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The Generalized Traveling Wave Method (GTWM) is applied to the non-linear Schrödinger (NLS)
equation with general perturbations in order to obtain the equations of motion for an ansatz with 6
collective coordinates, namely the soliton position, the amplitude, the inverse of the soliton width,
the velocity, the chirp, and the phase. The advantage of the new ansatz is that it yields three
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is applied to model the dynamics of a soliton in a dispersion-shifted optical fiber described by the
generalized NLS including dissipation, higher-order dispersion, Raman scattering and self-steepening
perturbations. It is shown that the GTWM is equivalent to the modifed method of moments,
which considers the time variation of the norm, the first and the second moment of the norm, the
momentum, the first moment of the momentum and the energy for the perturbed NLS equation.
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I. INTRODUCTION

The non-linear Schrödinger (NLS) equation is one of the paradigms of soliton physics because it represents a
completely integrable system and has numerous applications in practically all fields of physics, which include charge
density waves [1], long Josephson junctions [2], optical fibers [3–5], plasmas driven by rf fields [6], and Bose-Einstein
condensates [7, 8] (see also review articles [9–11]). In particular, in optical fibers, the perturbed NLS equation

iut + σuxx + γ0|u|2u = R[u(x, t);x, t], (1)

is investigated [12–14], where β2 = −2σ is the group velocity dispersion and γ0 is the non-linear parameter responsible
for self-phase modulation. The complex function R represents many different kinds of perturbations and may also
depend on u? and the spatial derivatives of u and u?. For sufficiently small perturbations it is usually assumed that
the dynamics of a single soliton can be approximately described by an ansatz in the form of the 1-soliton solution
of the unperturbed NLS equation, where the parameters of that solution become time-dependent unknown variables:
the so-called collective coordinates (CCs). This ansatz is given by [9]

u(x, t) = 2 i η

√
2σ

γ0
sech[2η(x− ζ)] exp(−iΘ), Θ = 2ξx+ φ, (2)

with the four CCs η(t), ζ(t), ξ(t), and φ(t). By specifying perturbation R = a exp(iK(t)x) without dissipation, and
using the Lagrangian approach, then a set of ordinary differential equations (ODEs) for the four CCs was developed
[15]. This driving term was already used in the discrete form to model an array of coupled non-linear optical
waveguides, in which discrete cavity solitons can be excited [16]. Although in the case of this external driving force,
the numerical solution of the CC equations predicted a soliton dynamics which was confirmed by simulations of the
perturbed NLS equation [15], the ansatz (2), from the physical point of view, presents certain disadvantages: First,
when the ansatz (2) is inserted into the Lagrangian density and an integration over x is performed, the Lagrangian

(L) is obtained as a function of the CCs and the time derivatives φ̇ and ξ̇. The canonical momentum dL/dφ̇ can be

identified with the norm N =
∫
dx|u|2. However, the canonical momentum dL/dξ̇ does not have any obvious physical

interpretation. Second, the Hamiltonian as a function of canonically conjugated variables can be obtained only after
a complicated transformation. Finally, when the forcing is time-independent, that is, K(t) = constant, then the
CCs η(t) and ξ(t) perform periodic oscillations, and ζ(t) has a linear term and oscillations around it. However, φ(t)
exhibits oscillations with a growing amplitude around a linear term.

The above disadvantages can be avoided through the use of a slightly different ansatz [17]: Θ in Eq. (2) is

replaced by Θ = 2ξ(x − ζ) + Φ. By using this modified ansatz, the new Lagrangian depends on Φ̇ and ζ̇. The

canonical momentum dL/dΦ̇ can again be identified with the norm. The second canonical momentum dL/dζ̇ now
has a physical interpretation: namely, it can be identified with the field momentum. The Hamiltonian is obtained
by a simple Legendre transformation and Φ(t) performs oscillations with constant amplitude, as do the other CCs.
Remarkably, this new ansatz allows one to calculate a so-called “phase portrait” in which the soliton dynamics is
described by a point moving on a curve in the complex plane. The “phase portrait” makes sense only when this
curve is closed, then the point moves on the same orbit in each period. Interestingly, the shape of the orbit allows a
prediction about the stability of the soliton, which is indeed confirmed by simulations [17].

One of the main goals of our paper is to show that similar disadvantages to those mentioned above appear in
collective-coordinate theories for optical solitons and can also be avoided in a similar way as above. Indeed, in the
literature on optical solitons the following ansatz with five CCs has been widely used [12–14]:

w(z, T ) =

√
Ep
2Tp

sech
T − qp
Tp

exp

(
−i
[
φp + Ωp(T − qp) + Cp

(T − qp)2

2T 2
p

])
. (3)

Here we use the notation of Refs. [12, 14], where the propagation distance z corresponds to the time t in our NLS
equation, and the time T corresponds to our spatial variable x. The phase φp is assumed to be constant. The CCs
depend on z and are the energy Ep, the temporal shift qp, the frequency shift from the original carrier frequency, Ωp,
the soliton duration Tp, and the time-domain chirp Cp. The chirp term is introduced as a second-order perturbation
to the phase of the soliton.

We show that the ansatz (3) also produces problems with the definition of canonical momenta. In particular, dL/dṪp
yields an expression that contains Tp, which means that dL/dṪp cannot be a canonical momentum. In contrast to
this, an improved new ansatz with a new chirp term and the phase as a sixth CC produces three pairs of canonically
conjugated variables. As the Lagrange formalism generally works only for systems without dissipation, and as a
dissipative optical fiber is considered, we present the so-called Generalized Traveling Wave Method (GTWM), which



3

works for arbitrary perturbations R. The method was introduced in a general way in Ref. [18]: only the Hamilton
equations of the unperturbed system must be known and the unperturbed system need not be integrable. The
method was applied to the zero-temperature dynamics [18] and thermal diffusion [19, 20] of magnetic vortices in the
two-dimensional anisotropic Heisenberg model, and to the dynamics of topological solitons in non-linear Klein-Gordon
equations [21].

In particular for 4 CCs (see Eq. (2)), in [22] it is shown that the GTWM is equivalent to the time-variation: of
the norm, of the first moment of the norm, of the momentum and of the energy. This approach has successfully been
applied to the nonlinear Schrödinger equation in higher spatial dimension [23]. In the optical interpretation, this
technique is known as the Method of Moments (MoM), also termed as the modified conservation laws, which also
work for arbitrary perturbations R. This is the method that is mostly used in the literature on optical solitons with
five collective variables [12–14, 24]. Therefore, in order to obtain the equations of motion, five moments (the norm
N , its first moment N1, its second moment N2, the momentum P , and its first moment P1) are used [12–14]. Notice
that a direct comparison between the ansatze (2) and (3) shows 3 major differences. First, in the ansatz (3) with 5
CCs, the amplitude and the width of the soliton are two independent variables. Second, in the ansatz (3), the phase
is no longer an independent variable. Finally, the chirp term is introduced in (3) as the 5th collective coordinate.

In the current work, we use six independent CCs, namely the soliton position, the amplitude, the inverse of the
soliton width, the velocity, the chirp, and the phase. It can be shown that the MoM yields six CC equations, identical
to those from GTWM, if the phase in (3) is introduced as a sixth variable and the energy as the sixth moment. In
Ref. [25], a different identity instead of a sixth moment was used. However, the resulting CC equations differ from
the CC equations obtained by the GTWM.

The presentation of the above results is organized as follows: In the following section, the physical interpretation
of canonical momenta is given using an ansatz with six CCs. It is also shown that an inconsistency is obtained when,
instead six CCs, five CCs are used In Sec. III, the GTWM is developed for a general perturbation and its equivalence
with the modified method of moments is shown. In Sec. IV, we apply the above methods to soliton dynamics in a
dispersion-shifted fiber. The dynamics is modeled by a perturbed NLS equation, where the perturbation R consists
of several terms [12–14] which account for dissipation, higher-order dispersion, delayed Raman response, energy loss
through intra-pulse Raman scattering, and self-steepening. We express R in our notation, calculate the relevant
integrals and obtain six CC equations. The sixth ODE is an equation for Φ(t). The soliton dynamics is studied
through the numerical solutions of the equations of motion for the collective coordinates. To conclude the paper, in
Sec. V our main findings are summarized.

II. PHYSICAL INTERPRETATION OF CANONICAL MOMENTA: ANSATZ WITH 6 COLLECTIVE
VARIABLES

In this section it is shown that the ansatz that is used in the following sections possesses certain advantages compared
to the ansätze that have been widely used in the literature [12–14]. This concerns the form of the chirp term and the
introduction of a phase as a sixth collective coordinate (in the above literature only five collective coordinates were
used). It is shown that our ansatz allows the definition of three canonical momenta, thereby providing three pairs of
canonically conjugated variables.

In order to achieve our goal, we focus on the perturbed NLS Eq. (1) with the driving term R = a exp(iK(t)x) [15],
which is obtained from the Euler-Lagrange equation

d

dt

∂Ltot
∂u?t

+
d

dx

∂Ltot
∂u?x

− ∂Ltot
∂u?

= 0,

with the Lagrangian density Ltot = Lkin − Lpot + Lpert

Lkin =
i

2
(utu

? − u?tu), Lpot = σ|ux|2 −
γ0

2
|u|4, Lpert = −a(exp(iK(t)x)u? + exp(−iK(t)x)u).

Our ansatz

u(x, t) = 2iA sech[2η(x− ζ)] exp(−iΘ), Θ = Φ + 2ξ(x− ζ) + C(x− ζ)2, (4)

contains six collective variables: soliton position ζ(t), amplitude A(t), inverse width 2η(t), velocity ξ(t), chirp C(t),
and phase Φ(t) [25].

By inserting the ansatz into Lkin and integrating over x, the kinetic part of the Lagrangian is obtained

Lkin = 4
A2

η
Φ̇− 8

A2

η
ξζ̇ +

π2

12

A2

η3
Ċ. (5)
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From this, we obtain

∂Lkin

∂Φ̇
= 4

A2

η
= N,

where the canonical momentum N is conjugated to the phase Φ and is identified as the norm N =
∫
dx |u|2. Further-

more,

∂Lkin

∂ζ̇
= −8

A2

η
ξ = P,

where the canonical momentum P (field momentum)

P =
i

2

∫ +∞

−∞
dx (uu?x − u?ux), (6)

is conjugated to the soliton position ζ. Moreover, P = MV , where M = N/2 is the mass and V = −4ξ is the soliton
velocity. Finally, we obtain

∂Lkin

∂Ċ
=
π2

12

A2

η3
= D,

where the canonical momentum D is conjugated to the chirp C and can be written in the form D = π2NB2/12, with
B = 1/(2η) as the soliton width.

Now we want to show that the ansatz (3) that has often been used in the literature on optical solitons [12–14] does
not allow the definition of three canonical momenta.

The CCs in Eq. (3) for ω(z, T ) have the following relations to the CCs in Eq. (4)

qp ≡ ζ,
1

Tp
≡ 2η,

√
Ep
2Tp
≡ 2A,Ωp ≡ 2ξ,

Cp
2T 2

p

≡ C, (7)

and constant phase φp. The factor i in our ansatz is equivalent to a constant phase φ0 = π/2, because i = exp(−iφ0).
Using the above variables, we obtain

Lkin = −EpΩpq̇p +
π2

24
EpĊp −

π2

12

EpCp
Tp

Ṫp.

For the first canonical momentum we get

∂Lkin

∂Ċp
=
π2

24
Ep,

where the energy Ep =
∫
dτ |w|2 is conjugated to the chirp. For the second canonical momentum, we obtain

∂Lkin
∂q̇p

= −EpΩp, (8)

and this is conjugated to the temporal shift qp, where Ωp = (i/2Ep)
∫
dτ (ww?T − w?wT ) is identified as the frequency

shift. The r.h.s. of Eq. (8) is equivalent to the canonical momentum P in Eq. (6). Finally, we obtain

∂Lkin

∂Ṫp
= −π

2

12

EpCp
Tp

. (9)

Here the chirp should be conjugated to the soliton duration Tp. However, Tp also appears on the r.h.s. of Eq. (9)
which must not be the case. Thus the r.h.s. of Eq. (9) cannot be interpreted as a canonical momentum.

Going back to our ansatz Eq. (4), Lpot is integrated over x and we obtain for the potential part of the Lagrangian

Lpot =
16σ

3
A2η + 16σ

A2ξ2

η
+
π2σ

3

A2C2

η3
− 16γ0

3

A4

η
,
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and for the perturbative part Lpert =
∫
dxLpert. By denoting the non-perturbative part as L = Lkin − Lpot, the six

Lagrange equations become

d

dt

∂L

∂ψt
− ∂L

∂ψ
=
∂Lpert
∂ψ

,

where ψ stands for the 6 CCs Φ(t), ζ(t), η(t), ξ(t), A(t), and C(t).
However, the Lagrange formalism only works for Hamiltonian systems, that is, the perturbation R does not contain

dissipative terms. If the damping is very simple, for example, R = −iβu(x, t) with β > 0, then the Euler-Lagrange
equation can be generalized through the introduction of a dissipation function; for the above example see Ref. [15, 17].

For this reason, in the next section, two methods are used which both work for arbitrary perturbation R: For
the Generalized Traveling Wave Method only the Hamiltonian of the unperturbed system must be known. Using
our ansatz (4), six equations of motion are obtained. The same CC equations are derived by using the Method of
Moments, if a sixth moment is introduced.

III. GENERALIZED TRAVELING WAVE METHOD AND METHOD OF MOMENTS WITH SIX CC

The perturbed NLS Eq. (1) actually consists of two equations for the real and imaginary parts, for u(x, t) and
u∗(x, t). For our purpose, these equations can be rewritten as

i ut =
δH0

δu∗
+R[u(x, t);x, t], (10)

−i u∗t =
δH0

δu
+R∗[u(x, t);x, t], (11)

where

H0 =

∫ +∞

−∞
dxH0 =

∫ +∞

−∞
dx (σuxu

∗
x −

γ0

2
u2u∗2). (12)

For the following, only this Hamiltonian of the unperturbed system must be known. We now assume that the
time dependence of u(x, t) and u∗(x, t) in Eqs. (10)-(11) only appears via a set of m real collective coordinates

{Y1(t), Y2(t), . . . Ym(t)} := ~Y (t), that is, u(x, t) = u(x, ~Y (t)) and u∗(x, t) = u∗(x, ~Y (t)). It is then necessary to
multiply (10) by ∂u∗/∂Yn, and (11) by ∂u/∂Yn, add the resulting equations and integrate over the system, which
yields

m∑
j=1

IYnYj Ẏj = Fn(~Y ) +Rn(~Y ), n = 1, 2, . . .m, (13)

with

IYnYj
=

∫ +∞

−∞
dx i

[
∂u

∂Yn

∂u∗

∂Yj
− ∂u∗

∂Yn

∂u

∂Yj

]
, (14)

Fn(~Y ) = −
∫ +∞

−∞
dx

[
δH0

δu∗
∂u∗

∂Yn
+
δH0

δu

∂u

∂Yn

]
= −

∫ +∞

−∞
dx
∂H0

∂Yn
= −∂H0

∂Yn
, (15)

RYn
(~Y ) = −

∫ +∞

−∞
dx

(
R
∂u∗

∂Yn
+R∗

∂u

∂Yn

)
, (16)

where the overdot in Eq. (13) denotes the derivative with respect to time. Equations (13)-(16) represent a set of m
first-order ODEs for our m CCs.

In order to evaluate the integrals (14) which appear in the ODEs (13), we now take the one-soliton solution of the

unperturbed NLS equation [9] and make the specific ansatz (4) for u(x, ~Y (t)) [25]. The soliton energy (12) is obtained

H0 =
16σ

3
A2η + 16σ

A2ξ2

η
+
π2σ

3

A2C2

η3
− 16γ0

3

A4

η
. (17)
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Setting Y1 = ζ, Y2 = Φ, Y3 = η, Y4 = ξ, Y5 = A, and Y6 = C, in (13)-(16), we obtain for n = 1, · · · , 6

8
A2ξ

η2
η̇ − 8

A2

η
ξ̇ − 16

Aξ

η
Ȧ = −Rζ , (18)

−4
A2

η2
η̇ + 8

A

η
Ȧ = −RΦ, (19)

−8
A2ξ

η2
ζ̇ + 4

A2

η2
Φ̇ +

π2

4

A2

η4
Ċ = −16σ

3
A2 + 16σ

A2ξ2

η2
+ π2σ

A2C2

η4
− 16γ0

3

A4

η2
−Rη, (20)

8
A2

η
ζ̇ = −32σ

A2

η
ξ −Rξ, (21)

16
Aξ

η
ζ̇ − 8

A

η
Φ̇− π2

6

A

η3
Ċ = −32σ

3
Aη − 32σ

Aξ2

η
− 2π2σ

3

AC2

η3
+

64σ

3

A3

η
−RA, (22)

−π
2

4

A2

η4
η̇ +

π2

6

A

η3
Ȧ = −2π2σ

3

A2C

η3
−RC , (23)

respectively. By setting A = η and C = 0, Eqs. (18)-(23) reduce to the equations of motions for ζ, Φ, η and ξ obtained
in [22] for a 4-CC ansatz (see Eqs. (11)-(14) of [22]).

A very particular property of GTWM is related to its relationship with the so-called modified conservation laws,
also called method of moments (the time evolution of the quantities which are conserved for the unperturbed system)
[25, 26].

We define the following moments in a similar way to that in [25]. For the ansatz (4) they read

N =

∫ +∞

−∞
dx |u|2 =

4A2

η
, (24)

N1 =

∫ +∞

−∞
dxx|u|2 =

4A2

η
ζ, (25)

N2 =

∫ +∞

−∞
dx (x− ζ)2|u|2 =

π2

12

A2

η3
, (26)

P =

∫ +∞

−∞
dx
i

2
[uu∗x − u∗ux] = −8

A2ξ

η
, (27)

P1 =

∫ +∞

−∞
dx
i

2
(x− ζ) [uu∗x − u∗ux] = −π

2

6

A2C

η3
, (28)

where N is the norm, N1 is the first moment of the norm, N2 is the second moment of the norm, P is the momentum,
and P1 is the first moment of the momentum. In addition, the energy H0 is used as the sixth moment given by
Eq. (12). Notice that in [25] only 5 moments, that is, P , N , P1, N1, and N2 were defined. These moments yield 5
equations of motion for 5 CCs. In order to obtain the sixth equation of motion, Ref. [25] used a certain identity.
However, we is show that if the ansatz (4) is used, then the correct sixth equation of motion can be obtained from
the time variation of the energy H0 defined by Eq. (12) and given by Eq. (17).

From Eqs. (18) and (27), Eqs. (19) and (24), and Eqs. (23) and (26), it can be shown that Eqs. (18), (19), (21) and
(23) can be rewritten in the following way

dP

dt
= −Rζ , (29)

dN

dt
= −RΦ, (30)

dÑ1

dt
= ζ̇ = −4σξ − η

8A2
Rξ, (31)

dN2

dt
= −2π2σ

3

A2C

η3
−RC , (32)

where Ñ1 = N1/N . In other words, four of the six equation of motions are directly related with the time variation
of the momentum, the norm, and the first and second moments of the norm. In [22] for an arbitrary number of CCs
and arbitrary ansatz it was shown that the time variation of the energy reads

dH0

dt
= −Rt. (33)
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Finally, by multiplying Eq. (20) by −η, Eq. (22) by −A/2, and Eq. (23) by −2C, and by adding the resulting equations,
we obtain

dP1

dt
=

32

3

A2

η

(
ση2 − γ0

2
A2
)

+
2π2σ

3

A2C2

η3
+
A

2
RA + ηRη + 2CRC . (34)

Hence, it is shown that, for a general perturbation and assuming the ansatz (4), the GTWM is equivalent to the time
variation of the norm, the momentum, the energy, the first and second moments of the norm and the first moment of
the momentum.

Clearly, the equation of motion for ζ is precisely Eq. (31). By multiplying (19) by 2ξ and adding it to (18),

ξ̇ =
η

8A2
Rζ +

ηξ

4A2
RΦ. (35)

By multiplying (23) by −48η2/π2 and adding it to (19),

η̇ = 4σηC +
6

π2

η4

A2
RC −

η2

8A2
RΦ. (36)

Subsequent insertion of this expression for η̇ in (19) gives

Ȧ = 2σAC +
3

π2

η3

A
RC −

3η

16A
RΦ. (37)

Multiplying (22) by A/(2η) and adding Eq. (20), yields

Ċ = 4σC2 − 64

π2
η2
(
ση2 − γ0

2
A2
)
− 3η3

π2A
RA −

6η4

π2A2
Rη. (38)

The Eqs. (32), (35)-(38) agree with those obtained in [25]. However, we now show that the equation for the phase Φ
can be directly obtained from the GTWM or equivalently for the time derivative of the energy. From (20) we obtain

Φ̇ = 2ξζ̇ − π2Ċ

16η2
− 4σ

3
η2 − 4γ0

3
A2 + 4σξ2 +

π2C2

4η2
− η2

4A2
Rη. (39)

It is interesting to note that this equation does not agree with that obtained in [25]. Notice that, in [25], the equation
for Φ was obtained from a certain identity, which is not related with the time variation of modified conserved quantities.

IV. PROPAGATION OF SOLITONS IN OPTICAL FIBERS

The non-linear propagation of a Raman soliton in an optical fiber can be modeled by using the generalized NLS
[27]. Under certain approximations this equation becomes the perturbed NLS Eq. (1) with

R = −iβu+ iβ1uxxx − iγ1
∂

∂x
(u|u|2) + γ0TRu

∂|u|2

∂x
+ iγ1TR

∂

∂x

(
u
∂|u|2

∂x

)
, (40)

where the first term on the r.h.s. is the dissipation, the second term accounts for the third-order dispersion, the third
describes the influence of self-steepening. Moreover, the term proportional to γ0TR represents the intra-pulse Raman
scattering, while the last term is related with the energy loss through intra-pulse Raman scattering [14]. By using the
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ansatz (4) with six CCs, from Eqs. (31) and (35)-(39), and after a number of straightforward calculations, we obtain:

ζ̇ = −4σξ + 4β1η
2 + 12β1ξ

2 +
π2

4
β1
C2

η2
+ 4γ1A

2, (41)

ξ̇ = −64

15
γ0TRA

2η2 +
8

3
γ1A

2C − 128

15
γ1TRη

2A2ξ, (42)

η̇ = 4σηC − 24β1ηξC −
128

π2
γ1TRA

2η3, (43)

Ȧ = −8βA+ 2σAC − 12β1ACξ − γ1TRA
3η2

(
64

π2
+

64

15

)
, (44)

Ċ = 4C2(σ − 6β1ξ) +
64

π2
η2
(γ0

2
A2 − ση2 + γ1A

2ξ + 6β1ξη
2
)

+ (45)

+

(
64

π2
− 128

15

)
γ1TRA

2η2C,

Φ̇ = 2ξζ̇ + 4σξ2 +
8σ

3
η2 − 10γ0

3
A2 − 8β1ξ

3 − 16β1η
2ξ − (46)

− 20

3
γ1A

2ξ + γ1TRA
2C

(
8π2

45
− 4

)
.

It is interesting to note that an ansatz with 5 CCs [12] was used in [14], which is essentially the ansatz (4) with
Φ = π/2. Using this 5 CC ansatz, the chirp term displays oscillations which grow in amplitude. In contrast, the
ansatz with 6 collective coordinates, which includes the new chirp term and the time-dependent phase has, at least,
two advantages: first, the oscillations of the chirp do not grow and second, the extra equation for the phase is obtained,
which is crucial for a correct physical interpretation of the canonical momentum associated to certain problems.

We now define

σ = −β2/2, β = α/2, β1 = β3/6, (47)

using the parameters of the optical fiber α, β1 and β2. The values for the required fiber parameters are given in
Table I. By using the initial conditions shown in Table II, the equations of motion are numerically solved for the six
collective coordinates, Eqs. (41)-(45) and A(t), ζ(t), ξ(t), η(t), C(t), and Φ(t) are obtained (see Fig. 1). In Fig. 1, the
soliton amplitude A(t) and the inverse of the soliton width 1/η(t) decay with a propagation distance while the soliton
is accelerated. The chirp C(t) oscillates with a spatial period approximately equal to 0.09 m, which is much smaller
than the fiber length. Interestingly, the phase Φ(t) no longer has linear behavior as a function of the propagation
distance t and, due to the perturbations, non-linear terms appear in t.

Parameter Values

speed of light c = 2.99792458 × 108 m/s

center wavelength λ0 = 1.55 × 10−6 m

fiber length 200 m

fiber linear loss α = 4.6 × 10−5 m−1

group velocity dispersion (GVD) β2 = −5.1 × 10−27 s2/m

3rd-order dispersion β3 = 10−40 s3/m

non-linearity γ0 = 2 × 10−3 W−1 m−1

self-steepening γ1 = γ0λ0/(2πc) s/(m W)

Raman parameter TR = 2.5 × 10−15 s

TABLE I. Parameters of the optical fiber

By using the change of variables given by Eqs. (7), the energy Ep, the temporal shift qp, the frequency Ωp, the
soliton duration Tp, and the chirp Cp are obtained as functions of the propagation distance t (see Fig. 2). As qp = ζ,
then qp is not plotted in Fig. 2.

In Fig. 2, the dynamics of the soliton show the expected behavior in energy Ep, frequency shift Ωp, and soliton
duration Tp as a function of propagation distance. In particular, the energy is decreasing due to fiber loss and intra-
pulse Raman scattering. The Raman scattering also leads to continuous downshift in soliton center frequency. This
effect is rather strong for femtosecond solitons. As the soliton downshifts, it experiences increasing dispersion which
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Collective coordinates at t = 0 Values

A(0) 15.97
√
J/s

ζ(0) 0 m

ξ(0) 0 s−1

η(0) 1013 s−1

C(0) 0 s−2

Φ(0) π/2

TABLE II. Initial conditions

leads to increasing duration. In Fig. 2, the normalized new chirp C/N (black curve) is shown together with the
normalized old chirp Cp/Np (blue curve), where the factors N = 1024 s−2 and Np = 10−2 are used to display the
curves on comparable vertical scales. Clearly, the old chirp oscillations grow as a function of propagation distance,
whereas the new chirp term oscillates with a decreasing amplitude.

V. CONCLUSIONS

For the description of NLS solitons, in particular in the application to optical solitons, we have introduced a new
ansatz with six collective coordinates (CCs) which avoids certain disadvantages of the 5-CC ansatz that is widely used
in the literature. The six independent CCs (the soliton position, the amplitude, the inverse of the soliton width, the
velocity, the chirp, and the phase) are unknown functions of time. In optical notation, these collective coordinates
correspond to the following magnitudes: the temporal shift, the energy, the soliton duration, the carrier frequency,
the chirp, and phase. In contrast to a 5-CC ansatz, with six independent CCs, we obtain three pairs of canonically
conjugated variables, and hence three canonical momenta can be defined and can have physical interpretations. To
this end we have given a new form to the chirp term in the 6-CC ansatz.

As the NLS equations that describe optical solitons have several complicated perturbation terms, such as higher-
order dispersion, delayed Raman response, energy loss through intra-pulse Raman scattering, and self-steepening, we
apply two methods which both work for arbitrary perturbations: The Generalized Traveling Wave Method (GTWM)
and the Method of Moments (MoM). Indeed, it is shown that in the case of the perturbed NLS Eq. (1), the GTWM
with the ansatz (4) yields six modified conservation laws, namely the time variation of the norm, the first and second
moment of the norm, the momentum, the first moment of the momentum and the energy. Therefore, both methods
yield 6 identical ODEs, which are the equations of motion for the collective coordinates.

We numerically solve the resulting ODEs for the six CCs, using the parameters for a femtosecond soliton propagating
in a typical dispersion-shifted fiber. We also show that the 6-CC ansatz results in a better-behaved chirp with reduced
oscillations.
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FIG. 1. A, ζ, ξ, η, C and Φ vs propagation distance t for a large propagation distance.
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FIG. 2. Ep, Ωp, Tp, and the normalized chirp parameter vs propagation distance t for a larger fiber length. For the normalized
chirp (lower right panel) an old definition Cp/Np (blue curve) displays growing oscillations, while the new definition C/N (black
curve) results in more subdued oscillations. Factors Np = 10−2 and N = 1024 s−2 are used to display the curves on comparable
vertical scales.
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[23] J. J. Garćıa-Ripoll, V. M. Pérez-Garćıa, and P. Torres, Phys. Rev. Lett. 83, 1715 (1999).
[24] B. Burgoyne, N. Godbout, and S. Lacroix, Opt. Express 15, 10075 (2007).
[25] A. V. Maimistov, JETP 77, 727 (1993).
[26] V. I. Karpman, Physica Scripta 20, 462 (1979).
[27] Z. Chen, A. J. Taylor and A. Efimov, Optics Express 17, 5853 (2009).


