critical ex-

ponents and scaling functions. A weaker form of universality considers only the coincidence

of the critical exponents, disregarding the scaling functions. This is due, when dealing with

experimental or numerical data, to the fact that critical exponents can be obtained directly

as a single number each one, whereas scaling functions need to be parameterized (which in-

troduces some degree of arbitrariness in the parameterization); otherwise, scaling functions

need to be obtained from the analytical solution of a model.

Among all the different critical exponents, an important subset are those arising from

probability distributions, such as cluster number densities, avalanche size distributions, etc.

[3, 4]. In this case, the probability mass function or the probability density f(s) of the

variable s can be written, at least for large s, as

f(s) = s−τG(s/sc), (1)

where sc is a characteristic value of s and G is a scaling function that can be an exponential

or any other function going to a constant for small s and decaying very fast for large s. Close

to the critical point and in the infinite system-size limit, sc diverges, G tends to a constant,

f(s) becomes a power law, and τ emerges as a genuine critical exponent.
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Similar situations arise outside critical phenomena; for instance, in anomalous diffusion,

the long-term behavior of a diffusion process (with short-range correlations) can be classified

within a continuous of universality classes defined by the Lévy-stable laws, characterized by

power-law tails [5]. Although the behavior of the system is not governed by a continu-

ous phase transition, it is possible to understand it from the existence of a fixed point in

some renormalization-group transformation equations [6]. Other stochastic processes lead

to analogous situations [6–8].

The determination of critical exponents is not an easy task, even more difficult when they

are the exponents of power-law distributions. Very recently, considerable attention has been

devoted to the proper fit of such distributions, together with the subsequent goodness-of-fit

testing. White et al. and Clauset et al. (among others) [9, 10] mention the systematic errors

that can arise from using the least-square linear regression method applied to ln f(s) as a

function of ln s, although the alternative recipe proposed by Clauset et al. to find the most

suitable power-law range has been found to perform badly in some cases [11], so somewhat

different methods have been suggested by other authors [12, 13].

But determining the critical exponents as accurately and unbiasedly as possible, together

with their associated uncertainties, is not the end of the story if one is looking for univer-

sality. The exponents need to be properly compared, in order to test if they are statistically

compatible with each other or not. From a more practical point of view, if universality does

not hold, one may monitor some process by the changes in the value of some power-law

exponent, which can play the role of a precursor of catastrophic failure (see citations at Ref.

[14]).

The subject of this paper is to develop a systematic procedure to compare critical ex-

ponents, applying it to study in detail a non-equilibrium problem: that of universality in

rain-event size distributions, which is important to characterize rainfall as a self-organized

critical phenomena [4, 15]. These distributions were first analyzed for one single location

in the Baltic coast by Peters et al. [16, 17], who reported a power-law distribution with an

exponent τ around 1.4. More recently, Ref. [12] widened the study to 10 sites around the

globe; after discarding 3 of them due to different instrumentally induced biases and errors,

not only the power-law hypothesis was confirmed but also the scaling form of the distribu-

tion, Eq. (1), with rather smaller exponents, ranging from τ = 1.14 to 1.19. However, a

proper statistical test to decide if the exponents were compatible with a unique value or not
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was not attempted.

This is what we undertake here, extending the study in order to include new data. In the

following section we introduce the rain data, the definition of rain events, and the precise

way of fitting the power-law exponents. Next, in Sec. III, we explain some naive ways to

compare the values of the exponents; these ways are not satisfactory due to the difficulties

of multiple testing, and, more important, because they require the precise estimation of the

uncertainties of the exponents, which may be impossible in practice. Section IV is devoted

to the development of a simple and intuitive permutational test in order to investigate the

universality of the exponents for the rain data of Ref. [12], whereas in Sec. V this test is

generalized. Section VI presents the more complete, improved test, as an extension of the

previous one. We finish with some discussion and conclusions.

II. DATA, RAIN EVENTS, AND POWER-LAW FITTING

As in Ref. [12], we analyze rain data from the Atmospheric Radiation Measurement

(ARM) Program (www.arm.gov). The ARM rain database presents the advantage of its

homogeneity in the sense that all sites are equipped with the same type of pluviometer, an

optical rain gauge from MiniOrg (Optical Scientific, Inc.), model ORG-815-DA [12]. Rain

rate is recorded with a one-minute temporal resolution, with a minimum value of 0.001

mm/hour, but we disregard rain rates below 0.2 mm/hour (i.e., we treat them as zero), as

recommended by the ARM Handbook. Other corrections were applied to the data using the

ARM Data Quality Reports. The data measurements have been also carefully compared

with measurements from other devices in order to detect and reduce systematic biases [18].

In order to compare with the results of Ref. [12], we consider the same sites studied there,

except the 3 sites that those authors found problematic for diverse reasons (North Slope of

Alaska, Point Reyes, and Southern Great Plains, all 3 in USA); this yields a remainder of

M=7 sites, see Table I. For some of these sites (Manus, Nauru, Darwin, and Graciosa) new

data are available since the study of Ref. [12], so our database has been updated accordingly.

The rest of the sites (Niamey, Heselbach, and Shouxian) remain essentially the same, except

perhaps for little operational errors reported since then and corrected in our treatment.
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TABLE I: ARM observation sites used in our analysis of rainfall, with corresponding starting and

ending times and location. I. stands for island.

Site start time end time latitude longitude

Manus I., Papua New Guinea 2005/02/15 2012/03/18 2.116◦S 147.425◦E

Nauru I., Nauru Republic 2005/02/15 2012/03/18 0.521◦S 166.916◦E

Darwin, Australia 2005/02/15 2012/03/18 12.425◦S 130.892◦E

Niamey, Niger 2005/12/26 2006/12/08 13.522◦N 2.632◦E

Heselbach, Germany 2007/04/01 2008/01/01 48.450◦N 8.397◦E

Shouxian, China 2008/05/09 2008/12/28 32.558◦N 116.482◦E

Graciosa I., Azores, Portugal 2009/04/14 2011/01/06 39.091◦N 28.029◦E

The fundamental concept in the self-organized-criticality approach is the rain event, which

is defined as a sequence of rain-rate values all above a certain threshold (starting and ending

just when the threshold is crossed) [16, 17, 19, 20]; in our study the threshold is set to 0.2

mm/hour [12], although higher thresholds can be also of interest [21]. The size s of the event

is the total amount of rain collected during the lifetime of the event, i.e., the time integral

of the rain rate along event duration. Rain events containing errors of measurement are

discarded (in contrast to Ref. [12], where the part of the event devoid of errors was counted

as an event). A large record of rainfall contains enough events to estimate the probability

density of the rain-event size, f(s), and, independently, to test if this distribution follows a

power law or not.

The key to fit properly power-law distributions to real-world data is to have an objective

criterion to decide at which point the power law starts and (in the truncated case) at which

point it ends; these cut-offs define the fitting range. This is so because incompleteness

of the data for very small sizes and finite-size effects for large sizes lead to considerable

deviations from a power-law regime, see Eq. (1). As a fitting method we essentially use the

improvement and extension of the Clauset et al.’s method [10] introduced in Ref. [12] and

explained in much detail elsewhere [13]. Summarizing, “all” fitting ranges are considered,

and among those which yield acceptable fits (high enough p−values), the one containing

more data points (i.e., more events) is selected.
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Fitting is performed by maximum likelihood estimation, goodness of fit is tested by the

Kolmogorov-Smirnov distance, and the p−value of the fit is computed from Monte Carlo

simulations. To be precise, to look for the fitting range we sweep 20 values per order

of magnitude (equidistant in log-scale) of the small-size and large-size cut-offs. Then, for

each fitting range, the value of the exponent is estimated by maximum likelihood, and the

distance between the fit and the empirical data is quantified by the Kolmogorov-Smirnov

statistic. Monte Carlo simulations are used to generate 300 synthetic samples within the

fitting range and power-law distributed with the estimated exponent. The application of

the same maximum-likelihood estimation and Kolmogorov-Smirnov method to each syn-

thetic sample leads to the distribution of the Kolmogorov-Smirnov distance, from which the

p−value of the fit arises. This is different from the uncertainty in the exponent, which can

be quantified by the standard deviation of the maximum likelihood estimation, calculated

using the jackknife procedure (the formula of Ref. [22], see Eq. (4), and our Monte Carlo

simulations are in agreement with this method). We consider a fit as acceptable (or non-

rejectable) if p > 0.10. Among all the acceptable fits, we select the one containing more

data points, as mentioned above.

Provided that we find at least one non-rejectable fit, for each dataset i we end up with

three optimized values: one is the resulting estimated exponent τ̄i and the other two, ai and

bi (the selected small-size and large-size cut-offs), define the fitting range ai ≤ s ≤ bi for

which the power-law fit holds. Notice also that the fitting and testing procedure does not

make use of the estimation of f(s) shown for illustration purposes in the figures of Ref. [12].

Results of the fits for the rain-event size distributions are shown in Table II.

As a first trial, in order to simplify the comparison between the different sites, we decide

to consider the common range over which all distributions are power laws. We define then

a = max∀i ai and b = min∀i bi (verifying that a� b); then, new exponents τ̂i are recalculated

for this common range just by maximum likelihood estimation. The estimated power-law

fittings will be given then by

fi(s) ∝
1

sτ̂i
, for a ≤ s ≤ b. (2)

The resulting exponents will be different but very close to the previous ones (within the

expected fluctuations), see Table II. Nevertheless, the p−value for the new fits may change,

even being possible that some of them drop below the acceptance threshold. This is what
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TABLE II: Results of power-law fits for the 7 sites studied in Ref. [12] (with updated data). The

total number of rain events (for 0 < s < ∞) is Ni. The resulting optimum cut-offs ai and bi are

displayed, in mm, together with the resulting number of events in fitting range n̄i and exponent

τ̄i. When the fits are restricted to the common range, a = 0.0071 mm and b = 0.501 mm, the

new number of events and power-law exponents are ni and τ̂i. The quantity in parenthesis is the

standard deviation of the exponents in terms of the last significant digit of the exponent (calculated

for the case when the fitting range is fixed a priori).

Site i Ni ai bi bi/ai n̄i τ̄i ni τ̂i

1. Manus 15725 0.0071 10.0 1413 11910 1.152(05) 8455 1.151(09)

2. Nauru 8404 0.0063 3.2 501 6350 1.120(07) 4831 1.122(12)

3. Darwin 5216 0.0063 3.5 562 3946 1.106(09) 2959 1.095(15)

4. Niamey 260 0.0040 56.2 14125 231 1.193(26) 135 1.231(72)

5. Heselbach 2437 0.0040 0.6 141 1844 1.132(16) 1569 1.149(21)

6. Shouxian 476 0.0040 1.3 316 372 1.165(32) 290 1.185(48)

7. Graciosa 4260 0.0071 0.5 71 2841 1.147(15) 2841 1.147(15)

naturally happens in goodness-of-fit testing (as the null hypothesis may be rejected even

when it is true). We do not need to do anything in this regard, just the reader must be

aware of it.

III. DIFFICULTIES OF TESTING

This section discusses why traditional approaches present difficulties when applied to our

case, and justifies why other approaches will be more convenient. Our choice will be the

use of permutational tests, introduced in the following sections. As a starting point, let us

consider the simple case in which one only has to decide if some exponent (or in general,

some statistic) τ takes the same value or not in two different systems, 1 and 2. The null

hypothesis is then τ1 = τ2. What one usually has is an estimation for each exponent, denoted

as τ̂i, with i = 1, 2, together with an estimation of their standard deviations, which, if the

number of data for each system is large, we can assume converges to the true standard

deviation, σi.
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Under the null hypothesis, the difference d = τ̂1− τ̂2 will have zero mean, and, if datasets

1 and 2 are independent samples (which will be the common situation if the two systems are

unrelated), the standard deviation of the difference of the estimators will be σd =
√
σ2

1 + σ2
2.

As, asymptotically, τ̂1 and τ̂2 are normally distributed [22], so will be their difference, and

therefore it is straightforward to obtain a confidence interval for it. If the interval, centered at

zero, includes the observed value of the difference, the null hypothesis cannot be rejected and

the exponents can be considered to take the same value in both systems (which can belong

then to the same universality class, at least regarding the exponent τ). For instance, if we

compare the exponents of the Manus and Darwin sites (sites 1 and 3), the difference between

them is d = |τ̂Manus − τ̂Darwin| = 0.055 with standard deviation σd =
√
σ2
Manus + σ2

Darwin =

0.0175, see Table II. Considering the 1.96σd interval, we should reject the hypothesis that

both exponents are the same, with a 95 % confidence. Observe that, although the test for

the differences is well known, it is not in agreement with the somewhat extended practice of

verifying if the confidence intervals of τ̂1 and τ̂2 overlap, which yields a smaller significance

level (and is, then, less “rigorous”, or more permissive [23]).

But the situation is not so simple when one needs to analyze 3 or more systems. Taking

the naive approach of comparing the overlap of the confidence intervals, some systems may

lay outside the overlap region of the rest just by chance, which will be more likely as the

number of systems increases. So, the rejection in the previous example could be caused

by an unavoidable “bad luck,” as those sites are just a part of a much larger collection of

sites. Also, it might be difficult to define which is the overlap region, as there can be several

subsets, or a continuous of overlapping subsets.

If we take all pairs of systems, this leads to M(M−1)/2 pair tests if there are M different

systems. In our case, M = 7 and M(M − 1)/2 = 21. Comparing the M exponents by pairs

one can see from Table III that the null hypothesis would be rejected in 3 out of the 21 cases,

at the 5% significance level. Are these rejections really significant? In order to avoid the

rejection of the null hypothesis for a given test “by accident”, one can apply some correction

of the significance level, as the Bonferroni correction or the Šidák correction [24, 25]. With a

confidence level of 95 % we have a probability of rejecting the null hypothesis when it is true

of α ≡ 1− 0.95 = 0.05 (this is indeed the significance level); so, sooner or later we will get

large enough differences in the exponents, due to statistical fluctuations, if the number of

tests is large enough. Therefore, the probability of at least one rejection in 21 independent
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TABLE III: Absolute difference between power-law exponents for the common fitting range. Un-

certainty is evaluated as 1.96σd, corresponding to 5% significance level. Significant differences are

underlined. Note that σd is calculated from the standard deviations of the exponents for a fixed

fitting range.

Nauru Darwin Niamey Heselbach Shouxian Graciosa

Manus 0.03±0.03 0.06±0.03 0.08±0.14 0.00±0.04 0.03±0.10 0.00±0.03

Nauru - 0.03±0.04 0.11±0.14 0.03±0.05 0.06±0.10 0.02±0.04

Darwin - - 0.14±0.14 0.05±0.05 0.09±0.10 0.05±0.04

Niamey - - - 0.08±0.15 0.05±0.17 0.08±0.14

Heselbach - - - - 0.04±0.10 0.00±0.05

Shouxian - - - - - 0.04±0.10

tests is 1− (1− α)21 = 0.67, and we can consider this number as the global (or familywise)

significance level, which turns out to be rather high.

The idea of the Šidák correction is to select α in such a way that the resulting global

significance level is more reasonable, say 0.05; then, in our case, α = 1− 21
√

1− 0.05 = 0.0024.

For the Bonferroni correction one approximates 1− (1−α)21 ' 1− (1− 21α) = 0.05, which

leads in this case to essentially the same α = 0.0024. This has the advantage of not requiring

the independence of the tests, providing a lower bound for the significance level. To achieve a

confidence level of 99.76% with the normal distribution it is necessary to consider a bit more

than 3 standard deviations, this is 3.036
√
σ2
i + σ2

j . In this case, all pairs of exponents seem

to be compatible except one, corresponding to Manus and Darwin sites. These sites yield a

difference between their exponents equal to 0.055±0.053, which we can consider in the limit

of rejection and makes the decision about the universality on the value of exponents a very

critical one. In any case, the Bonferroni and Šidák corrections seem too generous (in order

to claim for universality, or too conservative in order to detect differences). They reduce the

type I error (false positive) at the cost of an enormous increase of the type II error (false

negative). The purpose of these examples was to illustrate the difficulty of dealing with

multiple testing. Multiple tests or global hypothesis testing are important research topics in

statistics, where significant contributions are currently made (see, for instance, Ref. [26]),

but there is not a definitive method or solution at the moment.
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An additional and more important problem is the identification, on the one hand, of σi,

the standard deviation of the maximum likelihood exponent for fixed ai and bi with, on

the other hand, the true uncertainty of the exponent for the whole optimization process.

It is the latter which should be used in the tests. We expect this uncertainty to be larger

than the standard deviation estimation, but its precise value is hard to quantify. So, the

approaches mentioned above cannot be applied as the uncertainties are in fact not known.

Other, more refined approaches to multiple testing [27] face the same problem when the

precise quantification of the uncertainty in individual tests is not possible. In any case, if

the uncertainties have to be larger it seems clear that the Bonferroni and Šidák corrections

are not able to reject the null hypothesis that all the values of the exponents are compatible

between them.

IV. RESTRICTED PERMUTATIONAL TEST

Instead of multiple testing, we propose an alternative track, using a permutational test,

which avoids the drawbacks just mentioned. We deal in this section with a very simple test,

see the next one for a more ellaborated procedure. The null hypothesis H0 is here that for

the common range a ≤ s ≤ b all exponents are the same, i.e., τi = τj, for all i and j (note

that before we had M(M − 1)/2 null hypotheses, one for each pair). What we need first is

a statistic that quantifies the divergence between all the exponents, in such a way that the

larger the value of the statistic, the stronger the evidence against the null hypothesis.

In order to construct this statistic we may take a weigthed sum of (τ̂i− τ̂j)2, or of |τ̂i− τ̂j|,

for all i and j, or rather, the maximum of all the differences, max∀ij(τ̂i− τ̂j). The first option

gives more weight to the most extreme differences than the option of taking instead the sum

of the absolute values of the differences, but lest weight than the option of the maximum

difference. So, the second power of the differences constitutes a compromise between the

importance given to the extremes and the importance given to the central values. Our

particular selection for the statistic is

Θ̂ =
M−1∑
i=1

M∑
j=i+1

ninj
ni + nj

(τ̂i − τ̂j)2, (3)

where ni is the number of data of dataset i in the common power-law range, a ≤ s ≤ b.

When this statistic refer to the empirical data (and not to permutations) we will call it
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Θ̂data.

The prefactor depending on ni and nj can be easily justified. Under the null hypothesis,

and for independent datasets, each τ̂i − τ̂j has zero mean and variance equal to the sum of

the variances of each exponent. But we can assume that the variance of each exponent is

proportional to 1/ni. Indeed, when the fitting range is fixed a priori [22], the proportionality

constant depends on the value of the exponent and on the fitting range as,

σ2
i =

1

ni

[
1

(τ̂i − 1)2
− rτ̂i−1

i ln2 ri
(1− rτ̂i−1)2

]−1

, (4)

with r = a/b; then, for identical exponents and for a common fitting range, σ2
i ∝ 1/ni. We

consider then that when the fitting range is not fixed but optimized (as it is our case), this

dependence still holds. Therefore, under the null hypothesis, the expected value 〈(τ̂i− τ̂j)2〉

is proportional to 1/ni + 1/nj, and so, ninj〈(τ̂i − τ̂j)2〉/(ni + nj) is the same for all i and

j, independently of the number of data ni and nj. Then, every term in Θ̂ has the same

expected value and contributes the same to the sum (on average). If we did not include the

prefactor we would be giving more weight to the smallest datasets. On the contrary, if, for

some reason, we wanted to give more weight to the largest datasets we could have taken

[ninj/(ni + nj)]
2 as a prefactor, for example.

The scale for Θ̂ is provided by the achieved significance level or P−value of the test,

which is defined as the probability that, under the null hypothesis H0, the random variable

Θ̂ is larger than the value we obtained for the observed data Θ̂data, i.e.,

P = Prob{Θ̂ ≥ Θ̂data | H0 is true}, (5)

so, the smaller the P−value, the stronger the evidence against H0 (we use capital P in order

to distinguish this P−value from the p−value of the power-law fit). Although each term in

the sum of Θ̂ follows a gamma distribution, with the same parameters (as each is the square

of a normal variable), there is no easy way to compute the distribution of the sum, due to

the fact that the terms are not independent. That is, even if all datasets i, j, k, etc., are

independent, the terms (τ̂i − τ̂j)2, (τ̂j − τ̂k)2, etc., are not.

Fisher’s permutation test [28] (also called randomization test) is a clever way to compute

the P−value in cases like these. It is based on the idea that, if the null hypothesis is correct,

any data value could correspond to any dataset, and the data values (the size of the rain

events in our case) are therefore interchangeable. In order to proceed with the test, we
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combine the n1 + n2 + ... + nM observations in the common power-law range into a single

meta-dataset and take M random samples of sizes n1, n2, ..., nM without replacement (this

is done just by a permutation or reshuffling of the meta-dataset, and then taking consecutive

ni values). This generates M new datasets with the same number of data than the initial

ones.

Next, we fit the power-law exponents (in the common fitting range) for each of the M

permuted or reshuffled datasets and from their values we compute the new test statistic Θ̂sh,

in the same way as for Θ̂data (sh stands for shuffled now). As the fitting range, given by a and

b is fixed, the fit of the exponent is simple, using just maximum likelihood estimation (neither

goodness-of-fit Kolmogorov-Smirnov tests nor simulations are necessary). The distribution

of the test statistic, under the null hypothesis, is obtained repeating the permutation process

a large enough number of times, Nsh. In our case, we always take Nsh = 100. With that we

can compute easily an approximation of the P−value by

P ≈ #{Θ̂sh ≥ Θ̂data}
Nsh

(6)

where #{Θ̂sh ≥ Θ̂data} is the number of permutations for which Θ̂sh ≥ Θ̂data. Notice that

this approach does not make use of the errors of the exponents (which is an advantage). For

our M = 7 rain datasets we obtain Θ̂data = 30.3, which, after the permutational procedure,

leads to P = 0.03. So, at the 5% significance level, we reject the hypothesis that all the

exponents take the same value and we cannot give statistical support to universality in

rainfall.

V. COMPLETE PERMUTATIONAL TEST

One can realize that the previous procedure has at least one drawback. The choice of a fix

common fitting range seems somewhat artificial, due to the fact that this range is optimum

for some empirical dataset but not necessarily for any of the permutations, a fact that can

introduce a bias in the procedure. In other words, the fit can be better for the true datasets

than for the reshuffled ones, and in this way we are not treating the latter in the same way

as the former. This is something that needs to be avoided; simulated or permuted data have

to be treated in exactly the same way as the real data to avoid biases and artifacts [10, 29].

In order to proceed in the same way with the permuted data, we have to look, for each
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reshuffled dataset, for the most appropriate fitting range, and then select the common power-

law range. Thus, we introduce a modification of the test in which we do not reshuffle the

common part of the data in which all distributions are power law, but we reshuffle the whole

data. That is, we aggregate the N1 + N2 + · · · + NM data, where Ni is the total size of

dataset i, and take random samples, without replacement, of size N1, N2, . . . , NM , and, we

insist, we perform with these datasets in the same way as with the true data. Notice that in

the previous subsection the null hypothesis was that, over a common range given by a and

b, all the distributions were power laws with the same exponent. Now the null hypothesis is

different, rather, we test if there exist a common range over which all the distributions are

power laws with the same exponent, but we do not specify which is that common range.

The procedure is summarized as follows, for every permutation ` (with ` from 1 to Nsh):

1. For each reshuffled data set, i = 1, . . .M , calculate the values of a
(`)
i and b

(`)
i which

lead to the largest number of data in a power law fitted in that range, provided that

p ≥ 0.10. As already mentioned, this is done by maximum likelihood estimation of the

exponent plus the Kolmogorov-Smirnov test plus Monte Carlo simulations of a power

law in the range a
(`)
i ≤ s ≤ b

(`)
i .

2. Select the common fitting range for the M reshuffled datasets, as a(`) = max∀i a
(`)
i and

b(`) = min∀i b
(`)
i (and verify that a(`) � b(`)).

3. Calculate new exponents τ̂ `i in the common fitting range, by maximum likelihood

estimation alone.

4. Calculate the test statistic Θ̃
(`)
sh (with a new definition, see Eq. (7) below).

And the same is repeated for every permutation. Then, the P−value is calculated as in the

previous case, Eq. (6). All steps, from 1 to 4, are exactly the same as for empirical data.

Note that step 1, the most time consuming (due to the Monte Carlo simulations), was

removed in the method of the previous section, as the common fitting range was the same in

all permutations (obviously, step 2 was also unnecessary). This meant that only data inside

the common fitting range had to be permuted. Now, we release such a restriction, and as

a result, each collection of reshuffled datasets will lead to a different common fitting range.

In this case, one has to take care in order to compare the test statistic Θ̃ corresponding

to the reshuffled data and the real data, as our previous definition, Eq. (3), did not take
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into account that different fitting ranges may correspond to different variances of τ̂i − τ̂j.

Indeed, from Eq. (4) we know that the standard deviation of the estimation of the power-law

exponent τ̂i (for a fixed fitting range) will depend not only on the number of data in the

power-law range ni but also on the ratio of the cut-offs, r = a/b.

In general, Eq. (4) teaches us that the larger the fitting range, the smaller r, and the

smaller also σi (even if the number of data keeps constant). In order to compensate this

fact, we define the test statistic directly as

Θ̃data =
M−1∑
i=1

M∑
j=i+1

(τ̂i − τ̂j)2

(σ2
i + σ2

j )
, (7)

using the notation for the empirical data, with σi referring to the standard deviation in the

fixed fitting range case, see Eq. (4). For the reshuffled data, an analogous definition yields

Θ̃sh, but note that the resulting exponents τ̂
(`)
i and standard deviations σ

(`)
i will be different

to the ones of the first test, as the ranges are different (see previous section). By dividing

by the sum of the variances we do not only ensure that each pair of datasets contributes

the same to the statistic (on average) but also that the statistic has the same average value

for each permutation (under the null hypothesis). If the fitting range were the same for all

permutations, this statistic would be essentially the same (except for a constant factor) as

the one employed in the previous section, Eq. (3). Note nevertheless that, in contrast with

the multiple testing explained before, the outcome of this test is not influenced by the size

of the “error bars” associated to the exponents, i.e., we could duplicate the value of all the

σi and the P−value of the test would not change. In other words, we just use
√
σ2
i + σ2

j

as a scaling factor of the differences between the exponents. The results of this generalized

test for the M = 7 data yield Θ̃data = 44.8 and P = 0.04; again, the null hypothesis of

universality can be rejected at the 5% significance level.

VI. PERMUTATIONAL TEST WITHOUT A COMMON POWER-LAW RANGE

A criticism to our previous permutational methods is that the restriction of the fits to a

common range reduces considerably the number of data, which increases the fluctuations of

the exponents, making more difficult to detect differences between them. So, although the

methods have shown powerful enough in our particular case, they could fail to detect true

differences in other problems. In fact, as in the test of the previous section we have corrected
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for the different fitting ranges of each dataset and each permutation, one can realize that we

would not need to look for a common fitting range in any case and we could suppress steps 2

and 3 in the procedure (both for the permuted data and for the real data). This procedure

has the advantage that we use the complete power-law ranges of each dataset. Nevertheless,

the permutation of the whole datasets leads to shorter power-law ranges, as one only would

expect strict power-law behavior over the common power-law range. So, this variation of

the test is limited also by the shortness of the power-law ranges in the reshuffled datasets.

A better option is to transform the data in order that all of them are defined in the same

range, but without disregarding any part of the power-law portion of the data. Remember

that in the first version of the test we reshuffled only data in the common power-law range,

a ≤ s ≤ b, whereas in the second one we reshuffled the whole data, 0 ≤ s ≤ ∞. We pretend

now to reshuffle the data keeping for each data set i its own power-law range, ai ≤ s ≤ bi.

In order to do so, we transform each dataset in such a way that if it is power-law distributed

between ai and bi with exponent τ̄i, its distribution turns out to be uniform between 0 and

1. This is simply done by replacing each size s by a value u given by

u = Si(s) =
s1−τ̄i − b1−τ̄i

i

a1−τ̄i
i − b1−τ̄i

i

, (8)

where remember that τ̄i is the exponent of dataset i in its complete power-law range, ai ≤

s ≤ bi and Si(s) =
∫ bi
s
fi(s

′)ds′ is the complementary cumulative distribution function (or

survivor function) of a truncated power-law distribution defined between ai and bi. So,

each dataset is transformed in this way, with its own exponent τ̄i and range, and then the

resulting values are reshuffled. After this, each reshuffled set is transformed back to the

original form,

s = S−1
i (u) =

1

τ̄i−1

√
b1−τ̄i
i + (a1−τ̄i

i − b1−τ̄i
i )u

, (9)

where this equation is just the inversion of Eq. (8). If u is uniformly distributed between

0 and 1, this yields a power law defined between ai and bi with exponent τ̄i, but note that

the concrete data values are different from the original ones, due to the reshuffling. This

is a procedure to obtain resampled data with the same exponents τ̄1, τ̄2, . . . τ̄M than the

original ones, provided that all original datasets were indeed power-law distributed with

those exponents.

Now, for each permuted data set, in order to perform the fit and the goodness-of-fit

test we only need to apply step 1 of the usual procedure (no common range is necessary
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anymore). Note that the resulting cut-offs should verify a
(`)
i ≥ ai and b

(`)
i ≤ bi (as our

current data is only defined between ai and bi). The test statistic for the empirical data

is calculated from Eq. (7), but replacing τ̂i by τ̄i and using the corresponding value of the

standard deviations. For the reshuffled data the test statistic is analogous. The outcome of

the method is Θ̃data = 82.6 with P = 0.01 and therefore the null hypothesis of universality

in the value of the exponents is clearly rejected.

VII. DISCUSSION AND CONCLUSIONS

We may ask about the reasons behind the rejection of the universality hypothesis. Look-

ing at Table III, it is clear that the largest differences between pairs of exponents, in terms of

their standard deviations, always involve the Darwin site. Indeed, the value of the exponent

for this site does not seem compatible with the values for Manus, Heselbach, and Graciosa.

But remember that an analysis derived from Table III is not reliable, due to the problems

of multiple testing and to the fact that the standard deviation of the exponents are not well

determined.

We may use the permutational tests to detect if the rejection of universality is associated

to the Darwin site, just disregarding this site and repeating the permutational test for the

remaining six sites. The outcome is a P−value larger than 0.05 for the simple restricted

permutational test, and larger than 0.10 for the other two more advanced tests, signaling in

any case that universality cannot be rejected when the Darwin site is excluded.

In order to be more general, and to avoid biases, we may try to detect if the rejection of

universality can be associated to other sites, so we systematically repeat the permutational

tests for all the combinations of six sites (i.e., removing another site instead of Darwin).

The results displayed in Fig. 1 show that in these alternative cases, were the Darwin site is

kept and other sites are removed, universality is rejected in most cases. The main exception

is the Manus site, which yields P−values larger than 0.05 (but smaller than 0.10) for the

second and third testing procedure.

So, we conclude that the reason of the rejection can be attributed to a unique site, which is

Darwin, but this attribution is purely statistical, as we cannot find any physical or technical

reason why this site could be problematic (in contrast to the sites excluded in Ref. [12].).

Alternatively, the same argument could be applied to Manus, although with less strength
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FIG. 1: P−values for the three permutational tests when one of the sites, from 1 to 7, is eliminated.

Sites are labeled as in Table II, with Darwin corresponding to site 3. Low P−values mean that

violation of universality for the values of the critical exponents is significant. Although 3× 7 tests

are performed, no correction for multiple testing is taken into account.

in this case, because of the moderately large P−values obtained when this site is removed

instead of Darwin. In consequence, the only clear statement is that universality is rejected

essentially because of the incompatibility of the exponents for Darwin and Manus.

Another factor to take into account is the uncertainty in the measurement of the rain

rate. It could be that, in principle, universality holds, but experimental errors make the

exponents slightly but significantly different, in such a way that universality appears as

violated. We have no access to the value of the true rain rates (without experimental

errors), but considering that the accuracy of the pluviometers is established to be 5 % for

the minutal rain rate measurements [30], we consider the effect of this error in the measured

values, adding to the measured values of the rate a random noise with a standard deviation

equal to the 5 % of the measured rate. The analysis of these noisy data shows no significant

difference with the original results, rather, the difference is smaller than the associated

errors, so we conclude that this effect seems to be too small to be the cause of the lost of

universality. We do not perform further tests as we consider highly unlikely that systematic

biases are affecting our results.
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In summary, we have developed permutational tests to deal with the universality or not

of the critical exponents arising from power-law probability distributions. More common

methods require the precise estimation of the uncertainty of the exponents, which is difficult

for our sophisticated fitting and testing procedure of the value of the exponents [13]. More-

over, those common methods suffer from the difficulties of multiple testing, as for instance

the artificially high values of the familywise significance level and the non-independence of

the tests.

In the case of rain-event size distributions our alternative permutational tests give clear

and unambiguous results: despite the fact that the differences between the exponents are

rather small, the universality hypothesis is rejected, both for a extremely simple version of

the permutational test and for two more complete implementations that avoid some artificial

biases in the procedure. The last of these is able to use the complete power-law range of the

datasets. Breaking of universality can be attributed to the Darwin site.

If asked about which of the tests is better, the first one, the restricted permutational test

(Sec. IV), has the clear advantage of a minimal computational load, but we have already

discussed that can be biased. The second test (Sec. V) avoids some bias of the first one,

so it is better if the number of data does not make its computational cost prohibitive.

Nevertheless, both tests are restricted to a common fitting range, which should not be a

problem if the fitting ranges of the different datasets are not very different from each other;

however, in the opposite case, the number of data that is disregarded is too high, and it is

even possible that a common fitting range does not exist, in such a case we recommend the

third testing method (Sec. VI). In general, the third method has a lower computational cost

than the second one, so, we always recommend the use of the third method with respect the

second one.

We have also verified that this third method yields a nearly uniform distribution of

P−values when used in a control case when all exponents are the same, by construction.

Also, the method is powerful enough to detect a change of 0.10 in one of the exponents,

keeping the rest identical, in particular when the change in the exponent corresponds to the

largest dataset.

In this paper we have seen how relatively involved permutational tests are necessary in

order to test the hypothesis of universality in critical exponents of probability distributions.

The complications arise from the fact that we fit truncated power laws to the data (i.e., power
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laws with an upper cut-off bi). Similar difficulties would arise for power-law distributions

with exponential-like tails, as the ones in Ref. [31]. The problems are substantially reduced

when the power laws are not truncated from above (i.e., bi =∞); in this case, it is enough

to rescale every value of the random variable s by the lower cutoff ai of the corresponding

dataset i, so that the random variable of interest becomes s/ai, which are defined in the

common range [1,∞). Then, the simple restricted permutational test of Sec. IV should

suffice to test universality.

It is worth mentioning also that for the original data analyzed in Ref. [12] (which contain

less events due to the shorter time span covered there), the first and second tests are not

able to find deviations from universality, but the last test is. So, it is when a critical

amount of data is available that these deviations show up more clearly. This issue needs

to be further investigated, but one could speculate that the deviations could arise from a

lack of stationarity, due to long-term slight variations associated for instance with El Niño

phenomenon or to seasonal fluctuations. At present, the number of data available is still

small to shed light on this point. On the other hand, even if the existence of a universal

mechanism for atmospheric convection would be a useful approximation to model this very

complex phenomena, changes under climate change forcing could also introduce non-trivial

adjustments in the associated parameters. This would be again extremely challenging to

detect with the current data availability.
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