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The Granger causality (GC) analysis is an effective approach to infer causal relations for time
series. However, for data obtained by uniform sampling (i.e., with equal sampling time interval), it
is known that GC can yield unreliable causal inference due to aliasing if the sampling rate is not
sufficiently high. To solve this unreliability issue, we consider the nonuniform sampling scheme as
it can mitigate against aliasing. By developing an unbiased estimation of power spectral density
of nonuniformly sampled time series, we establish a framework of spectrum-based nonparametric
GC analysis. Applying this framework to a general class of pulse-coupled nonlinear networks and
utilizing some particular spectral structure possessed by these nonlinear network data, we demon-
strate that, for such nonlinear networks with nonuniformly sampled data, reliable GC inference can
be achieved at low nonuniform mean sampling rate at which the traditional uniform sampling GC
may lead to spurious causal inference.

PACS numbers: 05.45.Tp, 02.50.Tt, 05.10.-a, 84.35.+i, 07.05.Kf

I. INTRODUCTION

The Granger causality (GC) analysis is an important
approach in the detection of causal relations among time
series [1, 2]. Based on the idea that the driver is always
earlier than the recipient, GC is defined as the reduction
of the prediction error of one time series by incorporating
the history information of the other time series through
a joint-regression. Due to its intuitive conceptual appeal
and easy implementation, GC has been widely applied
in various scientific fields, e.g., physics [3, 4], biology [5–
7], neuroscience [8–10], economics [11–13], and social sci-
ences [14, 15].
In network sciences, GC analysis based on linear re-

gression/prediction has emerged as a powerful method-
ology for network topology reconstruction as it can of-
ten establish structural connections through directional
causal interactions among different nodes. The GC
theory is well established for linear systems. How-
ever, whether it can be successfully applied to nonlin-
ear systems is still under active investigations. Recently,
for multivariate nonlinear network data from functional
magnetic resonance imaging (fMRI), it has been found
that GC can reflect the underlying vascular anatomic
structure [16]. For a general class of pulse-coupled non-
linear networks which arises in the modeling of neuronal
dynamics, it has been demonstrated that the structural
connectivity can be successfully reconstructed through
the GC analysis [17, 18].
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In applications, it is critical to assess the reliability
of GC inference [19]. The original GC analysis is based
on linear-regression with discrete time series. However,
physical quantities of real systems are usually continu-
ous in time. One needs to address the important issue of
whether the reliability of GC inference is contingent upon
different sampling strategies. As pointed out in Ref. [20]
for uniformly sampled time series, a key factor in deter-
mining the GC reliability is the sampling interval length
τ . Following Ref. [20], we will term GC value as a func-
tion of τ the GC sampling structure. For a broad class of
uniformly sampled time series, i.e., with equal sampling
interval, it has been found that, if the sampling interval is
not sufficiently fine, the GC sampling structure displays
oscillatory decay features. These features can give rise
to various types of GC inference hazards [20, 21]. Fur-
thermore, for the case where there exists causal influence,
the GC value tends to 0 linearly as τ approaches 0 de-
spite the fact that more information is incorporated. This
scaling behavior presents a paradox because it seems not
consistent with the intuition that, as one samples finer
and finer to include more high frequency information for
GC analysis, one would expect that GC should yield a
nonzero value if the causal influence exists. Obviously, for
uniformly sampled time series, the above phenomena in
GC analysis greatly complicate the GC inference. In the
framework of uniform sampling, these inference hazards
can be removed by using a normalized GC with a suffi-
ciently fine sampling [20, 21]. However, for experimental
recordings with a relatively low sampling rate, the above
method is rendered incapable of providing consistent GC
inference.

On the other hand, nonuniform sampling schemes have
been extensively studied [22–24]. The significance of
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such schemes is twofold: (i) In research fields such as
Astronomy [25–27], Seismology [28–30], Paleoclimatol-
ogy [31, 32], Genetics [33, 34], and Biomedical Imag-
ing [35, 36], certain quantities can only be observed in
a nonuniform manner due to spatiotemporal constraint
in signal recordings; (ii) In contrast to uniform sam-
pling, a nonuniform sampling allows for low sampling
rate but still possessing reliable spectral information of
signals. For uniform sampling, as is well known, there is
the Nyquist rate below which the original signal and its
spectrum cannot be reconstructed reliably (i.e., aliasing).
However, the nonuniform sampling strategy enables one
to sample signals with various sizes of sampling intervals,
thus preserving both low and high frequency information
of signals while the nonuniform mean sampling rate can
still be lower than the Nyquist rate [22, 37, 38]. Here, the
nonuniform sampling interval length τ is defined as the
mean length of nonuniform sampling intervals, thereby,
1/τ is the corresponding nonuniform mean sampling rate.
Due to their anti-aliasing advantages, nonuniform sam-
pling schemes are sometimes intentionally designed with
certain random sampling devices for efficient and accu-
rate data processing in applications [24, 39–41].

In GC analysis with uniformly sampled time series,
which will be referred to as the uniform sampling GC, as
the sampling interval length τ increases, not only high
frequency spectral information is lost, but the low fre-
quency spectral component is also corrupted due to alias-
ing. The aliasing behavior is closely related to the unre-
liability of the uniform sampling GC analysis. A nonuni-
form sampling scheme appears to be a good candidate to
remove the sampling artifacts to achieve a reliable GC
analysis. However, the conventional GC analysis cannot
be naturally extended to nonuniformly sampled time se-
ries because it is based on linear-regression, in which one
needs to fit regression coefficients at each discrete time
with an equal lag, i.e., t − τ , t − 2τ , · · · , where τ is
the fixed sampling interval length. However, for nonuni-
form sampling, there is no fixed sampling interval length,
namely, there is a different time lag at a different time.
In this work, we establish a framework of GC analysis
for nonuniformly sampled data, which will be referred
to as nonuniform sampling GC. First, instead of using
the time domain regression, we employ the frequency-
domain nonparametric GC theory, which is based on es-
timation of the power spectral density (PSD) of time se-
ries. Note that the spectrum-based nonparametric GC
analysis for uniformly sampled time series has already
been well established [2, 42]. However, for nonuniformly
sampled time series, it has not been formulated and the
key point is how to obtain good estimate of PSD. Sec-
ond, because a direct application of the nonuniform fast
Fourier transform (NUFFT) to the PSD estimation of
nonuniformly sampled time series can lead to large bi-
ases in the estimated PSDs, thus inducing large errors in
the GC analysis, we develop an unbiased method for PSD
estimation of nonuniformly sampled time series. Third,
during the computation of PSD estimation, one has to

choose a cutoff frequency fcut. However, the nonuniform
sampling GC inference varies with different cutoff fre-
quencies fcut of the estimated PSDs even when fcut is
sufficiently large to well capture spectral information of
signals. We demonstrate that its origin is similar to the
scaling paradox in the uniform sampling GC. By using a
similar rescaling as in Ref. [20], this issue can be resolved
to obtain reliable GC inference.

Using our framework, we extend the conventional uni-
form sampling GC analysis to the case of nonuniformly
sampled data. However, this framework is nonparamet-
ric and does not take into account specific structures
of the data. One can take advantage of specific struc-
tures embedded in the time series to further reduce the
PSD estimation error. In this work, we focus on time
series obtained from a general class of pulse-coupled non-
linear networks, i.e., integrate-and-fire (I&F) networks,
and exploit the structures of their PSDs to achieve a
more reliable GC analysis. Although GC analysis is
established for linear dynamics, for the pulse-coupled
nonlinear networks, it has been found that GC analysis
can well capture the underlying structural connectivity
[17, 18]. However, directly applying the nonparametric
framework to time series obtained from the pulse-coupled
nonlinear network dynamics, we find that the estimated
PSDs have strong statistical fluctuations, which can sig-
nificantly corrupt the GC analysis. To overcome this
problem, we introduce a covariance truncation method
to better estimate PSD based on the exponential decay
feature in the covariance of the I&F network dynamics.
Note that such feature in the covariance can be observed
for a wide class of dynamics with finite memory as dis-
cussed in detail in Section IVB. Therefore, our covari-
ance truncation scheme, in general, can also be applied
to these dynamics to obtain a more accurate PSD es-
timation. Furthermore, we demonstrate that the PSD
functions of I&F network dynamics possess a power-law
decay of specific exponents at high frequencies. Utilizing
this decay structure, we develop a parametric tail-fitting
scheme to further reduce the fluctuations in PSD esti-
mation, thus leading to a reliable nonuniform sampling
GC inference. Note that the power-law decay in the tail
of PSD can be generally observed in dynamical systems.
By choosing appropriate decay order, our power-law tail-
fitting approach thus can be extended to suppress statis-
tical fluctuations in the tail of PSD in such systems as
further discussed in Section IVC. We demonstrate that,
once the PSD has been well estimated, the remaining
procedures for GC analysis are the same as those estab-
lished for uniformly sampled time series. Therefore, in
this paper, we focus more on the PSD estimation in an
attempt to develop a spectrum-based nonparametric GC
analysis based on nonuniformly sampled time series.

Finally, we present our numerical results for the non-
linear I&F network dynamics and demonstrate that (i)
the nonuniform sampling GC can indeed resolve the sam-
pling hazards that may arise in the uniform sampling
GC analysis; (ii) reliable inference can be achieved at a
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nonuniform mean sampling rate lower than the Nyquist
rate; (iii) taking into account the specific structures in
the I&F dynamics, our spectral processing procedures
can greatly improve the accuracy of PSD estimation and
give rise to a reliable nonuniform sampling GC inference;
(iv) the inferred GC relations through our nonuniform
sampling GC are coincident with the underlying struc-
tural connectivity of nonlinear I&F networks.
The article is organized as follows. In Section II,

we briefly introduce the pulse-coupled nonlinear system
(I&F networks), the conventional GC analysis with uni-
formly sampled data, and related sampling artifacts in
such GC analysis. In Section III, we establish a non-
parametric framework for the nonuniform sampling GC
analysis. In Section IV, we analyze the PSD proper-
ties for time series obtained from I&F networks and de-
scribe the corresponding truncation and high-frequency
tail-fitting procedure. In Section V, numerical results
are presented to demonstrate the validity and reliability
of our nonuniform sampling GC analysis. We show that
the sampling artifacts occurring in the uniform sampling
GC can indeed be removed through our nonuniform sam-
pling GC analysis. In Section VI, we present conclusions
and discussions. In Appendix, we provide detailed the-
oretical derivations necessary for the discussions in the
main text.

II. BACKGROUND AND NOTATIONS

A. Pulse-coupled nonlinear systems

The pulse-coupled nonlinear system we consider is
an integrate-and-fire (I&F) network with N excitatory
nodes. The dynamics of its ith node is described by

dxi

dt
= −xi

τd
− gi

(
xi − xE

)
,

dgi
dt

= −gi
σ

+
N∑

j 6=i

∑

k

sjiδ (t− Tj,k) + λ
∑

l

δ
(
t− TP

i,l

)
,

(1)
where xi is the state variable of node i, τd is the decay
time scale, and xE is the reversal value of excitation. gi
is the input that decays with time constant σ and rises
instantaneously at the moments Tj,k, TP

i,l with magni-
tude sji, λ, respectively. When xi is less than the fir-
ing threshold xth, the ith node evolves according to Eq.
(1). When xi reaches xth, it is reset to a reset value xr

and stays for a refractory period τref . The above system
arises from many research fields such as image process-
ing, speech recognition, gene regulatory modeling and
neuronal dynamics [43–46]. Following the terminology in
neuroscience, the moment when xi reaches xth is called
a spiking event (say, the kth spike of the ith node is de-
noted by Ti,k). We will refer to a node as a neuron, xi

as the ith neuron’s voltage, and gi as the ith neuron’s
conductance in the following discussion. We can capture

these spikes of neuron i by the spike train time series,
which is defined as

Si
T (t) =

∑

k

δ(t− Ti,k), (2)

where δ(t) is the Dirac delta function. In Eq. (1), xi

receives the lth external input at time TP
i,l, which is mod-

eled by a Poisson process with strength λ and rate µ. The
interaction between neurons is described by sji which
represents the connection strength from neuron j to neu-
ron i. Note that in the following we use the parameters
xth = 1, xr = 0, xE = 14/3, τref = 2ms, σ = 2ms and
τd = 20ms, which are typical values for neuronal dynam-
ics [47–49].

B. GC Analysis

The idea of GC is that if a better prediction, i.e., less
prediction error, of one variable X based on its history
can be achieved by incorporating the history of the other
variable Y , then Y is regarded to influence X in the GC
sense [2, 10]. More precisely, for the auto-regression on
uniformly sampled time series Xt, Yt, we obtain

Xt =
∑

j=1

a1jXt−j + ǫ1t,

Yt =
∑

j=1

d1jYt−j + η1t,

where var(ǫ1t) = Σ1 and var(η1t) = Γ1 quantify the pre-
diction error when only their histories are used individu-
ally. When one incorporates the history of the other time
series, the joint-regression for Xt and Yt can be expressed
as

Xt =
∑

j=1

a2jXt−j +
∑

j=1

b2jYt−j + ǫ2t,

Yt =
∑

j=1

c2jXt−j +
∑

j=1

d2jYt−j + η2t,

where the variances Σ2 = var(ǫ2t), Γ2 = var(η2t), and the
covariance Υ2 = cov (ǫ2t, η2t) quantify the performance
of prediction after the joint-regression. Because one typ-
ically cannot obtain a worse prediction, i.e., greater pre-
diction error, when incorporating more information, ob-
viously, Σ2 6 Σ1 and Γ2 6 Γ1.
The directional GC from Y to X is defined as

FY →X = ln
Σ1

Σ2
,

whose value conforms with the intuition of causality: a
positive value indicates a corresponding directional in-
fluence and the zero value indicates no directional influ-
ence. That is, when Σ2 = Σ1, FY →X = 0 and Y does
not causally affect X , and when Σ2 < Σ1, FY →X > 0,
implying there is a causal influence from Y to X . Sim-
ilarly, the directional GC from X to Y is defined as



4

FX→Y = ln Γ1

Γ2
. One can also define the instantaneous

GC as FX·Y = ln Γ2Σ2

Γ2Σ2−Υ2
2

to quantify the instanta-

neous mutual interaction between X and Y . The to-
tal GC between X and Y can thereby be defined as
FX,Y = FY→X +FX→Y +FX·Y . As network reconstruc-
tion often deals with a directed graph, one can focus on
directional GC FY →X and FX→Y as they quantify the
directional causal influence through edges.

C. Sampling artifacts

As discussed previously, under the setting of uniform
sampling, the GC sampling structure (GC value as a
function of sampling interval length τ) oscillates and
tends to 0 as τ approaches 0 [20, 21]. These phenom-
ena are illustrated in Fig. 1 for time series generated
from I&F networks. They affect the reliability of GC
inference in the following ways: (i) Directional interac-
tions may be inferred to be absent in certain values of τ ;
(ii) Spurious GC may arise in certain ranges of τ ’s; (iii)
Finer and finer sampling always gives rise to smaller and
smaller GC values. However, for sufficiently fine uniform
sampling, one can use a normalized GC (with a scale fac-
tor 1/τ) to remove the sampling artifacts and obtain a
reliable causal inference [20, 21]. In applications, if a suf-
ficiently fine sampling cannot be obtained, the reliability
of GC analysis becomes questionable. Therefore, we ad-
dress the question of how a reliable GC analysis can still
be reached if one cannot obtain sufficiently finely sampled
time series.
For uniform sampling, if one samples the signal with

bandlimit F0 at rate Fs < 2F0 with equal sampling inter-
val, the aliasing phenomenon can occur, i.e., the spectral
component of frequency higher than 1

2Fs in the origi-

nal signal folded into the low frequency (6 1
2Fs) compo-

nent and cannot be distinguished. Therefore, with insuf-
ficiently high sampling rate Fs < 2F0, the information
in the time series cannot be faithfully extracted and the
GC inference becomes unreliable. In contrast, nonuni-
form sampling can ameliorate the problems caused by
aliasing. The reason underlying the aliasing suppression
is that for nonuniform sampling there are almost no time
domain Fourier bases of different frequencies that can ex-
actly overlap one another on the nonuniform grids [50].
Therefore, we will take advantage of nonuniform sam-
pling schemes to achieve a reliable GC analysis at a lower
mean sampling rate than the Nyquist rate. We now turn
to the discussion of our approach in the following.

III. NONPARAMETRIC FRAMEWORK FOR

NONUNIFORM SAMPLING GC ANALYSIS

The time domain GC, as described in Section II B, is
based on linear-regression. In general, it is difficult to
generalize this regression procedure to nonuniformly sam-
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FIG. 1. (Color online) The GC sampling structure (GC value
as a function of sampling interval length τ ). The GC analysis
is applied to the time series obtained from a two-neuron I&F
network with a unidirectional connection from neuron y to
neuron x. Plotted are Fx→y (red) and Fy→x(cyan) estimated
from voltage time series of the system (1) through linear-
regression. Here, µ = 1kHz, λ = 0.03, with coupling strength
s = 0.02 (sij = s for sij 6= 0). (a) The oscillatory behavior of
GC vs. τ . Shaded regions represent a 95% confidence interval.
(b) The vanishing of GC as τ approaches 0. Note that the
estimation biases of GC are removed in (b) (See Refs. [20, 21]
for details).

pled time series. Instead we will use a nonparametric ap-
proach to establish a nonuniform sampling GC analysis
based on a frequency-domain spectral analysis.

A. Notations

First, we introduce basic notions with associated nota-
tions to facilitate our discussion. Suppose we have M in-
dependent realizations of time-continuous stochastic pro-
cesses Xm(t), Y m(t). The power spectral density (PSD)
matrix P

m(f) of the mth realization is defined as

P
m(f) =

[
TImx Im∗

x TImx Im∗
y

TImy Im∗
x TImy Im∗

y

]
, (3)

where T is the length of observation time window,
” ∗ ” denotes complex conjugate transpose. Imx (f) =
1
T

∫ T

0 Xm(t)e−i2πftdt, Imy (f) = 1
T

∫ T

0 Y m(t)e−i2πftdt,
with f = k/T , k being an integer, are the Fourier trans-
forms of Xm(t) and Y m(t), respectively. The average

PSD matrix P̃(f) is evaluated from all the realizations
as

P̃(f) =
1

M

M∑

m=1

P
m(f).

As M tends to infinity, we obtain the empirical PSD

matrix P(f) = limM→+∞
1
M

∑M

m=1 P
m(f). Note that

P(f) is still only an approximation to the true PSD. In
fact, the empirical P(f) depends on T and tends to the
true PSD matrix as T tends to infinity. Clearly, when T
is much larger than the correlation times of X and Y , the
difference between the empirical and true PSDs becomes
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small. As we choose sufficiently large T , we will no longer
distinguish the empirical PSD and the true PSD in the
following discussion.

B. Unbiased PSD estimation for nonuniform

sampling

For the mth realization of nonuniformly sampled time
series Xm

tn
, Y m

tn
, tn ∼ U(0, T ), a uniformly distributed

random variable, their nonuniform Fourier trans-

forms are defined as Imnu,x(f) = 1
N

∑N

s=1 X
m
ts
e−i2πfts ,

Imnu,y(f) = 1
N

∑N

s=1 Y
m
ts
e−i2πfts , where N is the total

number of sampling points. The nonuniform mean sam-
pling interval length τ is defined as T/N and the associ-
ated rate is N/T . Numerically, the nonuniform Fourier
transform can be computed using the nonuniform fast
Fourier transform (NUFFT) with the same computa-
tional complexity O (N logN) as the fast Fourier trans-
form (FFT) for uniform grids [51]. Note that Imnu,x(f)
and Imnu,y(f) converge to Imx (f) and Imy (f), respectively,
as the number of nonuniform sampling points N tends to
infinity. For a finite N , Imnu,x(f), for example, can be re-
garded as a Monte Carlo approximation to Imx (f). Thus,
Imnu,x(f) can be expressed as

Imnu,x(f) = Imx (f) + ǫmnu,x(f),

where ǫmnu,x(f) ∼ O
(
1/

√
N
)
is the random error func-

tion with zero mean at each frequency. Note that
Imnu,x (f), Imx (f) and εmnu,x (f) in general are complex.
Given the signal of the mth realization Xm(t), Imx (f) is
fixed on each frequency, ǫmnu,x(f) is determined by the
positions of N random sampling points and is indepen-
dent from the original signal. Estimating the PSD matrix
P

m(f) through a direct replacement of Imx (f), Imy (f) in
Eq. (3) with Imnu,x(f), and Imnu,y(f) gives rise to a bias in
estimating P(f). The origin of this bias can be seen as
follows. For the power spectrum of X obtained through
the direct replacement, Pm

DR,xx = TImnu,xI
m∗
nu,x. Notice

that

Pm
DR,xx = TImx Im∗

x + T ǫmnu,xI
m∗
nu,x + TImnu,xǫ

m∗
nu,x

+T ǫmnu,xǫ
m∗
nu,x,

and we have

lim
M→+∞

1

M

∑M

m=1
Pm
DR,xx = Pxx + Tvar

(
εmnu,x

)

which is greater than Pxx. Here the bias term

Tvar
(
εmnu,x

)
= limM→+∞

T
M

∑M

m=1 ε
m
nu,xε

m∗
nu,x is propor-

tional to T /N . It can be suppressed by increasing the
nonuniform mean sampling rate N/T , but cannot be
reduced by increasing the number of realizations M .
This fact indicates that, if the bias is not properly re-
moved, even when a large number of realizations are ob-
tained, the PSD estimation is still incorrect and one can-

not obtain a reliable GC analysis. Therefore, we pro-
pose the following unbiased PSD estimator P

m
nu(f) =[

Pm
nu,xx(f) Pm

nu,xy(f)
Pm
nu,yx(f) Pm

nu,yy(f)

]
for the mth realization , where

Pm
nu,ij(f) =

NT

N − 1

(
Imnu,iI

m∗
nu,j −

1

N2

N∑

s=1

xm
i (ts)x

m∗
j (ts)

)
.

(4)
Here i, j = x or y, xm

i (ts) = Xm
ts

for i = x and xm
i (ts) =

Y m
ts

for i = y. In Eq. (4), the estimation bias for a
PSD function has been subtracted. Note that the bias
term εmnu,iε

m∗
nu,jonly appears when i equals j in the above

expression of Pm
DR,ij and has been subtracted by the dif-

ference between Imnu,iI
m∗
nu,j and 1

N2

N∑
s=1

xm
i (ts)x

m
j (ts) for

i = j in Eq. (4) (see Appendix A for details). Therefore,
the bias for PSD estimation is removed and we obtain
E (Pm

nu (f)) = P
m (f), where E indicates expectation

with respect to different realizations of the N random
nonuniform sampling time points for the fixed original
signal (see Appendix A for details). After the realization
average, the PSD estimator becomes

P̃nu(f) =
1

M

M∑

m=1

P
m
nu(f),

where, as M → +∞, P̃nu(f) → P(f), which is an unbi-
ased PSD estimator.

C. Spectrum-based nonparametric GC analysis

We now recapitulate the spectrum-based nonparamet-
ric GC analysis approach [2, 42]. The central process in
this approach is to compute the linear-regression resid-
ual covariances from spectrum. The spectral density
matrix S(ω), ω ∈ [−π, π] can be factorized as S(ω) =
A(e−iω)A∗(e−iω) [52]. This factorization is unique if (i)
A(z) as a polynomial has only nonnegative powers; (ii)
det (A(z)) and 1/ det (A(z)) are analytic inside the unit
disk; and (iii) A(0) is real, upper triangular with pos-
itive diagonal elements [52]. The numerical scheme of
factorization is proposed by Wilson [52]. It is based on
Newton’s method. The nth iteration step reads

An+1(ω) = An(ω)
{[

A
−1
n (ω)S(ω)A−1∗

n (ω) + I
]+

+On

}
,

(5)
where S(ω) is the spectral density matrix with ω ∈
[−π, π], I is the identity matrix. [·]+ is defined as fol-
lows. For any matrix function F(ω) with ω ∈ [−π, π],
suppose it is expanded in frequency domain as F(ω) =∑+∞

k=−∞ fke
ikω . Then [F(ω)]+ = 1

2 f0+
∑+∞

k=1 fke
ikω . On is

a scalar matrix satisfyingOn+O
∗
n = 0 and is uniquely de-

termined as we require
[
A

−1
n (ω)S(ω)A−1∗

n (ω) + I
]+

+On

being upper triangle. Usually we can set the initial value
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A0(ω) = I for convenience. Note that the convergence
order of this factorization method is quadratic in nature
[52]. Therefore, An(ω) will converge to A(e−iω) often in
a few steps within a reasonable error tolerance. Finally,
we obtain the covariance matrix of the joint-regression
residuals through Σ = A(0)A∗(0). If S is a one-by-
one matrix, Σ obtained from the above factorization is a
scalar, which is the variance of the auto-regression resid-
uals of the corresponding time series. Note that, for
the one-by-one matrix case, alternatively, Σ can be com-

puted explicitly by Σ = exp
(

1
2π

∫ π

−π
lnS(ω)dω

)
.

In principle, high frequency information could be re-
covered from the nonuniform sampling. However, in
practice, one has to truncate P(f) at a certain frequency
fcut. Note that the coherence between time series X(t)

and Y (t) is defined as C(f) =
Pxy(f)Pyx(f)
Pxx(f)Pyy(f)

(see Fig.

2c), which is related to the normalized total GC by

F̂X,Y = −
∫+∞

−∞
ln [1− C(f)] df [20]. We can choose a

cutoff frequency fcut above which C(f) nearly vanishes.
Defining ω = πf/fcut, we can then apply the Wilson’s
iterative algorithm to factorize the PSD matrix through
S(ω) = 2fcutP(ωfcut/π). We are now ready to com-

pute GC from P(f) =

[
Pxx Pxy

Pyx Pyy

]
as follows: (1) Com-

pute the variances Σ1,Γ1 of the auto-regression resid-
uals from Pxx (f) and Pyy (f) using Wilson’s iterative
factorization algorithm corresponding to one-by-one ma-
trix as discussed above. (2) Compute the covariance

matrix Σ =

[
Σ2 Υ2

Υ2 Γ2

]
of the joint-regression residu-

als from P (f) using Wilson’s iterative factorization algo-
rithm as discussed in the above paragraph. (3) Compute
the directional GC as defined in Section II B, namely,
FY →X = ln Σ1

Σ2
, FX→Y = ln Γ1

Γ2
. Note that, because

any covariance component obtained through regression
can also be obtained using the factorization of the corre-
sponding PSD as illustrated above, such nonparametric
GC estimation approach can be naturally extended to
conditional GC analysis [10, 53] of multiple neurons as
discussed below.

D. GC normalization

For nonuniform sampling GC analysis, the value of the
GC computed in Section III C depends on fcut. However,
even when fcut is sufficiently large, i.e., above which the
coherence nearly vanishes (e.g., fcut > 1 kHz in Fig. 2c),
GC decreases slowly as fcut tends to infinity as shown
in Fig. 2a. Theoretically, the slow decay of nonuniform
sampling GC as a function of fcut is related to the scaling
paradox in which uniform sampling GC vanishes linearly
as the sampling interval length τ approaches 0. Here, for
nonuniform sampling, we can define an effective uniform
sampling interval length as 1

2fcut
. As is illustrated in the

inset of Fig. 2a, GC vanishes linearly as 1
2fcut

tends to

0. In Refs. [20, 21], GC is normalized by 1/τ to obtain
a convergent normalized GC value as τ tends to 0. This
normalized GC approaches a nonzero constant as τ tends
to 0 if there is a causal influence or zero, otherwise. Here,
similarly, we need to normalize GC as follows,

F̂Y→X = 2fcut ln
Σ1

Σ2
,

F̂X→Y = 2fcut ln
Γ1

Γ2
,

(6)

which become nearly invariant to the cutoff frequency
fcut when fcut becomes sufficiently large, e.g., fcut >

1 kHz ( 1
2fcut

6 0.5ms) as shown in Fig. 2b.

If there is a causal influence, this normalized GC ap-
proaches a nonzero constant, otherwise, it approaches
zero, as fcut tends to infinity. The normalization pro-
cedure applies to any GC analysis (uniform or nonuni-
form) on time series sampled from the general type of
time-continuous quantities because such a scaling prop-
erty is intrinsic for GC analysis [20, 21]. Therefore, for
uniformly or nonuniformly sampled time series, no mat-
ter whether it is parametric or nonparametric, we should
always perform the normalization F̂ = 2fcutF (For the
case of uniform sampling, 2fcut is usually set to 1

τ
, where

τ is the uniform sampling interval length).
To summarize, we have described a spectrum-based

nonparametric framework of GC inference for nonuni-
formly sampled time series. This framework is general
and can be directly extended to any sampling scheme
and any type of time series by applying a proper method
of spectrum estimation.

IV. SPECTRAL PROCESSING

The nonparametric GC framework presented in Sec-
tion III extends the GC analysis to the case of nonuni-
formly sampled data. However, a direct application of
this approach may result in a significant estimation er-
ror. This error arises from (i) the statistical error of the
nonuniform sampling PSD, which remains at a nearly
constant level at high frequencies where the true PSD al-
most vanishes (See Fig. 3), and (ii) the spectrum-based
factorization procedure, which can greatly magnify the
error of the GC estimated from the PSD. In addition,
when the error is greater than the magnitude of the auto
PSD, the unbiased spectral estimation approach some-
times can give rise to negative values of auto PSD at
some frequencies as opposed to the fact that an auto PSD
should be always nonnegative. Then the factorization
procedure may fail because it requires a positive definite
spectrum. Therefore, if the data size is not sufficiently
large to suppress statistical errors in estimating PSD, one
may not achieve good performance of the nonparametric
GC framework. In order to reduce the requirement of
data size and at the same time improve the estimation
accuracy, we attempt to devise a specific spectral pro-
cessing by incorporating characteristics of the PSD of
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FIG. 2. (Color online) The dependence of GC on the cutoff frequency fcut for nonuniform sampling. (a) GC v.s. fcut and GC
v.s. 1/2fcut (inset), (b) normalized GC v.s. fcut and normalized GC v.s. 1/2fcut (inset). Plotted are (a) Fy→x (cyan), Fx→y

(red), and (b) 2fcutFy→x (cyan), 2fcutFx→y (red) as a function of fcut. (c) Coherence as a function of f . For Figs. 2-6, the
time series are generated from the same two-neuron I&F network with a unidirectional connection from neuron y to neuron
x with parameters µ = 1kHz, λ = 0.012, and coupling strength s = 0.02 (sij = s for sij 6= 0). Note that here we use PSD
functions that are accurately evaluated from a sufficiently long time series (108 ms) and sufficiently small sampling interval
length (0.0625ms) for GC analysis. These PSD functions are regarded as the empirical PSD. The black arrows in (a)∼(c) point
to fcut = 1kHz.

the analyzed data. As an example, we use the nonlin-
ear pulse-coupled I&F network dynamics (1) to illustrate
our approach. We note that the spectrum of I&F dy-
namics Pyy as shown in Fig. 3a resembles a Lorentzian
with a bump at certain frequency, which can be observed
in a variety of neural network stochastic processes, e.g.,
linearized Wilson-Cowan-type equations [54, 55]. There-
fore, our analysis for PSD of I&F dynamics is rather gen-
eral and may potentially be applied to other types of neu-
ral dynamics. In the following, we discuss in detail the
features of the PSD functions of the I&F networks and
take advantage of such features in our spectral processing
for error reduction.

A. Decay rate and discontinuity

By the Wiener-Khintchin theorem, the spectral den-
sity function of a time series is the Fourier transform of
its covariance function. For the PSD functions of the I&F
networks, we observe that they are smooth functions of
frequency and exhibit power-law decay at high frequen-
cies (see Fig. 3). These features in the Fourier transform
result from the continuity and long time behaviors in the
covariance function. Before discussing this in detail, we
will briefly state the following facts. First, we define the
function Hn(x), n = 1, 2, · · · ,

H1(x) =

{
1/2 for x > 0

−1/2 for x < 0
,

Hn+1(x) =

x∫

0

Hn(s)ds =

{
1

2n!x
n for x > 0

− 1
2n!x

n for x < 0
,

for n = 1, 2, · · · . Hn(x) is a smooth function of x except
for the discontinuity of the (n−1)th derivative at the ori-
gin. The corresponding Fourier transform [56] of Hn(x)
for f 6= 0 is

F (H1(x− a)) =

+∞∫

−∞

H1(x− a)e−i2πfxdx =
1

i2πf
e−i2πaf ,

F (Hn(x− a)) =
1

(i2πf)
n e

−i2πaf . (7)

From Eq. (7), it can be easily seen that the discontinu-
ity of the (n − 1)th derivative in a function of x leads
to a power law decay f−n in its Fourier transform. In
addition, for a function with its discontinuity occurring
at the origin, i.e., a = 0, in Eq. (7), its Fourier transform
decays without oscillations at the high-frequency tail. As
is well known, if a function is smooth, i.e., all orders of
its derivatives are continuous, its Fourier transform de-
cays more rapidly than any power-law function as the
frequency f tends to infinity. Conversely, if a function
decays more rapidly than any power-law function, e.g.,
an exponential decay, its Fourier transform (or inverse
Fourier transform) is smooth.
According to the above relations, instead of directly

investigating the PSD behaviors of the I&F network
model, we can focus our study on the corresponding
covariance matrix, which for the bivariate time series,

Xt and Yt, is expressed as C(τ) =

[
Cxx(τ) Cxy(τ)
Cyx(τ) Cyy(τ)

]
,

where Cxx(τ) and Cyy(τ) are the auto-covariances of
time series, Xt and Yt, respectively, Cxy(τ) and Cyx(τ)
are their cross-covariances. The covariance is defined as
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FIG. 3. (Color online) Comparison between estimated PSDs: empirical PSDs (red), nonuniform sampling PSDs (black),
nonuniform sampling PSDs after covariance truncation (cyan), nonuniform sampling PSDs after covariance truncation and
high-frequency power-law tail-fitting (dotted blue). (a) The auto PSD for neuron y: Pyy. (b) The real part of the cross PSD:
Re (Pyx). (c) The imaginary part of the cross PSD: Im (Pyx). Insets are the corresponding log-log plots of their absolute values.
The PSDs are estimated from Xt and Yt generated by a two-neuron I&F network with a unidirectional connection from neuron
y to neuron x.
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FIG. 4. (Color online) Exponential decay of covariances.
|Cxx| (red), |Cxy| (black), |Cyy| (cyan) are estimated from
bivariate time series Xt, Yt generated by a two-neuron I&F
model with a unidirectional connection from neuron y to neu-
ron x.

Cij(τ) = Et (xi(t)xj(t− τ))−Et (xi(t))Et (xj(t)) for any
time series xi and xj where Et is the expectation with
respect to time. Note that the PSD matrix P(f) is re-
lated to the covariance matrix C(τ) through the Fourier
transform as

P(f) =

+∞∫

−∞

C(s)e−is2πfds.

B. Decay of the covariance functions and their

truncation

As shown in Fig. 3, which plots the PSD functions
of time series generated by an I&F network, the empir-
ical PSDs are smooth whereas the nonuniform sampling
PSDs fluctuate strongly. As will be discussed below,
these fluctuations could contribute considerably to the
GC estimation errors. Therefore, if we could reduce the
fluctuations of the nonuniform sampling PSDs properly,
we may be able to obtain a better estimation of PSDs,
thus giving rise to a reliable spectrum-based GC infer-
ence.

Following previous discussions, we examine the decay
behavior of the high-frequency tail of the corresponding
covariance function. In Fig. 4, an oscillatory exponential
decay behavior is observed for all the covariance functions
indicating that all the corresponding PSDs are smooth.
Incidentally, this exponential decay behavior in covari-
ance functions implies that the I&F network (1) has a
finite memory. For the nonuniform sampling scheme, the
PSDs possess highly fluctuating errors. These errors will
reflect in the erroneous long time behavior of the corre-
sponding covariances whereas the true covariances should
approach 0 at large times. This fact naturally suggests
a covariance truncation scheme to obtain smooth PSDs,
thus leading to reliable GC inference. This can be carried
out as follows:

Step 1: Obtain C(τ) by applying the inverse Fourier

transform to P(f), that is, C(τ) =
∫ +∞

−∞ P(f)eiτ2πfdf .

Step 2: Choose a proper cutoff time τcut according
to the dynamics so that C(τ) nearly vanishes for |τ | >
τcut. For any specific data, we can also choose τcut such
that, for |τ | > τcut, the estimated covariance is essentially
dominated by statistical fluctuations.

Step 3: Define the truncated covariance matrix C̃(τ) =



9

C(τ) for |τ | 6 τcut and C̃(τ) = 0 otherwise.

Step 4: Obtain a smoothed PSD Ps(f) by applying
the Fourier transform to the truncated covariance matrix
C̃(τ), i.e., Ps(f) =

∫ +∞

−∞ C̃(s)e−is2πfds.

Note that the truncation of the covariance may lead to
a jump discontinuity, thus affecting the decay behavior of
the corresponding PSD. However, as long as the jump of
the discontinuity is much smaller than the magnitude of
the covariance estimation noise, the effect of this discon-
tinuity on the corresponding PSD estimation can be ne-
glected. In addition, we note that the exponential decay
behavior in covariance is not specific to the I&F network
dynamics, it is rather general for some other dynamics
as well. For example, for the widely used auto-regressive
model in time series analysis, the linear iterative process
naturally generates a time series with covariance possess-
ing an exponential decay behavior. Therefore, our trun-
cation scheme can also be applied to a broad class of
dynamics to reduce the PSD estimation error.

C. Covariance discontinuity and power-law

tail-fitting

As discussed in Section IVA, to analyze the decay be-
havior of the PSD of the I&F network dynamics, we can
first study the discontinuity in the corresponding covari-
ance function. By invoking the above discussed features
of the covariance function, we devise a high-frequency
power-law tail-fitting scheme for error reduction in esti-
mating the PSD.

1. Discontinuity of the auto-covariance function

For the auto-covariance Cxx(τ) of the I&F dynamics,
as shown in Fig. 5, a discontinuity of its first derivative
can be clearly observed at the origin. As will be

demonstrated below, such a discontinuity in dCxx(τ)
dτ

is generic for the I&F dynamics. We can compute

the derivative of Cxx(τ) at the origin, dCxx(τ)
dτ

∣∣∣
0+

=

limτ→0+
d
dτEt [(X(t)−mx) (X(t− τ)−mx)], where

X(t) is the dimensionless voltage trace, mx = Et (X(t))
is the mean value of X(t), Et is the expectation with
respect to time. Note that the voltage time series can
be regarded as being wide-sense stationary, therefore,
the ensemble average is equivalent to the time average
for the second order statistics, i.e., covariance. In the
following, we do not distinguish between these two types
of averages. After a careful treatment of the jump
discontinuity in X(t) (see Appendix B for details), we
obtain

dCxx(τ)

dτ

∣∣∣∣
0+

= −1

2

(
xth − xr

)2
Rx, (8)
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FIG. 5. (Color online) Covariances and their derivatives.

(a) Auto-covariance Cxx(τ ), (b)
dCxx(τ)

dτ
, (c) cross-covariance

Cxy(τ ), (d)
d2Cxy(τ)

dτ2 , computed from the voltage time se-
ries X(t) and Y (t) of neuron x and neuron y, respec-
tively, which are generated by a two-neuron I&F network
with a unidirectional connection from neuron y to neuron
x. From the full simulation of the I&F dynamics of neu-
ron x, we obtain the firing rate Rx ≈ 0.065ms−1. From
numerical computation of the auto-covariance Cxx(τ ), we

have dCxx(τ)
dτ

∣

∣

∣

0+
= − dCxx(τ)

dτ

∣

∣

∣

0−
= −0.032ms−1, which is

equal to − 1
2

(

xth − xr
)2

Rx within our numerical accuracy.

where Rx is the mean firing rate of neuron x. Since
Cxx(τ) is an even function of τ , Eq. (8) yields

dCxx(τ)

dτ

∣∣∣∣
0+

− dCxx(τ)

dτ

∣∣∣∣
0−

= −
(
xth − xr

)2
Rx, (9)

which is the jump size of the first derivative discontinuity
of Cxx(τ) at the origin. An example is illustrated in Fig.
5b.

2. Discontinuity of the cross-covariance function

An example of the cross-covariance generated by a spe-
cific I&F network is shown in Fig. 5c. From Fig. 5d, it
can be clearly seen that there is a discontinuity in the
second derivative of Cxy(τ) at the origin. Continuing
the discussion of our I&F model with a unidirectional
connection from neuron y to neuron x with coupling

strength s, we discuss how the discontinuity of
d2Cxy(τ)

dτ2

arises from the I&F dynamics. By definition, we have
d2Cxy(τ)

dτ2 = d2

dτ2Et (X(t)Y (t− τ)), where X(t) and Y (t)
are dimensionless voltage time series for neuron x and
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neuron y, respectively. By translational invariance in
time (see Appendix C for details), we can obtain

d2Cxy(τ)

dτ2
= −Et (X

′(t)Y ′(t− τ)) , (10)

where the prime denotes the derivative with respect to
time. For the I&F dynamics, the voltage xi of neu-
ron i is reset from xth to xr at each firing time Ti,j,
j = 1, 2, · · · . Therefore, for the voltage trace xi, there
are jump discontinuities at Ti,j with jump magnitude
−
(
xth − xr

)
, which lead to singularities in x′

i as de-

scribed by −
(
xth − xr

)
δ(t − Ti,j). From the definition

(2), the spike train time series is described as Si
T (t) =∑

j δ(t − Ti,j). Therefore, we can separate X ′(t) and

Y ′(t) asX ′(t) = X ′
c(t)−

(
xth − xr

)
Sx
T (t), Y

′(t) = Y ′
c (t)−(

xth − xr
)
Sy
T (t), where X ′

c(t) and Y ′
c (t) are the nonsin-

gular part of X ′(t) and Y ′(t), respectively. From our nu-
merical experiments, the second derivative discontinuity
in cross-covariance is mainly contributed by the interplay
between the singular parts Sx

T (t) and Sy
T (t). Therefore,

we can concentrate on the singular parts of X ′(t) and
Y ′(t), i.e., −

(
xth − xr

)
Sx
T (t) and −

(
xth − xr

)
Sy
T (t), to

understand the discontinuous behavior of
d2Cxy(τ)

dτ2 . Be-

cause xth and xr are constants, we only need to com-
pute Et (S

x
T (t)S

y
T (t− τ)) to describe the jump in the

discontinuity. Through mathematical derivation (see
Appendix C for details), we can demonstrate that,
Et (S

x
T (t)S

y
T (t− τ))|

τ→0+ − Et (S
x
T (t)S

y
T (t− τ))|

τ→0− >

0, hence
d2Cxy(τ)

dτ2

∣∣∣
0+

− d2Cxy(τ)
dτ2

∣∣∣
0−

< 0. Therefore, in a

wide range of dynamical regimes where the singular parts
of X ′(t) and Y ′(t) dominate the discontinuity behavior,

we can conclude that
d2Cxy(τ)

dτ2

∣∣∣
0+

− d2Cxy(τ)
dτ2

∣∣∣
0−

does not

vanish and there is a jump discontinuity in the second
derivative of the cross-covariance at the origin (Fig. 5d).
Note that, from the mathematical derivation in Appendix

C, the discontinuity in
d2Cxy(τ)

dτ2 is determined by the cou-
pling structure in the I&F dynamics (1). As expected, if
the firing event of neuron y leads to a continuous change
in the conductance of neuron x instead of an instanta-
neous increment as in the dynamics (1), the discontinuity
of cross-covariance may occur at a higher order deriva-
tive.

3. High-frequency tail-fitting in PSDs

Through the analysis of discontinuities in covariance
functions for the time series obtained from the I&F dy-
namics, we can conclude that, for a wide range of dynam-
ical regimes, (i) the auto-covariance function possesses a
discontinuity in its first derivative at the origin, (ii) the
cross-covariance function possesses a discontinuity in its
second derivative at the origin. These discontinuities give
rise to the following properties for the PSD functions for
the I&F dynamics:

1. The auto PSD functions Pxx(f) and Pyy(f) have a
power law decay as f−2 at high frequencies.
2. The cross PSD function Pxy(f) has a power-law

decay as f−3 at high frequencies.
3. The PSD functions do not oscillate at high frequen-

cies because all their discontinuities occur at the origin.
Before discussing how we can take advantage of these

decay features to reduce the PSD estimation errors, we
first examine the general behavior of PSD before crossing
over to the high frequency decay. For a wide range of I&F
dynamics, we have observed the following phenomena in
our two-neuron I&F network dynamics:
1. An auto PSD function usually has only one broad

peak. This peak is located approximately at the mean
firing rate of the corresponding neuron.
2. The cross PSD is complex. Both the real and imag-

inary parts of the cross PSD are smooth. They usually
have one main peak located between the mean firing rates
of two neurons.
Based on the above observations, we fit the high-

frequency tail as follows:
Step 1. For a given PSD function, locate the maximum

value of its absolute value, denoted by |Pmax|, and the
corresponding peak frequency fP.
Step 2. Find the largest frequency fst satisfying

|P (fst)| > α |Pmax|, where α is a parameter 0 < α < 1.
fst is used to separate the high-frequency tail of the given
PSD function from its peak. The parameter α should be
chosen judiciously so as to include sufficiently broad high
frequency tail of the PSD function while ensuring its tail
for f > fst to maintain a consistent power-law decay be-
havior. Usually, for the I&F dynamics, the fitting result
is not sensitive to the choice of α as long as it is in an
appropriate range, e.g., 0.6 < α < 0.8.
Step 3. Using the least-square (LS) method to fit the

PSDs in the interval [fst, fcut] with a function that has
asymptotically a power-law decay at high frequencies.
Note that, as the functions we use for fitting is nonlinear
with respect to parameters, an iterative trust-region ap-
proach [57] is applied to the LS optimization. For an auto
PSD, we can use the rational function a

x2+bx+c
, where a,

b, and c are parameters determined by the LS method.
For a cross PSD, which is a complex function, we can
use the complex rational function a1

(x+c1)3
+ a2

(x+c2)3
i to

fit its real and imaginary parts. As will be discussed
below, these rational functions determined by the LS fit-
ting can well capture the high-frequency tail behavior
of PSD. There is no need to choose a higher order ra-
tional function to fit the high-frequency tail behavior of
PSD because the PSD estimation errors can be large and
the LS fitting could lead to an incorrect result similar to
the Runge phenomenon when using higher order rational
functions [58, 59].
Here, the power-law tail-fitting approach is not specific

to the I&F dynamics (1). In general, it can be applied to
dynamics, which has discontinuity in derivatives thus a
power-law decay in the tail of its PSD, to reduce statisti-
cal fluctuations in the tail of its PSD. For auto PSD of a
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dynamical variable, the decay order of power-law in the
tail is determined by the discontinuity in its trajectory,
whereas for cross PSD between two dynamical variables,
it is determined by the discontinuity in both their trajec-
tories and the interactions between them.

Note that the above spectral processing procedures can
also be applied to PSD matrix with respect to multiple
neurons for conditional GC analysis. In the following
section, we will see that, with our procedures, PSD es-
timation errors in the nonuniform sampling GC analysis
can be greatly reduced.

V. NUMERICAL RESULTS

In the following, we use numerical experiments to
demonstrate the effectiveness of our nonuniform sam-
pling GC analysis and spectral processing approaches.
Note that, to mimic the nonuniform sampling process, we
first numerically evolve the I&F network dynamics using
very fine time-step interval, e.g., δt = 1/16ms, to ob-
tain a simulated uniformly spaced time series (transient
effects have been removed) representing the underlying
time-continuous dynamics Xt where t = δt, 2δt, · · · ,T .
Then, the nonuniformly sampled time series Xtn is ob-
tained from Xt by generating each tn from a discrete
uniform distribution on the whole time-step interval set
{δt, 2δt, · · · ,T}. In addition, we have verified that our
numerical results reported throughout are not sensitive
to the choice of initial conditions.

A. Effects of the spectral processing

To examine how well our procedure can reduce er-
rors in estimating PSD or covariances when applied to
the nonlinear I&F network data, we compare the PSDs
through each step of the spectral processing with the
empirical PSD as shown in Fig. 3. It can be clearly
seen that: (i) the nonuniform sampling PSD fluctuates
strongly around the true PSD and such fluctuations do
not decay at high frequencies; (ii) the covariance trunca-
tion smooths the original nonuniform sampling PSD by
reducing the fluctuation amplitude of PSD in both low
and high frequency parts, but high-frequency tail part
still does not decay; (iii) the high-frequency power-law
tail-fitting can well capture the decay behavior of the
PSD at high frequencies, thus greatly improving the spec-
tral estimation accuracy at high frequencies. Clearly, our
procedures allow one to obtain a rather precise and accu-
rate PSD estimation from the original nonuniform sam-
pling PSD, which is highly fluctuating with non-vanishing
statistical errors at high frequencies and is not suitable
for a reliable GC analysis.
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FIG. 6. (Color online) Comparison between the normalized
GC sampling structures. Fx→y (dash), Fy→x (solid) are ob-
tained by the conventional linear-regression (cyan), by the
uniform sampling nonparametric GC analysis (blue), by the
nonuniform sampling GC analysis with truncation and fitting
procedures (red). The time series are generated by a two-
neuron I&F network with a unidirectional connection from
neuron y to neuron x. Note that, for the evaluation of each
normalized GC point in the figure, we use exactly the same
number of data points of the time series for every method.

B. The GC sampling structures

For uniformly sampled data, as discussed previously,
the GC sampling structures (GC value as a function of
sampling interval length τ) oscillate as the sampling in-
terval length τ increases. We now turn to the demonstra-
tion of the removal of these sampling artifacts by apply-
ing the nonuniform sampling scheme together with our
PSD processing procedures. Note that the normalized
GC (Eq. (6)) is always used in the following discussion.
In Fig. 6, using the same number of data points,

we compare the normalized GC sampling structures ob-
tained through different methods. The nonuniform GC
sampling structure stays nearly as a constant even for
large τ . For sufficiently small τ , both the uniform sam-
pling GC (regression-based or nonparametric) and the
nonuniform sampling GC obtained with the truncation
and fitting procedures can produce similar values for
causal inference. However, for large τ , the uniform sam-
pling GC analysis yields very small normalized GC values
at a certain range of τ indicating that there seems no cou-
pling in the network. In other words, it becomes difficult
to distinguish the coupled direction from the uncoupled
direction at these τs. Note that for uniformly sampled
time series the nonparametric GC analysis produces a
similar GC sampling structure to the regression-based
GC analysis [20, 21]. Therefore, a general nonparametric
GC analysis may not always provide a reliable inference
for large τ . In contrast, GCs estimated from nonuni-
form PSDs with the truncation and fitting procedures
can well distinguish the coupled direction from the un-
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coupled even when the mean sampling interval length τ
is large. Clearly, the nonuniform sampling GC analysis
obtained through our spectral processing can overcome
the sampling artifacts of the uniform sampling GC analy-
sis (no matter parametric or nonparametric) and produce
reliable causal inference.
In the case of multiple neurons’ time series {xi (t)}Ni=1

with N > 2, the causal relation between two time series,
say, x1 (t) and x2 (t), can be directly mediated or it can
be indirectly mediated by a third one, say x3 (t). To de-
termine whether the causal influence is direct, the frame-
work of conditional GC was developed [53], where ”condi-
tional” means both the auto-regression and joint regres-
sions of xi (t) and xj (t) are performed when the history of
all other time series {xk (t)} (k 6= i, j) is given. Similarly,
the spectrum-based nonparametric conditional GC anal-
ysis was also developed through Wilson’s iterative fac-
torization algorithm [42]. We note that our nonuniform
GC framework can be naturally extended to the condi-
tional GC analysis for networks of mulple neurons. Fig.
7 displays a numerical example, in which conditional GC
analysis combined with truncation and fitting procedures
is applied to a ten-neuron I&F network. As discussed in
our previous works [17, 18], there is an interesting phe-
nomenon as observed for the GC values of I&F network
dynamics (1): if we rank the GC by magnitude for all
possible directed connections between neurons, there is
a gap separating these ranked GC values as indicated by
the black horizontal line in Fig. 7b. This gap clearly
divides the GC values into two distinct groups. By us-
ing this gap and, for example, choosing a horizontal line
within the gap as the GC threshold, the coupled direc-
tions can be distinguished from the uncoupled directions
and the network topology can be well reconstructed.

VI. DISCUSSION AND CONCLUSION

In summary, the procedures to perform GC analysis for
nonuniformly sampled data is in general as follows: (i)
perform nonuniform fast Fourier transform on nonuni-
formly sampled time series and remove the bias term
to obtain an unbiased power spectral density estimation
as discussed in Section III B; (ii) use Wilson’s iterative
factorization algorithm on the estimated power spectral
density to obtain the variances of auto-regression and
joint-regression residuals as discussed in Section III C;
(iii) compute the GC value from the definition as dis-
cussed in Section II B.
In this work, we have validated the GC sampling struc-

tures in our nonuniform sampling GC framework and
have shown that our nonuniform sampling approach can
indeed circumvent the sampling artifacts inherent in the
uniform sampling GC analysis. Reliable GC inference
can be achieved for nonuniformly sampled time series re-
gardless of whether the nonuniform mean sampling rate
is high or low. We have also pointed out that for uni-
form sampling it is the aliasing that leads to the oscil-

latory sampling artifacts. Furthermore, in applications,
our method allows us to nonuniformly sample the sig-
nal below the Nyquist rate while achieving a reliable GC
analysis. This may potentially overcome the sampling
rate limitation on certain devices. In our nonparamet-
ric nonuniform sampling GC framework, to suppress the
PSD estimation error, we have introduced the truncation
and fitting schemes. Our spectral processing is based on
the structures of PSD for the I&F network dynamics. As
these structures are rather general, our approach can be
easily extended to other dynamics to obtain high-quality
PSD estimation. Finally, using the same number of data
points in the time series for different GC inference meth-
ods, in comparison to the uniform sampling GC analy-
sis approaches (regression-based or nonparametric), our
nonuniform sampling GC analysis can achieve more re-
liable and accurate inferences at a lower mean sampling
rate than the Nyquist rate.

In addition, we demonstrate that, besides the nonuni-
form sampling scheme discussed in our work, a nonuni-
formly sampled time series could be generated in many
other different ways. For example, one could take a suffi-
ciently finely sampled time series from a dynamical pro-
cess with every time point selected with some probability
p, rejected with probability 1 − p, or the nonuniformly
sampled time series could be generated by the data col-
lection method of certain experimental device. Our work
here is concentrated on how to develop a general frame-
work of spectrum-based reliable GC analysis for given
nonuniformly sampled time series. The central point of
the framework is to obtain good estimation of the power
spectral density of nonuniformly sampled data. As one
example of applications of our framework, we investi-
gate the integrate-and-fire (I&F) network dynamics and
illustrate how to utilize the particular spectral structure
possessed by I&F network dynamics to obtain good es-
timation of the power spectral density, thus giving rise
to reliable GC inference. In real applications, there may
be certain constraints for data measurement, e.g., data
length or maximum data resolution, and it will be in-
teresting to investigate how to obtain good estimation of
the power spectral density for a specific nonuniform sam-
pling method and compare the GC results with different
nonuniform sampling methods under these constraints.

Finally, we point out that there is another nonpara-
metric method called transfer entropy which has been
formulated to detect directed information transfer in dy-
namical processes. It has since rapidly gained popular-
ity, particularly in neuroscience, as a tool for data-driven
detection of functional connectivity between dynamical
variables [60]. For linear Gaussian processes, it has been
shown that the transfer entropy and the GC are equiv-
alent up to a factor of 2 [61]. We have demonstrated in
our previous works that the uniform sampling artifacts
are not specific to the nonlinear I&F dynamics and they
also occur in linear Gaussian processes [20, 21]. There-
fore, the transfer entropy will also suffer from the uniform
sampling artifacts, at least for linear Gaussian processes.
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FIG. 7. (Color online) Conditional nonuniform GC analysis for a ten-neuron I&F network. The parameters are µ = 1 kHz,
λ = 0.01, with coupling strength s = 0.01 ( sij = s for sij 6= 0). (a) The adjacency matrix Aij of the network. Aij = 0 (white)
when sij = 0, and Aij = 1 (black) when sij 6= 0. (b) Ranked normalized GC values obtained through conditional nonuniform
GC framework with truncation and fitting procedures. The nonuniform mean sampling interval length is τ = 10ms. Blue
circles indicate the GC values for uncoupled directions whereas red circles indicate the GC values for coupled directions. The
solid black line indicates a natural GC threshold (8.5×10−5), below which the corresponding direction is inferred as uncoupled.
By applying such a GC threshold, we can well reconstruct the network topology of the I&F system.

For the nonlinear I&F dynamics, our preliminary inves-
tigation in numerical simulations shows that the order
of lags needed in conditional probability is high and one
suffers from the curse of dimensionality in an attempt to
obtain good estimate of the transfer entropy. Therefore,
how to characterize the directions of information flow
using transfer entropy for the nonlinear I&F network dy-
namics remains another interesting and challenging issue.
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Appendix A: Unbiased PSD estimation

In this section, we demonstrate that P
m
nu(f) defined

by Eq. (4) is an unbiased estimator of Pm(f). Without
loss of generality, we consider the cross PSD Pm

nu,xy of
time series Xt and Yt. The other PSD functions can be
computed similarly as we replace Xt by Yt or Yt by Xt.

By definition,

Pm
nu,xy =

NT

N − 1

[
Imnu,xI

m∗
nu,y −

1

N2

N∑

s=1

Xm
ts
Y m∗
ts

]
,

=
NT

N − 1

[

 1

N

N∑

j=1

Xm
tj
e−i2πftj



×

(
1

N

N∑

k=1

Y m
tk
ei2πftk

)
− 1

N2

N∑

s=1

Xm
ts
Y m∗
ts

]
,

=
T

N (N − 1)




∑

j 6=k

Xm
tj
e−i2πftjY m

tk
ei2πftk



 .

Then, the expectation of Pm
nu,xy with respect to differ-

ent realizations of the N randomly chosen nonuniform
sampling points for a fixed signal can be expressed as

E
(
Pm
nu,xy

)
=

T

N (N − 1)



∑

j 6=k

E

(
Xm

tj
e−i2πftjY m

tk
ei2πftk

)

 .

Here, we have E

(
Xm

tj
e−i2πftj

)
= 1

T

∫ T

0
Xm

t e−i2πftdt =

Imx (f). For j 6= k, because tj and tk are chosen ran-
domly and independently, Xm

tj
e−i2πftj is independent of

Y m
tk
ei2πftk , which leads to E

(
Xm

tj
e−i2πftjY m

tk
ei2πftk

)
=

E

(
Xm

tj
e−i2πftj

)
E
(
Y m
tk
ei2πftk

)
= Imx (f)Im∗

y (f). There-

fore, we obtain

E
(
Pm
nu,xy

)
= TImx (f)Im∗

y (f) = Pm
xy(f),
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indicating that Pm
nu,xy(f) is an unbiased estimator of

Pm
xy(f). Following the same computation, it is clear that

P
m
nu(f) is an unbiased estimator of Pm(f).

Appendix B: Discontinuity of auto-covariance

function

In this section, we present the computation of dCxx(τ)
dτ

in detail to demonstrate its discontinuity at the origin for
the I&F dynamics. By definition,

dCxx(τ)

dτ

∣∣∣∣
0+

= lim
τ→0+

−Et [(X(t)−mx)X
′(t− τ)] .

(B1)
From the firing-reset dynamics of the I&F model (1), the
jth firing event of neuron x at time Tx,j leads to a discon-
tinuity in the voltage traceX(t). This jump discontinuity
in turn results in a singularity in X ′(t), which can be de-
scribed mathematically as −(xth − xr)δ(t− Tx,j), where
δ(t) is the Dirac delta function. Therefore, we can sepa-

rate X ′(t) as X ′(t) = X
′

c(t) − (xth − xr)
∑

j δ(t − Tx,j),

where X
′

c(t) is the nonsingular part of X ′(t). Equation
(B1) now reads

dCxx(τ)

dτ

∣∣∣∣
0+

= lim
τ→0+

−Et

[
(X(t)−mx)

(
X

′

c(t− τ)

−(xth − xr)
∑

j

δ(t− τ − Tx,j)
)]

.

Note that t = Tx,j + τ as τ → 0+ is the time
right after the reset, therefore X(t) = xr as t→T+

x,j

and limτ→0+ Et

[
X(t)(xth − xr)

∑
j δ(t− τ − Tx,j)

]
=

xr(xth−xr)Rx, where limτ→0+ Et

[∑
j δ(t− τ − Tx,j)

]
=

Et

[∑
j δ(t− Tx,j)

]
= Rx, Rx is the firing rate of neuron

x. Then

dCxx(τ)

dτ

∣∣∣∣
0+

= − lim
τ→0+

Et

[
(X(t)−mx)X

′

c(t− τ)
]

+(xr −mx) (x
th − xr)Rx,

= − lim
T→+∞,τ→0+

1

T

T∫

0

(X(t+ τ) −mx)X
′
c(t)dt

+(xr −mx) (x
th − xr)Rx,

= − lim
T→+∞

1

T

T∫

0

(X(t)−mx) dXc(t)

+ (xr −mx) (x
th − xr)Rx,

where Xc(t) =
∫ t

0
X

′

c(s)ds is a continuous function sat-

isfying Xc(Tx,j+1) − Xc(Tx,j) = xth − xr. We sepa-
rate the time T into interspike windows (Tx,j, Tx,j+1],

j = 1, 2, · · · , N , Tx,N+1 6 T and Tx,N+2 > T . It is easy
to see that X(t) = Xc(t)−Xc(Tx,j) + xr in an interspike
time window t ∈ (Tx,j , Tx,j+1), then we obtain

dCxx(τ)

dτ

∣∣∣∣
0+

= − lim
N→+∞

1

Tx,N+1 − Tx,1

N∑

j=1

[ Tx,j+1∫

Tx,j

(X(t)−mx)

d (Xc(t)−Xc(Tx,j) + xr)

]
+ (xr −mx) (x

th − xr)Rx,

= − lim
N→+∞

1

Tx,N+1 − Tx,1

N∑

j=1

(
1

2
X2

∣∣∣∣
xth

xr

−mx X |x
th

xr

)

+(xr −mx) (x
th − xr)Rx,

= − lim
N→+∞

N

Tx,N+1 − Tx,1

1

2

(
xth − xr

) (
xth + xr − 2mx

)

+(xr −mx) (x
th − xr)Rx.

As limN→+∞
N

Tx,N+1−Tx,1
= Rx, we arrive at

dCxx(τ)

dτ

∣∣∣∣
0+

= −1

2

(
xth − xr

)2
Rx,

which is Eq. (8) in the main text.

Appendix C: Discontinuity of cross-covariance

function

In this section, we present the computation of
d2Cxy(τ)

dτ2

and describe its discontinuity at the origin for the I&F
dynamics. By definition, we obtain

d2Cxy(τ)

dτ2
= − d

dτ
Et (X(t)Y ′(t− τ)) .

Define t′ = t− τ , then

d2Cxy(τ)

dτ2
= − d

dτ
Et′ (X(t′ + τ)Y ′(t′)) ,

= −Et (X
′(t)Y ′(t− τ)) ,

which is Eq. (10) in the main text.

As discussed in Section IVC2, we concentrate on
Et (S

x
T (t)S

y
T (t− τ)) to understand the discontinuity be-

havior of −Et (X
′(t)Y ′(t− τ)) at the origin. Note that

Et (S
x
T (t)S

y
T (t− τ)) is the covariance of the spike train
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time series of neuron x and neuron y,

Et (S
x
T (t)S

y
T (t− τ))

= lim
T→+∞

1

T

T∫

0

Sx
T (t)S

y
T (t− τ)dt,

= lim
T→+∞

1

T

T∫

0

(
+∞∑

i=1

δ(t− Tx,i)

)


+∞∑

j=1

δ(t− τ − Ty,j)



dt,

= lim
T→+∞

1

T

∑

i,j,0<Tx,i,Ty,j<T

δ (τ − (Tx,i − Ty,j)) ,

= Rx|y(τ)Ry ,

where Rx|y(τ) is the conditional firing rate of neuron
x with time lag τ upon the firing of neuron y, i.e.,

the spike-triggered firing rate of neuron x, Ry is the
mean firing rate of neuron y. Without loss of generality,
we consider a two-neuron I&F network with a unidirec-
tional connection from neuron y to neuron x. We define
R−

x|y = limτ→0− Rx|y(τ), R
+
x|y = limτ→0+ Rx|y(τ). In or-

der to compute the difference between R−
x|y and R+

x|y, we

define I−
x|y(v) and p−

x|y(v) as the mean current flow and

the stationary voltage probability density function, re-
spectively, of neuron x at voltage v right before neuron
y fires. Note that R−

x|y can be obtained as follows

R−
x|y = p−

x|y(x
th)I−

x|y(x
th).

Upon receiving a spike of neuron y, by the I&F dynamics
(1), the current of neuron x will jump instantaneously.
This current jump can be quantified by ∆Ix(v) = −s(v−
xE), where s is the coupling strength between neurons.
Therefore,

R+
x|y = p−

x|y(x
th)
[
I−
x|y(x

th) + ∆Ix(x
th)
]
,

= R−
x|y + s(xE − xth)p−

x|y(x
th).

As s(xE − xth)p−
x|y(x

th) > 0 for the I&F dynamics, we

obtain

Et (S
x
T (t)S

y
T (t− τ))|

τ→0+ − Et (S
x
T (t)S

y
T (t− τ))|

τ→0−

= R+
x|y(τ)Ry −R−

x|y(τ)Ry ,

= s(xE − xth)p−
x|y(x

th)Ry ,

> 0,

hence,

d2Cxy(τ)

dτ2

∣∣∣∣
0+

− d2Cxy(τ)

dτ2

∣∣∣∣
0−

≈ −s(xE − xth)p−
x|y(x

th)Ry

(
xth − xr

)2
,

< 0,

which is the conclusion we present in the main text.
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