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Integrable nonlinear parity-time symmetric optical oscillator
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The nonlinear dynamics of a balanced parity-time symmetric optical microring arrangement are
analytically investigated. By considering gain and loss saturation effects, the pertinent conserva-
tion laws are explicitly obtained in the Stokes domain-thus establishing integrability. Our analysis
indicates the existence of two regimes of oscillatory dynamics and frequency locking, both of which
are analogous to those expected in linear parity-time symmetric systems. Unlike other saturable
parity time symmetric systems considered before, the model studied in this work first operates in
the symmetric regime and then enters the broken parity-time phase.

PACS numbers: 05.45.Yv, 42.25.Bs, 11.30.Er

I. INTRODUCTION

The concept of parity-time (PT ) symmetry emerged
within the framework of quantum field theories where
it was found that Hamiltonians respecting this attribute
could possess a real eigenvalue spectrum, despite being
non-Hermitian [1]. A direct outcome of this possibility is
the emergence of states that neither decay nor grow even
in the presence of dissipation or gain [2, 3]. In recent
years, PT -symmetric notions have attracted considerable
attention and naturally led to research activity in many
and diverse areas of physics that is still ongoing [4–8].
Along these lines, optics provided a fertile ground where
a series of intriguing phenomena related to PT -symmetry
can be directly observed by exploiting the mathematical
isomorphism between the optical wave equation and the
Schrödinger equation [9–14]. In the physical domain,
this prospect was aided by the fact that amplification
and attenuation of light can be effectively controlled in
photonic structures.
For an optical potential to be PT -symmetric, the com-

plex refractive index distribution must obey the rela-
tionship n(r) = n∗(−r) where r represents the position
vector. This necessary (albeit not sufficient) condition
implies that the real part of the index profile must be
an even function in space while its imaginary counter-
part, that is responsible for amplification/attenuation,
should be odd [3]. These conditions demand that a PT -
symmetric structure must involve identical elements, e.g.
two coupled cavities or waveguide elements, where gain
and loss are anti-symmetrically distributed [15–20].
In general, optical configurations respecting PT -

symmetry exhibit two distinct phases. In the first one,
the eigenvalue spectrum is purely real and thus no net
amplification or decay of the field is expected to occur
(exact PT phase). Instead, in the second one, some of the
modes start to experience net growth or decay (in space
or time) by entering the symmetry broken phase. The
transition between these two regimes crucially depends
upon the degree of non-Hermiticity (gain-loss contrast)
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and the coupling between adjacent sites [4]. In addition,
it is marked by the presence of an exceptional point where
some of the eigenvalues and their respective eigenvectors
tend to converge [21–24]. At this point it is important
to note that these results are direct byproducts of linear
theories. Yet, in many optical realizations, nonlinearity
is not only unavoidable but also often prevalent. This is
particularly true in semiconductor-based systems where
saturation effects strongly influence both gain and loss,
to the point that a reversal in PT -symmetry breaking
can occur [25]. Clearly, of importance will be to un-
derstand at a fundamental level, the role such nonlinear
processes play in the dynamics of PT -symmetric arrange-
ments [26–28].

II. DYNAMICAL MODEL OF THE

PT -SYMMETRIC OSCILLATOR

In many optical settings, nonlinearity typically man-
ifests itself at high intensities by influencing the real as
well as the imaginary part of the refractive index. In gen-
eral, the imaginary component of the refractive index is
nonlinearly modified through the presence of saturation
effects in the effective gain or loss. In addition, the real
part of the index also varies with intensity depending
on whether the nonlinearity is of the focusing or defo-
cusing type, as dictated by pumping conditions [29]. In
semiconductor systems, gain saturation is responsible for
clamping the light intensity within a resonator as well as
the output power.
Here, we study the case where light density within

a semiconductor structure remains below its saturation
limit. This can be achieved by restricting the small-signal
gain to relatively low values above the system loss. More-
over, in a travelling waveguide amplifier arrangement, the
length of the device provides another degree of freedom
in controlling the output optical intensity. Under these
considerations, balancing field amplification and decay
in an evanescently coupled structure composed of two
identical elements, renders the system PT -symmetric. In
this respect, the optical/electrical pumping level in typi-
cal designs based on semiconductor quantum wells allows
control over the values of both the gain and loss [15, 25],
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whereas the spatial separation between the components
of the dimer determines the respective coupling strength.
In such a configuration the solution regimes are dic-

tated by the gain (or loss) to coupling ratio which we
here represent by g ∈ R

+. By assuming that the linear
losses due to scattering and absorption are small in com-
parison with the coupling strength, the field dynamics
in the two components are found to obey the following
dimensionless differential equations,

d

dτ
u = g

(

1− |u|2
)

u+ iv (1a)

d

dτ
v = −g

(

1− |v|2
)

v + iu (1b)

In the equations above, u represents the field ampli-
tude in the amplifying element while v that in the lossy
counterpart. Both u and v have been normalized with
respect to a common gain-loss saturation value. The
independent variable τ represents a spatial propagation
coordinate (in the case of waveguide geometries) or time
(in cavities), and is also scaled with respect to the cou-
pling coefficient, κ. In a temporal representation involv-
ing a coupled micro-ring configuration, κ is of the order
1011s−1. Gain and loss in the presence and absence of
pump light respectively, are also of the same order [25].
In what follows we determine the critical points of this
nonlinear system and through the use of Stokes parame-
ters, identify conservation laws and regimes of oscillatory
and stationary responses.

III. CRITICAL POINTS AND THEIR

STABILITY

Before we establish the integrability of Eqs. (1), it may
be beneficial to first study the critical points involved and
their associated stability properties. It is important to
note that if (u0, v0) represents a critical point, then so
does (u0, v0) e

iφ0 , where the phase φ0 is arbitrary. This
leads to the conclusion that only the relative phase be-
tween the two complex quantities (u0, v0) should be con-
sidered in the analysis. If we take for convenience u0

to be real, it then follows from Eq. (1a) that v0 = iρu0

where ρ ∈ R. In this case, under steady-state conditions,
one finds that,

(

ρ2 − 1
) (

ρ2 − gρ+ 1
)

= 0 (2a)

u2
0 = 1−

ρ

g
(2b)

The algebraic roots of Eq. (2a), signifying the critical

points, are given by ρ = ±1, (g ±
√

g2 − 4)/2. As we
will show, among these four possible values of the modal
ratio ρ, only one of them happens to be stable. To this
end, linear stability analysis is carried out assuming small
perturbations, i.e. (u, v) → (u0 + ε1, iρu0 + ε2) where in
general ε1,2 are complex. Upon substitution in Eqs. (1),
we obtain the following differential equations concerning

these perturbations,

ε̇1 + gu2
0(ε1 + ε∗1)− g(1− u2

0)ε1 − iε2 = 0 (3a)

ε̇2 + gρ2u2
0(ε

∗

2 − ε2) + g(1− ρ2u2
0)ε2 − iε1 = 0 (3b)

These equations can be further simplified by using
Eqs. (2). Breaking down ε1,2 in terms of their real
(ε1R,2R) and imaginary (ε1I,2I) parts, one obtains an
eigenvalue equation, MX = λX by assuming a tempo-
ral dependence of the form eλτ . Here X represents the
eigenvector, X = (ε1R0

, ε1I0 , ε2R0
, ε2I0)

T of the matrix
M ,

M =







3ρ− 2g 0 0 −1
0 ρ 1 0
0 −1 −1/ρ 0
1 0 0 −(3/ρ− 2g)






.

The characteristic equation for this system is given by
the following expression,

λ

{

λ2 − 3(ρ−
1

ρ
)λ+ 1− (2g − 3ρ)(2g −

3

ρ
)

}

{

λ−

(

ρ−
1

ρ

)}

= 0 (4)

We next separately analyze the stability properties of the
four stationary points ρ. In this case we find:
(i) ρ = −1.

λ1,2 = 0

λ3,4 = ±2
√

(g + 1)(g + 2)

Since g > 0, there always exists a positive real λ which
renders this point unstable.
(ii) ρ = +1.

λ1,2 = 0

λ3,4 = ±2
√

(g − 1)(g − 2)

For g < 1 or g > 2, it is clear that one eigenvalue is a
positive real number so that this point becomes unsta-
ble. Moreover, the double eigenvalue (λ1,2 = 0) is not
semi–simple [30](also true for 1 < g < 2) and leads to
terms proportional to τ in the general solution, thus in-
troducing instability.

(iii) ρ = (g +
√

g2 − 4)/2.

λ1 = 0, λ2 =
√

g2 − 4

λ3,4 = 0.5(3± 1)
√

g2 − 4

If g > 2, then all eigenvalues are positive and hence this
stationary point is unstable. On the other hand, for g <
2, ρ is complex, hence violating Eq. (2b) for u2

0.

(iv) ρ = (g −
√

g2 − 4)/2.

λ1 = 0, λ2 = −
√

g2 − 4

λ3,4 = −0.5(3± 1)
√

g2 − 4
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FIG. 1. The various branches of the ratio ρ associated with
the critical points as a function of g are displayed in (a) where
the solid line indicates stable behavior while the dashed un-
stable. (b) Intensities in the two optical elements correspond-
ing to the stable critical point are plotted as the value of g
increases.

Stability is here ensured for g > 2 since all the eigenvalues
are negative (λ ≤ 0). On the other hand if g < 2, this
point does not exist for the same reason as mentioned
in the previous case. Note that the critical point corre-
sponding to the value of g = 2 makes the cases (ii)-(iv)
equivalent and is found to be stable.
A bifurcation diagram describing the behavior of the

critical points as a function of the gain-loss constant (g)
is shown in Fig. 1(a), where the stable branch of ρ is de-
picted as a solid line. As the value of gain increases be-
yond g = 2, the ratio between the fields starts decreasing,
starting from ρ = 1 and asymptotically reaching ρ = 0.
This behavior is reminiscent of linear PT -symmetric sys-
tems where in the broken symmetry domain (after a bi-
furcation in the eigenvalues beyond an exceptional point)
the field strengths in the gain and loss components be-
comes unequal. This is shown in Fig. 1(b) for g > 2.
However, in contrast with a linear PT -symmetric dimer
where an exponential increase in intensities is expected
with time, the saturation in Eq. 1 will enforce a bounded
steady-state for g > 2. Furthermore, once this PT -
symmetry is broken, light tends to predominantly reside
in the cavity that offers amplification, as the gain-loss
contrast is increased. Moreover, the stability of the triv-
ial critical point at the origin (u0 = v0 = 0) needs also
to be considered. Here, the differential equations for the
perturbations assume the following form,

ε̇1 − gε1 − iε2 = 0 (5a)

ε̇2 + gε2 − iε1 = 0 (5b)

Again using the representation, (ε1, ε2) = (ε01, ε02)e
λt,

the eigenvalues of this system are found to be λ1,2 =

±
√

g2 − 1. In the range g < 1, these values are purely
imaginary and conjugate to eachother, thus implying an
unstable saddle point. On the other hand, for g > 1,
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FIG. 2. The effect of the linear PT -symmetry breaking
around g = 1, is depicted. (a) For g = 0.9, sinusoidal os-
cillations occur while (b) for g = 1.1, an exponential growth
takes place until saturation comes into play.

there exists a positive real λ indicating an unstable ex-
ponential growth. However, it is instructive to notice
that when fields in both cavities start from noise where
|u(0)|, |v(0)| ∼ 0, the dynamics reduce to that of a lin-
ear PT -symmetric coupler, governed by Eqs. (5), with ε1
and ε2 being replaced with u and v respectively. In this
linear scenario, it is well known that the PT -symmetric
phase transition occurs at the point where the gain-
loss to coupling ratio is unity. The role of this spon-
taneous symmetry breaking point at g = 1 is apparent
in Fig. 2 where the initial values were chosen to be small
|u(0)|, |v(0)| = 10−2. Below this breaking point, the in-
tensities evolve sinusoidally—characteristic of unbroken
symmetry eigenmodes [4]; For g > 1, the linear symme-
try breaks and an initial exponential growth occurs up to
the point where the intensities get larger and saturation
starts to limit this growth.

IV. STOKES PARAMETERS

In this section we analyze the properties and behavior
of this non-Hermitian nonlinear dynamical system Eq. 1
using Stokes parameters. To do so, we first obtain the
conservation laws that are needed to establish integrabil-
ity. The Stokes parameters are defined as follows,

S0 = |u|2 + |v|2 (6a)

S1 = |u|2 − |v|2 (6b)

S2 = u∗v + uv∗ (6c)

S3 = i(u∗v − uv∗) (6d)

These four real quantities listed here are all real and are
interrelated by the expression,

S2
0 = S2

1 + S2
2 + S2

3 (7)
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FIG. 3. Intersections between two surfaces in the (S1, S3S0)-space are plotted that describe the solution trajectories. These are
shown for two values of g both below, (a) g = 0.8 and (b) g = 1.9, and above, (c) g = 2.1 and (d) g = 2.5, the nonlinear phase
transition point at g = 2. Corresponding plots in the lower panel depict the intersections in the (S1, S0) plane. The stable
critical point appears for g > 2 and is shown as a yellow dot. In all cases, initial values of the fields are u(0) = 0.7(1 + 0.1i)
and v(0) = 0.

The dynamical equations for each of these four parame-
ters can be directly obtained using Eq. (1), i.e.,

Ṡ0 = −2gS0S1 + 2gS1 (8a)

Ṡ1 = −g(S2
0 + S2

1) + 2gS0 + 2S3 (8b)

Ṡ2 = −gS1S2 (8c)

Ṡ3 = −(2 + gS3)S1 (8d)

From Eqs. (8a), Eq. (8c) and Eq. (8d), one can establish

that, −S1 = Ṡ2/(gS2) = Ṡ3/(2 + gS3) = Ṡ0/(2gS0 − 2g),
which immediately leads to the following two conserva-
tion laws,

A =
S2

2 + gS3

(9)

B =
S2
2

S0 − 1
(10)

Clearly, the existence of these two constants of motion
implies integrability. These two constants are determined
by the initial values of the Stokes parameters and the
gain-loss contrast. To find the evolution trajectory of
u(τ) and v(τ), it suffices to know the dynamics of only
one Stokes parameter. In this case, by first expressing
S3 and S0 in terms of S2 [using Eqs. (9) and (10)], in
Eq. (7) and finally using Eq. (8c) that relates S1 to S2

and Ṡ2, we obtain a differential equation solely involving
S2,

(Ṡ2)
2 = g2S2

2

{

(

1 +
S2
2

B

)2

− S2
2 −

1

g2

(

S2

A
− 2

)2
}

(11)

In principle, Eq. (11) can be solved by quadrature. Hence
from S2(τ), S3(τ) and S0(τ) can then be recovered
through the conservation laws and finally S1(τ) can be
found using Eq. (8c) or Eq. (7). This enables the dy-
namics of all four Stokes parameters to be determined.
From here one can obtain the original field amplitudes
and phases via Eqs. (6), e.g. |u(τ)|2 = (S0(τ)+S1(τ))/2.
The trajectories followed by the solutions can be con-

veniently described through plots in the Stokes space of
(S1, S3, S0). These are governed by intersections between
a hyperboloid and a parabola, as dictated by Eqs. (7), (9)
and (10),

(

B −
B2

4

)

= S2
1 + S2

3 −

(

S0 −
B

2

)2

(12)

S0 = 1 +
A2

B
(2 + gS3)

2 (13)

Following this approach, it is possible to determine the
domains pertaining to instability, i.e. the conditions
leading to open-ended intersections or trajectories. But
when this system is initiated within the linear regime
(|u(0)|2, |v(0)|2 ≪ 1) no such domains of instability were
identified as g was varied. To explore the behavior of
the system we chose to map the Stokes dynamics on the
hyperboloid of Eq. (12) since it is independent of g. The
two surfaces are plotted for four different values of g in
Fig. 3. For g < 2, the Stokes parameters follow periodic
trajectories. On the other hand, when g > 2, the inter-
section of the parabola and hyperboloid passes through
the critical point which is stable under these conditions
[(iv)), Sec. III]. Here, instead of a periodic evolution,
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FIG. 4. Different solution trajectories in the (S1, S0)-space
are shown as the initial conditions are changed. For these
plots, u(0) is fixed at u(0) = 0.7, while v(0) is varied in the
imaginary space from v(0) = 0.1i to v(0) = 0.7i. The gain-
loss value used is g = 1.8. Arrows indicate the evolution over
time.

the field values attain a steady state of unequal values
analogous to that occurring in a PT -symmetry broken
scenario. This case is shown in part (c) and (d) of Fig. 3.

Note that the solution profiles depicted in Fig. 3(a) and
3(b) indicate the presence of oscillations akin to stable
limit cycles. On the other hand, by changing the initial
conditions (keeping g fixed), these orbits become modi-
fied. This implies that these are not exactly limit cycles
but instead neutrally stable cycles. To demonstrate this,
in Fig. 4 we set the field in the cavity with gain to be
u(0) = 0.7 and we then increase the initial value of the
field in the cavity with loss. In this case, the cycles in
the (S1, S0) space are found to change accordingly.

Considering the results presented, one can infer the ex-
istence of two distinct responses associated with Eq. (1).
The first corresponds to solutions expected in a system
like the well-known Van der Pol oscillator [31]. This
domain is defined by g < 2, and here the intensities in
both cavities behave in a very similar manner (reflected
versions of each other) having the same period and ly-
ing within an identical bounded interval. Whereas in the
second regime, the fields are pulled into the stable criti-
cal point given in part (iv) Sec. III. The former relates
to the PT -symmetric phase since |u|2 and |v|2 oscillate
symmetrically over time, while the latter is analogous to
the symmetry broken phase where the two intensities are
unequal. Numerical results from a Runge-Kutta simula-
tion for these two phases (corresponding to values of g in
Fig. 3) are depicted in Fig. 5 where 5(a) and 5(b) show
intensities in the symmetric domain and 5(c) and 5(d)
display the broken phase. In this latter scenario, we also
found that the fields in both components of the dimer are
locked at the common resonant frequency (or propaga-
tion constant) of the cavities (or waveguides) —a feature
of spontaneously broken PT -symmetry. Another charac-
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FIG. 5. The behavior of the intensities over time in the two
cavities is shown. The four graphs correspond to the four val-
ues of g used in Fig. 3. Parts (a) g = 0.8, and (b) g = 1.9,
depict a Van der Pol-like oscillatory regime and (c) g = 2.1,
and (d) g = 2.5, the PT -broken phase. Solid (red) lines cor-
responds to intensity in the component with gain and dashed
(black) to that in the component with loss.

teristic of this PT -phase can be deduced from the fact
that as g increases, the ratio |v0/u0|

2 becomes gradually
smaller. In addition, once the system starts to oscillate
within the symmetric regime, the transition between the
two domains occurs at the nonlinear boundary g = 2 as
the gain-loss value is increased. This is in contrast to
a linear PT -symmetric coupler where the transition oc-
curs instead at g = 1. Although nonlinear saturation
effects tend to modify the location of this transition in
the parameter space, the order in which it takes place
is not affected - unlike in other nonlinear PT -symmetric
settings [25].
Finally, an interesting feature associated with this os-

cillator is the fact that within the exact PT -symmetry
domain, as the system gets close to the nonlinear phase
transition point, the period of oscillations tends to ap-
proach infinity. Now consider operation close to g = 2,
for instance in a coupled micro-ring resonator configu-
ration when the gain-loss contrast between the rings is
twice the coupling between them. This could lead to
periodic flashes of light observable at much longer time
scales compared to coupling times which are typically on
the order of picoseconds.

V. CONCLUSIONS

In conclusion, we have investigated the behavior of
a fully integrable non-Hermitian oscillator with a bal-
anced gain-loss distribution. Our analysis indicates the
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existence of two regimes of oscillatory dynamics and fre-
quency locking, both of which are analogous to those
expected in linear PT -symmetric systems. The oscilla-
tor was found to first operate in the symmetric regime
before entering the broken PT -phase at higher gain-loss
values. Our study can shed light on the interplay of PT -
symmetry and nonlinearity.
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041044 (2014).

[13] Y. D. Chong, L. Ge, and A. D. Stone, Phys. Rev. Lett.
106, 093902 (2011).

[14] S. V. Suchkov, S. V. Dmitriev, B. A. Malomed, and Y. S.
Kivshar, Phys. Rev. A 85, 033825 (2012).

[15] H. Hodaei, M.-A. Miri, M. Heinrich, D. N.
Christodoulides, and M. Khajavikhan, Science 346,
975 (2014); L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang,
and X. Zhang, ibid. 346, 972 (2014); H. Hodaei, M. A.
Miri, A. U. Hassan, W. E. Hayenga, M. Heinrich, D. N.
Christodoulides, and M. Khajavikhan, Opt. Lett. 40,
4955 (2015).

[16] L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E.
Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer,
Nat. Mater. 12, 108 (2013).

[17] M. Wimmer, A. Regensburger, M.-A. Miri, C. Bersch,
D. N. Christodoulides, and U. Peschel, Nat. Commun.
6, 7782 (2015).

[18] L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang,
G. Li, G. Wang, and M. Xiao, Nat. Photon. 8, 524
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