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We consider the mechanism of formation of isolated localized wave structures in the di-

atomic Fermi-Pasta-Ulam (FPU) model. Using a singular multiscale asymptotic analysis in

the limit of high mass mismatch between the alternating elements, we obtain the typical

slow-fast time scale separation and formulate the Fredholm orthogonality condition approx-

imating a sequence of mass ratios supporting the formation of solitary waves in the general

type of diatomic FPU models. This condition is made explicit in the case of diatomic Toda

lattice. Results of numerical integration of the full diatomic Toda lattice equations confirm

the formation of these genuinely localized wave structures at special values of the mass ratio

that are close to the analytical predictions when the ratio is sufficiently small.
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I. INTRODUCTION

Over the last several decades formation of localized excitations in dynamical systems has drawn

a considerable interest because solutions of this type describe some fundamental mechanisms that

emerge in many physical settings, including electrical networks, nonlinear optics, ion acoustic waves

in plasma, dislocations in crystals, dynamics of polymer chains, granular metamaterials and more

[1–3]. Seminal works by Fermi, Pasta and Ulam [4] and Zabusky and Kruskal [5] have initiated

the extensive studies of dynamics of monatomic nonlinear lattices and the related soliton-like exci-

tations. In particular, the fundamental problem of the formation of localized excitations (solitary

waves, traveling breathers) in the Fermi-Pasta-Ulam (FPU) models induced by a local initial pertur-

bation has become one of the broadly studied topics in dynamics of nonlinear lattices [6]. It is well

known that in many cases presence of nonlinearity in the FPU models can balance the dispersive

effects and support the formation of coherent localized structures such as solitary waves propagating

with a constant amplitude-dependent speed. Existence of solitary waves in a general class of homo-

geneous FPU models was proven by Friesecke and Wattis [7]. It was also shown that long-wave and

short-wave approximations of the infinite FPU chain result in the well known nonlinear integrable

partial differential equations, namely, Korteweg de Vries (KdV) and nonlinear Schrödinger (NLS)

equations, respectively, that have dynamical solitons (KdV) and envelope solitons (NLS) as their

particular solutions [2].

Other fundamental problems of solitary wave excitations in nonlinear lattices concerned periodi-

cally heterogeneous diatomic and polyatomic FPU models. These problems have naturally emerged

due to their important applications in physics and mechanics. Models of diatomic lattices have been

used as prototypes to approach the transport of energy [8] and describe the dynamics of materials

(such as ferroelectric perovskites) that present a quasi-1D diatomic structure along certain crys-

tallographic directions [9]. For complicated polyatomic systems like molecular-hydrogen-bonded

chains [10, 11], the problem becomes tractable by selecting the most important degrees of freedom

and using a diatomic model. Propagation of solitary waves along diatomic chains was analyzed in

[12] and [13], where second-neighbor interactions were also included. Using a quasicontinuum ap-

proximation, the authors obtained different solutions for soliton-like excitations, including subsonic

and supersonic acoustic kinks and optical envelope solitons. Rigorous approximation results along

these lines were established in [14–16]. Quasicontinuum approximations were also used to analyze

solitary-like excitations and traveling kinks in diatomic lattices in [17–20]. Numerical simulations

of these systems reveal the existence of small oscillatory tails in the wake of these solitary-like
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FIG. 1. (a) Velocity profiles q̇n(t) for light (solid curves) and heavy (dotted curves) masses at n = 199, 200, 201

and n = 209, 210, 211 solving (5) with φ′(r) = 1− e−r. The amplitude of emitted oscillations is larger for the light

masses. (b) A ‘phase plane’ plot of relative velocity ṙn = q̇n+2 − q̇n between the neighboring heavy (odd n) or light

(even n) masses versus the relative displacement rn = qn+2 − qn at n = 199 (dashed black curve), n = 200 (solid

black), n = 299 (dashed gray), n = 300 (solid gray). Here the mass ratio is ε = 0.35, and the initial condition is

determined from (19), (20) with κ = arcsinh(2
√
5).

pulses which are sometimes referred to as long-lived quasi-solitons. Waves radiated by a prop-

agating solitary pulse and propagating behind it are known to be a generic feature of diatomic

(and, more generally, polyatomic) systems and are associated with the optical dispersion branches

present in such settings. They reduce the energy and amplitude of the propagating pulse, resulting

in its permanent distortion [21–24]. This is illustrated in Fig. 1 showing pulse-like solutions in the

diatomic Toda lattice, where one can clearly see two distinct pulses propagating through the heavy

(odd-numbered) and light (even-numbered) masses. The pulses emit oscillations in their wake and

slightly decrease in amplitude as they move through the lattice. Emergence of the optical vibrations

in the diatomic problem is not surprising, given that the corresponding optical linear spectrum is

present in the supersonic regime, which in the monatomic case is associated with formation of

genuine solitary waves due to the absence of resonances with the acoustic spectrum. One of the

most interesting questions which naturally arises in this context is whether there exist some special

localized solutions in the polyatomic discrete media that are isolated, i.e. exist for some particular

choice of the system parameters, and propagate with no energy radiation to the far field.

Following the groundbreaking discovery by Fujioka and Espinosa [25], formation of the brand-

new category of isolated localized solutions (solitary waves) in dispersive nonlinear media has be-

come a subject of the intense research [26–30]. As shown in these works, this special class of solitary
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waves can exist under conditions which prior to [25] were thought to be impossible. In particular, it

was believed that for a soliton to exist, it is absolutely necessary that no resonance occurs between

the soliton and these linear waves. Otherwise, energy will be radiated from the core of the solitary

pulse through the phononic modes. However, as these studies have shown, isolated solitary waves,

called embedded solitons, whose wave number is contained (“embedded”) in the linear spectrum of

the system can exist in several variants of NLS models [25–30]. These special solitary wave solu-

tions are isolated, i.e. associated with discrete sets of unique amplitudes and wave numbers that

are defined by the system parameters, and appear to be semistable. However, additional studies of

the embedded soliton solutions in various continuous physical models (e.g. the interaction of three

spatial solitons propagating in a planar waveguide with a quadratic nonlinearity [31, 32], modified

KdV [33], extended KdV [34]) have indicated that these waves can exist in continuous families and

be stable. Further studies of the embedded solitons have also shown their existence in the discrete

models [35]. Rigorous analysis of these solutions in various systems can be found in [36–38]. In a re-

cent work [39] authors have analyzed a general class of dispersive nonlinear systems and formulated

sufficient conditions for the existence of a countable infinity of single humped, embedded solitons.

In the same study an approximate infinite sequence of the system parameter values corresponding

to these unique isolated solutions has been found using asymptotic methods.

In the context of polyatomic FPU models, existence of genuine stable solitary wave solutions that

have no oscillatory tail has also been of considerable interest. First numerical observation of such

wave emerging in the diatomic FPU lattice for a certain mass ratio was reported in [23]. In this work

the author has considered numerically the response of the diatomic Toda lattice subjected to the

initial perturbation in the form of the solitary wave of the underlying homogeneous Toda chain [40].

Formation of a localized wave pulse propagating along the periodic (diatomic) lattice with negligible

distortion has been observed for some particular ratio of the heavy and the light masses in the

chain. Another numerical study of solitary wave propagation in nonhomogeneous Toda lattice with

periodic and aperiodic structure reported the formation of “nearly” genuine stable solitary waves

[21]. This observation of the localized wave existing in the diatomic Toda lattice has motivated the

work [41], where the formation of the discrete set of such pulses excited in heterogeneous Toda chain

has been analytically predicted for the hard-core limit. As reported in [24, 42], an infinite set of

these localized wave structures can also be realized in various configurations of highly nonlinear and

non-smooth polyatomic discrete system such as diatomic granular crystals [43, 44]. The authors of

[24, 42] show that formation of these waves is governed by a peculiar mechanism of anti-resonance

established between the phase of the fast oscillations of the light masses and the phase of the
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primary pulse transmission.

Motivated by these results, we analyze the intrinsic mechanism of formation of solitary waves

in a general class of diatomic FPU models. We perform singular multiscale asymptotic analysis

in the limit of high mass mismatch between the alternating elements. In this limit there exists a

separation between slow and fast time scales. The slow time scale is associated with the propagation

of the primary pulse through the heavy elements while the fast time scale describes the oscillations

of the light elements inertially excited by the heavy ones. This fast dynamics of the light masses

is captured by a single oscillator that has a slowly varying natural frequency and is driven by an

external excitation induced by the solitary wave transmission through the heavy elements. Using the

associated asymptotic equation, we formulate the anti-resonance Fredholm orthogonality condition

that approximates the special mass ratio values supporting the formation of solitary waves. To

showcase the validity of the formulated analytical prediction we then consider the diatomic Toda

lattice in the limit of high mass mismatch. Importantly, in contrast to the previously considered case

of granular crystals [24, 42], the diatomic Toda lattice setting enables us to find exact solutions

of the derived singular asymptotic equations. In particular, the Fredholm condition reduces to

orthogonality of an explicit odd solution of time-independent Schrödinger equation with a Pöschl-

Teller potential and an odd function derived from the exact solution of the monatomic Toda lattice,

yielding special mass ratios as zeroes of a certain function that can be directly evaluated. Using

known asymptotics of the solutions of the Schrödinger equation, we also obtain a simplified condition

that provides an excellent approximation of the anti-resonance values in a certain parameter regime.

The obtained analytical predictions are supported by numerical simulations of the full diatomic

Toda lattice, which suggest existence of genuine solitary waves at certain mass ratios. When the

mass ratios are sufficiently small, the numerically obtained anti-resonance values are close to the

analytical predictions.

The structure of the paper is as follows. Section II is devoted to the general problem statement.

In Section III we perform the singular multiscale analysis and formulate the Fredholm orthogonality

condition for mass ratios associated with formation of isolated solitary waves in the general class

of FPU chains. In Section IV we show that in the case of the diatomic Toda lattice these waves

are formed when an integral involving two explicitly known functions vanishes. Derivation of the

exact formula for this integral evaluated at a certain sequence of mass ratios is presented in the

Appendix. A simplified anti-resonance condition is derived in Section V. Simulation results for the

full diatomic Toda lattice and verification of the obtained asymptotic predictions are presented in

Section VI. We conclude with Section VII highlighting the most important findings of this work
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along with their potential extensions and open problems.

II. PROBLEM FORMULATION

Consider an infinite one-dimensional diatomic lattice with energy given by the Hamiltonian

H =
∞
∑

n=−∞

φ(qn − qn−1) +
1

2
mnq̇

2
n.

Here mn is the mass of nth particle, which alternates between m2p−1 = m1 and m2p = m2 ≤ m1,

qn(t) is the displacement of nth particle at time t with derivative q̇n, and φ(r) is the interaction

potential. The dynamics of the system is governed by

mnq̈n = φ′(qn+1 − qn)− φ′(qn − qn−1). (1)

We assume that

φ ∈ C2, φ(0) = φ′(0) = 0, φ′′(r) > 0 (2)

A specific example we consider in what follows is the Toda interaction potential [40]

φ(r) =
a

b
e−br + ar − a

b
, (3)

with a > 0, b > 0. It is convenient to introduce the dimensionless parameter

ε = m2/m1 (4)

satisfying 0 < ε ≤ 1 and rescale the system (1) using the dimensionless variables

t̄ = t

√

K

m1
, q̄n =

qn
d
, φ̄ =

φ

Kd2
,

where d is a relevant length scale and K = φ′′(0) > 0. For the Toda lattice, we have K = ab and

d = 1/b. With the bars on the new variables dropped, this yields the following system:

q̈2p−1 = φ′(q2p − q2p−1)− φ′(q2p−1 − q2p−2) (heavy masses)

εq̈2p = φ′(q2p+1 − q2p)− φ′(q2p − q2p−1) (light masses).
(5)

With this rescaling the Toda coefficients in (3) are a = b = 1, and we have m1 = 1, m2 = ε.

We are interested in deriving the condition for the existence of solitary wave solutions in the

diatomic lattice, i.e. solutions of (5) that have the form

q2p−1(t) = u(ξ), q2p(t) = v(ξ), ξ = p− ct, (6)



7

where c > 0 is half of the velocity of the wave, with

u′(ξ), v′(ξ) → 0 as |ξ| → ∞. (7)

As mentioned in the Introduction, such solutions do not exist for generic values of ε due to the

presence of radiative optical oscillations propagating behind the moving pulse and reducing its

amplitude and energy (see Fig. 1 for an example). In the following section, we follow the approach

in [24] and use multiscale asymptotic analysis at small ε to derive the Fredholm orthogonality

condition approximating the special values εk at which the oscillatory tails disappear, and the

system (5) has solitary wave solutions satisfying (6), (7). We then analyze in Section IV the case

of Toda potential, where the approximate existence condition can be made explicit due to the

availability of exact solutions of the asymptotic equations.

III. ASYMPTOTIC ANALYSIS

Consider (5) with 0 < ε ≪ 1. For this high mismatch between the masses, there exists a sepa-

ration of scales associated with the slow dynamics of the heavy masses governing the propagation

of the primary pulse and the inertially excited fast dynamics of the light masses. Following [24],

we introduce the fast time τ = t/
√
ε and seek solutions of (5) in the form

q2p−1 ≈ x2p−1(t) + ε2y2p−1(τ) (heavy masses),

q2p ≈ x2p(t) + εy2p(τ) (light masses).

Here the approximation is up to the higher orders of ε. Substituting this in (5), we obtain, up to

the higher order terms,

ẍ2p−1 + εy′′2p−1 ≈ φ′(x2p − x2p−1)− φ′(x2p−1 − x2p−2)

+ φ′′(x2p − x2p−1)(εy2p − ε2y2p−1)− φ′′(x2p−1 − x2p−2)(ε
2y2p−1 − εy2p−2)

ε(ẍ2p + y′′2p) ≈ φ′(x2p+1 − x2p)− φ′(x2p − x2p−1)

+ φ′′(x2p+1 − x2p)(ε
2y2p+1 − εy2p)− φ′′(x2p − x2p−1)(εy2p − ε2y2p−1),

where ẍn = d2xn/dt
2 and y′′n = d2yn/dτ

2. The slow O(1) dynamics is then described by

ẍ2p−1 = φ′(x2p − x2p−1)− φ′(x2p−1 − x2p−2), x2p =
x2p−1 + x2p+1

2
, (8)

where the second equation follows from φ′(x2p+1 − x2p) = φ′(x2p − x2p−1) and the assumed mono-

tonicity of φ′(r) (recall (2)). Substituting the second equation into the first, one can see that the
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slow dynamics of the heavy masses is governed by the equations for the chain of heavy masses only:

ẍ2p−1 = φ′
(

x2p+1 − x2p−1

2

)

− φ′
(

x2p−1 − x2p−3

2

)

, (9)

while the dynamics of light masses in slow time is obtained by averaging over the dynamics of the

two neighboring heavy masses.

Meanwhile, the fast O(ε) dynamics is given by

y′′2p−1 = φ′′(x2p − x2p−1)y2p + φ′′(x2p−1 − x2p−2)y2p−2

ẍ2p + y′′2p = −
(

φ′′(x2p − x2p−1) + φ′′(x2p+1 − x2p)
)

y2p.
(10)

Observe that the second equation in (10) is decoupled from the first. Moreover, using the second

equation in (8) we can rewrite the second equation in (10) for the fast dynamics of the even-

numbered light masses in the form

y′′2p(τ) + Ω2
2p(t)y2p(τ) = f2p(t), (11)

which describes uncoupled driven harmonic oscillators with slowly varying natural frequency Ω2p(t)

and driving force f2p(t) given by

Ω2
2p(t) = 2φ′′

(

x2p+1 − x2p−1

2

)

, f2p(t) = −ẍ2p(t). (12)

Assume now that the problem (9) for the slow dynamics of the heavy masses (ε = 0 problem)

has a solitary wave solution

x2p−1(t) = X(ξ0), ξ0 = p− c0t, X ′(ξ0) → 0 for |ξ0| → ∞. (13)

This assumption clearly holds if the monatomic (ε = 1) problem supports solitary waves, existence

of which, as proved in [7], is guaranteed for a large class of superquadratic potentials. Then the

slow dynamics of light masses is described by x2p(t) = (X(ξ0) +X(ξ0 + 1))/2, and we have

Ω2
2p(t) = 2φ′′

(

X(ξ0 + 1)−X(ξ0)

2

)

, f2p(t) = −c
2
0

2

(

X ′′(ξ0) +X ′′(ξ0 + 1)),

where we used the second equation in (8) to obtain f2p(t). Since both Ω2p and f2p depend on

t = τ
√
ε via ξ0, the solution of (11) is a function of ξ0 = p− c0τ

√
ε. It is convenient to rewrite (11)

in terms of slow time. It also suffices to consider dynamics of only one oscillator, e.g. the one at

p = 0, since the rest can be recovered via a time shift. We obtain

ÿ0(t) +
Ω2
0(t)

ε
y0(t) =

f0(t)

ε
. (14)
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Since X(ξ0) is defined up to an arbitrary translation in its argument, and X(ξ0 + 1) − X(ξ0),

X ′(ξ0+1)+X ′(ξ0) have even symmetry about the same point, it is possible to select X(ξ0) so that

Ω2
0(t) is even, while f0(t) is odd. Note also that the behavior of X(ξ0) in (13) at infinity implies

that f0(t) → 0 and Ω0(t) →
√
2 as |t| → ∞, where we recall that φ′′(0) = 1 after rescaling. Thus,

we expect solutions satisfying y0(t) → 0 as t→ −∞ to develop oscillations of frequency ω =
√

2/ε

at sufficiently large t > 0 for generic values of ε. We thus seek special values at which the amplitude

of these oscillations is zero. In other words, we need to find ε such that the corresponding solutions

of (14) satisfy the zero conditions at infinity:

y0(t) → 0 as |t| → ∞. (15)

Let Y1(t; ε) and Y2(t; ε) denote two linearly independent solutions of the homogeneous equa-

tion ÿ0 + (Ω2
0(t)/ε)y0 = 0 that are even and odd, respectively, and let α denote their (constant)

Wronskian. The method of variation of parameters then yields the following solution of (14) that

satisfies y0(t) → 0 as t→ −∞:

y0(t; ε) =
1

αε

(

Y2(t; ε)

∫ t

−∞

f0(s)Y1(s; ε)ds − Y1(t; ε)

∫ t

−∞

f0(s)Y2(s; ε)ds

)

. (16)

Since f0(t) is odd and vanishes at infinity, while Y1(t; ε) is even, the first term tends to zero as

t→ ∞. Meanwhile, at large t > 0 the equation becomes ÿ0 + ω2y0 = 0, with ω =
√

2/ε, and thus

Y1(t; ε) ∼ A cos(ωt+ β1), t→ ∞,

for some constant A 6= 0 and β1. This yields

y0(t; ε) ∼ −2A

αε
cos(ωt+ β1)

∫

∞

0
f0(s)Y2(s; ε)ds, t→ ∞, (17)

where we used the fact that f0(t)Y2(t; ε) is an even function of t. Thus we have oscillations of

frequency ω at large t > 0 unless

g(ε) ≡
∫

∞

0
f0(s)Y2(s; ε)ds = 0. (18)

This Fredholm orthogonality condition yields ε such that the solution (16) has no oscillations at

infinity, and hence no such waves appear in qn(t) up to O(ε2). Physically, it means that the slow

motion of the center of mass of the two neighboring heavy masses, the acceleration of which equals

−f0(t) up to a time shift, does not excite any fast oscillations of the light mass in between at large

time. We conjecture that under our assumptions g(ε) has infinitely many zeroes in the interval

(0, 1) at ε = εk, k = 1, 2, . . . , with εk accumulating at zero as k → ∞.
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IV. ASYMPTOTIC ANALYSIS FOR THE DIATOMIC TODA LATTICE

For diatomic Toda lattice we can obtain an explicit Fredholm solvability condition for the prob-

lem (14), (15). Indeed, in this case equations (9) for the slow motion of odd-numbered heavy masses

reduce to the equations governing a homogeneous Toda lattice with a = 1, b = 1/2 in (3) and have

an exact solitary wave solution [40]

x2p−1(t) = 2 ln
1 + exp[2κ(p − 1)− t

√
2 sinhκ]

1 + exp[2κp − t
√
2 sinhκ]

= X(p− c0t), c0 =
sinh(κ)√

2κ
(19)

Using the second equation in (8), we then obtain the O(1) displacement of the even-numbered light

masses:

x2p(t) = ln
1 + exp[2κ(p − 1)− t

√
2 sinhκ]

1 + exp[2κ(p + 1)− t
√
2 sinhκ]

. (20)

This yields

Ω2
2p(t) = 2

{

1 + (sinh2 κ)sech2

(

κp − t√
2
sinhκ

)}

(21)

and

f2p(t) = −4 cosh κ sinh3 κ sinh[2κp − t
√
2 sinhκ]

(cosh(2κ) + cosh(2κp − t
√
2 sinhκ))2

. (22)

Observe that f0(t) is an odd function, while Ω2
0(t) is even.

The homogeneous equation corresponding to (14) is then a classical problem in quantum me-

chanics that involves one-dimensional time-independent Schrödinger equation with sech-squared

potential of Pöschl-Teller type [45–47] first considered in [48] in the context of wave reflection in an

inhomogeneous medium. It can be written as

ÿ0 +

(

ω2 +
ν(ν + 1)α2

cosh2(αt)

)

y0 = 0, (23)

where

α =
sinhκ√

2
, ω =

√

2

ε
, ν =

1

2

(

−1 +

√

1 +
16

ε

)

. (24)

Substituting y0(t) = ψ(ζ), ζ = tanh(αt), we obtain the general Legendre equation

d

dζ

(

(1− ζ2)
dψ

dζ

)

+

(

ν(ν + 1) +
ω2

α2(1− ζ2)

)

ψ = 0.

This yields two linearly independent solutions of (23) in terms of hypergeometric functions [45],

Y1(t; ε) = (cosh(αt))ν+1
2F1

(

1

2

[

ν + 1 + i
ω

α

]

,
1

2

[

ν + 1− i
ω

α

]

,
1

2
,− sinh2(αt)

)

(25)
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and

Y2(t; ε) = (cosh(αt))ν+1 sinh(αt)2F1

(

1

2

[

ν + i
ω

α

]

+ 1,
1

2

[

ν − i
ω

α

]

+ 1,
3

2
,− sinh2(αt)

)

, (26)

which are even and odd, respectively, and have the Wronskian equal to α. We emphasize here that

the solutions depend on ε through ν and ω defined in (24) (they also depend on κ through α).

Substituting these in (16), we obtain the solution of (14) satisfying y0(t) → 0 as t → −∞. Its

asymptotic behavior at positive infinity is given by (17) with [45]

A =
√
π

∣

∣

∣

∣

Γ(iω/α)e−iω ln 2/α

Γ(12 [ν + 2 + iω
α ])Γ(12 [1− ν + iω

α ])

∣

∣

∣

∣

, β1 = arg
Γ(iω/α)e−iω ln 2/α

Γ(12 [ν + 1 + iω
α ])Γ(−1

2 [ν − iω
α ])

. (27)

and the condition (18) that ensures that y0(t) → 0 as t→ ∞ without oscillations. Meanwhile,

Y2(t; ε) ∼ A cos(ωt+ β2), t→ ∞, β2 = arg
Γ(iω/α)e−iω ln 2/α

Γ(12 [ν + 2 + iω
α ])Γ(12 [1− ν + iω

α ])
. (28)

For the diatomic Toda lattice, the function g(ε) is thus defined by (18), (22) and (26). Letting

Y2(t; ε) ≡ H(η; ε), η = αt, (29)

we can rewrite it as

g(ε) = 4
√
2 cosh(κ) sinh2(κ)

∫

∞

0
Λ(η)H(η; ε)dη, (30)

where we define

Λ(η) =
sinh(2η)

[cosh(2κ) + cosh(2η)]2
. (31)

Observe that Λ(η) → 0 exponentially fast as η → ∞, H(η; ε) is bounded for all τ , and for ε ∈ (0, 1]

and κ > 0, H(η; ε) depends continuously on ε, and both functions depend continuously on κ. This

implies that g(ε) depends continuously on ε and κ in this parameter domain. The integral in (30)

can be evaluated numerically for given ε and κ. The calculation simplifies for integer ν = N in

(24), i.e. when ε = ǫN ≡ 4/(N(N +1)) for some integer N ≥ 2, since in this case H(η; ǫN ) reduces

to an expression in terms of elementary functions [47, 49], and (30) can be computed using contour

integration and the residue theorem. As shown in the Appendix, this yields an explicit formula

(A7) for g(ǫN ).

Fig. 2 shows the typical oscillatory behavior of g(ε). Since g(ε) depends continuously on κ,

its zeroes εk are continuous functions of κ. The first eight such values and the corresponding

approximate velocity profiles are shown in Fig. 3. The subscript k in εk denotes the number of

local maxima in the corresponding velocity function ẏ
(k)
0 (t). Note that the largest of these values,
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FIG. 3. Approximate velocity profiles q̇0(t) ≈ ẋ0(t) + εẏ0(t) in the diatomic Toda lattice at the special values

of ε found by solving (14) subject to (15) (see the text for details): (a) ε8 = 0.0152585; (b) ε7 = 0.0198633; (c)

ε6 = 0.0269202; (d) ε5 = 0.0385452; (e) ε4 = 0.0597712; (f) ε3 = 0.105242; (g) ε2 = 0.235084; (h) ε1 = 0.993342.

Here κ = arcsinh(2
√
5) and t0 = 0.

ε1 ≈ 0.993342, is not small and thus lies beyond the limits of the applicability of the asymptotic

analysis. The second largest value, ε2 ≈ 0.235084, is also not small enough for the two time scales

to be well separated, so we do not expect it to be a good approximation of the corresponding value

in the discrete system (5). But the smaller εk values in the asymptotic approximation are expected

to be close to the actual ones.

We conjecture that g(ε) has infinitely many zeroes εk in (0, 1) such that εk → 0 as k → ∞. This

conjecture is supported by the numerical evaluation of the explicit formula (A7), which suggests

that for fixed κ > 0, sign[g(4/(N(N + 1))] = −sign[g(4/((N + 2)(N + 3))] for integer N ≥ 2.

Importantly, the set of εk such that g(εk) = 0 remains discrete at any small but nonzero κ,

suggesting that even in the quasicontinuum regime κ ≈ 0 genuine solitary waves can exist only at
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certain mass ratios. However, since g(ε;κ) → 0 as κ→ 0, the amplitude of the trailing oscillations

becomes exponentially small at κ near zero [50], which explains why quasicontinuum [17] and KdV

[16] approximations of solitary waves for any ε work well in this regime.

V. APPROXIMATE ANTI-RESONANCE CONDITION AT LARGE κ

In the previous section we derived the necessary and sufficient asymptotic condition g(εn) = 0,

with g(ε) given by (30), for the anti-resonance values εn at which the oscillatory tails in the wake of

the primary front vanish in the O(ε) approximation of the diatomic Toda lattice. However, finding

these values generally requires numerical evaluation of (30). In this section we derive a simplified

approximate condition valid at large enough κ and ε > εcr(κ), where the lower bound εcr decreases

as κ grows.

To obtain this condition, we first consider the behavior of the functions Λ(η) and H(η; ε) involved

in the integrand of (30) at large κ. Observe that the function Λ(η) defined in (31) has a single

maximum at

ηmax = arccosh





√

4 + 2 cosh2 κ+
√
2
√

17 + cosh(4κ) + 2 sinh2 κ

2
√
2



 ≈ κ, κ≫ 1

Moreover, for large κ this function has an exponentially localized bell-shaped form with an approx-

imate even symmetry about its maximum:

Λ(ηmax − χ) ≈ Λ(ηmax + χ), κ≫ 1, (32)

because

Λ(ηmax + χ) ≈ exp(−2κ)

2 cosh2 χ
, κ≫ 1.

For κ = 10 this is illustrated by the dashed curve in Fig. 4. The half-width χw of this pulse, defined

by

Λ(ηmax + χw) = 0.01Λ(ηmax),

approaches a constant value χw ≈ 2.993 at κ≫ 1. Meanwhile, the function H defined in (29) (the

solid curve in Fig. 4) has fast oscillations for small enough η > 0, while for larger η there are slower

oscillations that are asymptotically described by

H ≈ A(ε, κ) cos

(

2η√
ε sinh(κ)

+ β2(ε, κ)

)

, η ≫ 1 (33)
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FIG. 4. The functions H(η; ε) (solid curve), its asymptotic approximation (33) (gray curve) and 8α2Λ(η) (dashed

curve) at κ = 10. Inset: the asymptotic approximation over a larger interval. Here ε = 0.01285078 and (34) holds.

(gray curve in Fig. 4), where we recall that A, defined in (27), and β2, given in (28), are functions

of ε and κ through α, ω and ν defined in (24). In what follows, we fix a small threshold δ > 0

measuring the accuracy of the approximation (33). The asymptotic approximation then becomes

valid (i.e. its absolute error is less than δ) for η > ηa(κ, ε), where ηa increases with κ at fixed ε,

approaching a value that depends only on ε for large enough κ, and decreases as ε grows at fixed κ.

This implies that there exist ηcr and εcr, depending on κ, such that for given κ the approximation

error is less than δ for η > ηcr and ε > εcr. Here εcr decreases as κ is increased.

Suppose now that κ is large enough so that (i) the approximate even symmetry (32) of Λ(η)

holds and (ii) the pulse of Λ(η) is localized inside the region where the asymptotic approximation

(33) accurately describes H(η; ε) for ε > εcr(κ), i.e. ηmax − χw ≥ ηcr(κ). Both conditions hold, for

example, in Fig. 4, where κ = 10, ηmax − χw ≈ 7.007, and the absolute error of the asymptotic

approximation of H is less than δ = 2.3×10−5 for η > ηcr = 7. Let η0 be such that η0 > ηcr(κ) and

H(η0) = 0. The second condition then ensures that H has an approximate odd symmetry about

η0 since the approximation (33) has an exact odd symmetry about its zeroes. Together with the

approximate even symmetry of Λ about η = ηmax(κ), this implies that the integral (30) will be

approximately zero if η0 = ηmax, i.e. the peak of Λ occurs exactly at the point where H vanishes:

H(ηmax(κ); ε) = 0. (34)

Physically, this corresponds to the largest magnitude of the acceleration of the center of mass

between the two heavy masses occuring precisely at the moment when the free fast oscillation

of the light mass in between goes through zero. Using the asymptotic approximation (33), the
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condition (34) can be further simplified to yield

2ηmax(κ)√
ε sinh(κ)

+ β2(ε, κ) =
π

2
sign[β2(ε, κ)], (35)

where the sign in front of π/2 in the right hand side is determined by the (nonzero) phase β2(ε, κ)

of the oscillations.

We checked (34) and (35) for κ = 10 and verified that both yield the values of εn that are

in an excellent agreement, up to the relative error of O(10−8), with the values obtained using

numerical approximation of (30) (while the relative error of the roots of (35) approximating the

zeroes of (34) is O(10−9) for the smaller computed values). In all three cases, the first several

values are ε2 = 0.3109212, ε3 = 0.1272799, ε4 = 0.06894426, ε5 = 0.04318148, ε6 = 0.02957127,

ε7 = 0.02151489, ε8 = 0.01635427, ε9 = 0.01285078. As expected, the approximation error is

smaller for larger εn. At κ = 5 the asymptotic approximation is not accurate over the entire interval

where Λ(η) is localized for smaller ε. As a result, the relative errors of the approximations are larger

but still fairly small, up to O(10−3) for the solutions of (34) approximating the first few roots of

(30), given in this case by ε2 = 0.2824200, ε3 = 0.1184396, ε4 = 0.06497014, ε5 = 0.04102020,

ε6 = 0.02825095, ε7 = 0.02064249, ε8 = 0.01574431, ε9 = 0.01002809, and up to O(10−4) for the

roots of (35) approximating the zeroes of (34).

VI. NUMERICAL RESULTS

To find the special values of ε for the discrete system, we ran the numerical simulations of (5) with

φ′(r) = 1− e−r employing the symplectic Candy-Rozmus algorithm. The solution of (8) was used

as the initial condition. Recall that this solution is given by (19) and (20) for heavy odd-numbered

and light even-numbered masses, respectively, and depends on the parameter κ that determines

the amplitude and velocity of the wave. For given κ we sought the values of ε at which the energy

stored at a fixed site n = n0 was close to zero at a time instant t = ta after the pulse has left the

site. For example, at κ = arcsinh(2
√
5) we used n0 = 200 and ta = 40. The results for this value of

κ are compared in Table I with the corresponding values obtained using the asymptotic analysis.

As expected, the approximation works very well for smaller values of εk, but as εk becomes larger

the predicted values yield progressively poorer approximation. In particular, the largest value,

ε2 ≈ 0.319089, is not very close to the value 0.235084 obtained from the asymptotic analysis. At

this value the velocity of the light mass has two maxima. There appears to be no value ε1 < 1 with

a single maximum (although of course such solutions, Toda solitons, exist in the monatomic case
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k εk from (18) εk from (5)

2 0.235084 0.319089

3 0.105242 0.116993

4 0.0597712 0.0633882

5 0.0385452 0.0402105

6 0.0269202 0.0275323

7 0.0198633 0.0201695

8 0.0152585 0.0154320

TABLE I. The values of ε obtained from the Fredholm condition (18) and from the numerical solution of (5) with

φ′(r) = 1− e−r and initial conditions determined from (19), (20) at κ = arcsinh(2
√
5).

ε = 1); as discussed above, the spurious value of ε1 obtained from the asymptotic analysis, lies well

beyond the validity domain of the multiscale expansion and thus should be discarded.

Fig. 5 and Fig. 6 show the corresponding velocity profiles for even-numbered light masses (solid

curves) and odd-numbered heavy masses (dotted curves). Note that the light-mass velocity profiles

are similar to the ones shown in Fig. 3, with the number of local maxima increasing as εk becomes

smaller. Observe also that the velocity of the solitary wave at ε = εk increases with k and approaches

the speed 2c0 = sinh(κ)
√
2/κ of the ε = 0 chain of only heavy masses described by (9).

Homoclinic orbits for light (solid curves) and heavy (dotted curves) masses corresponding to the

solutions at ε = ε8 and ε = ε4 are shown in Fig. 7. One can see that the orbits corresponding to

the light masses exhibit oscillations and, at larger εk, small loops.

The values of εk change slightly as κ is varied, and their dependence on κ is non-monotone, as

can be seen in Fig. 8 where the velocity profiles at ε2 for different κ are shown. Note that while ε2

depends only only weakly on κ, the solitary wave profiles change significantly as κ is varied. Their

amplitude and the amplitude of oscillations of the light mass grow with κ, as does the propagation

speed.

VII. CLOSING REMARKS

In this work we have focused on the mechanism of formation of the isolated localized wave struc-

tures existing in the diatomic FPU model of the general type. We demonstrated numerically that

there is a sequence of special mass ratios at which the diatomic Toda lattice supports formation of

genuine solitary waves. Further, the asymptotic analysis based on the singular multiscale expan-

sion effectively reduces the complex structure of the diatomic FPU chain to the externally driven
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FIG. 5. Velocity profiles q̇n(t) at four smaller special values of ε for light (solid curves) and heavy (dotted curves)

masses at n = 199, 200, 201 and n = 209, 210, 211: (a) ε8 = 0.0154320; (b) ε7 = 0.0201695; (c) ε6 = 0.0275323; (d)

ε5 = 0.0402105. Initial conditions were determined from (19), (20) with κ = arcsinh(2
√
5).

linear oscillator with time-varying frequency. Using the derived reduced-order approximation, we

formulated the anti-resonance Fredholm orthogonality condition on the mass ratio supporting the

formation of solitary waves in the general class of the diatomic FPU models and conjectured the

existence of a countable infinite sequence of such ratios. To illustrate this result, we considered

the diatomic Toda lattice in the limit of high mass mismatch. We showed that in this case the

derived asymptotic equations have exact solutions, reducing the Fredholm orthogonality condition

to orthogonality of two explicitly known functions. This is in contrast to the previously considered

case of granular crystals [24], where the authors had to use the WKB approximation of the fast

dynamics and an exponential Padé approximation [51] of the slow heavy-mass wave in order to

obtain the results. Meanwhile, in the diatomic Toda setting, the problem involves explicit solutions

of the Schrödinger equation with Pöshl-Teller type potential and the exact solitary wave solutions

of the monatomic Toda lattice. Using asymptotic behavior of the former, we obtained a simplified

condition that works extremely well for large enough values of κ and ε and has a nice physical in-
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FIG. 6. Velocity profiles q̇n(t) at three larger special values of ε for light (solid curves) and heavy (dotted curves)

masses at n = 199, 200, 201 and n = 209, 210, 211: (a) ε4 = 0.0633882; (b) ε3 = 0.116993; (c) ε2 = 0.319089. Initial

conditions were determined from (19), (20) with κ = arcsinh(2
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FIG. 7. Homoclinic orbits for light (solid curves) and heavy (dotted curves) masses corresponding to the solutions

shown in Fig. 5 and Fig. 6 at (a) ε = ε8 = 0.0154320 and (b) ε = ε4 = 0.0633882. Here rn = qn+2− qn is the relative

displacement between the neighboring heavy (odd n) or light (even n) masses, and ṙn is the relative velocity. The

smaller plot on the right in (b) shows the enlarged view of the region inside the rectangle in the larger plot in (b),

with the arrows indicating the direction of increasing time.



19

150 155 160 165 170 175
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

46 48 50 52 54 56 58
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

35 36 37 38 39 40 41 42 43 44

0

2

4

6

8

10

t 25 26 27 28 29 30 31

0

5

10

15

n=199

n=201

n=209

n=211

n=200 n=210

n=199

n=201

n=209

n=211

n=200 n=210

n=199
n=201

n=209

n=211

n=200 n=210

n=349 351

359

n=361

n=350 n=360

t

qn
.

t

t

qn
.

qn
.

qn
.

(a) (b)

(c) (d)

FIG. 8. Velocity profiles q̇n(t) at ε2 computed for different values of κ for light (solid curves) and heavy (dotted

curves) masses: (a) ε2 = 0.314544, κ = 1.10164; (b) ε2 = 0.319694, κ = 1.65246; (c) ε2 = 0.319089, κ = 2.20329; (d)

ε2 = 0.313788, κ = 2.75411. Initial conditions were determined from (19), (20) with the corresponding κ.

terpretation. The obtained analytical predictions of the discrete set of values of the anti-resonance

mass ratios are in an excellent agreement with the values obtained from the numerical simulations

of the full diatomic Toda lattice at small enough ε.

Existence of isolated solitary wave solutions in a diatomic FPU lattice implies that one can tune

the mass ratio to be close to one of the anti-resonance values and ensure that an impact-initiated

wave transfers energy through the chain with minimal loss. One can also tune the mass ratio to

a near-resonance value for maximal energy loss that could be used for impact mitigation [52]. For

strongly nonlinear granular chains, the existence of such resonance and anti-resonance values of

mass ratios was recently experimentally verified in [53]. More generally, the existence result can

be extended to plane solitary waves in two-dimensional diatomic lattices when the problem can

be reduced to an effective one-dimensional FPU chain that has isolated solitary wave solutions.

For two-dimensional diatomic granular crystals under planar impact, existence of a discrete set of

mass ratios in the high mismatch asymptotic limit was recently shown in [54] by extending the
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results in [24]. Another natural extension of this work is to consider dimer lattices with each pair

of heavy masses separating N ≥ 2 light ones. Granular chains of this type were studied in [42],

where the asymptotic analysis suggests existence of a countable infinity of isolated solitary waves

in the case N = 2, while for N > 2 the authors claim non-existence of such solutions. It would be

interesting to check if the same assertions hold for the dimer as well as the trimer Toda lattices.

Another important problem to be considered in the future is the analysis of the similar isolated

wave structures in the diatomic and triatomic FPU models incorporating long range interactions.

In this work we were able to take full advantage of the integrability of the monatomic Toda

lattice to obtain an explicit orthogonality condition in the non-integrable diatomic case. In the

general FPU case, the Fredholm orthogonality condition (18) requires the knowledge of f0(t) and

Y2(t), which are not typically explicitly available. Using a good approximation of the slow-time

solitary pulse that yields f0(t) and applying the WKB approach to find Y2(t) may prove sufficient

in such cases, as demonstrated in [24]. Nevertheless, proving the existence of a countable infinity of

isolated solitary waves in a diatomic FPU lattice, conjectured in this work in the small-ε asymptotic

limit under fairly general assumptions, remains an open problem. Even in the diatomic Toda case,

the complex nature of the function (30) prevented us from showing that it has infinitely many roots,

although we have plenty of numerical evidence supporting this claim. An even more challenging

question is showing this result beyond the asymptotic approximation, which would definitively

establish existence of such waves even at mass ratios that are not very small, when separation of

time scales no longer takes place.
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Appendix A: Evaluation of g for integer ν

Let N ≥ 2 be an integer and let

ǫN =
4

N(N + 1)
, µN =

√

N(N + 1)

sinh(κ)
. (A1)
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Note that ε = ǫN corresponds to ν = N and ω/α = µN in (24). Then H(η; ǫN ) defined in (29) is

an odd function of η satisfying

d2H

dη2
+

(

µ2N +N(N + 1)sech2(η)
)

H = 0. (A2)

and

H(0; ǫN ) = 1. (A3)

Equation (A2) has a non-odd solution in the form [49]

ΨN (η) =
eiµN η

(1 + e−2η)N

N
∑

m=0

CN
m

(

N

m

)

e−2mη , (A4)

with

CN
m =

m
∏

j=1

iµN +N + 1− j

iµN − j
, m ≥ 1

and CN
0 = 1. One can show that Ψ′

N (0) 6= 0. Note that since sech2(η) is even, ΨN (−η) is also a

solution of (A2). The odd solution of (A2) satisfying (A3) is then given by

H(η; ǫN ) =
1

2Ψ′

N (0)
[ΨN (η)−ΨN (−η)] .

Using this and (30), we obtain

g(ǫN ) =
2
√
2 cosh(κ) sinh2(κ)

Ψ′

N (0)

∫

∞

−∞

Λ(η)ΨN (η)dη. (A5)

The integral in (A5) can be evaluated using contour integration in the complex plane C. Observe

that at κ > 0 the well known properties of complex exponentials imply that

(a) Λ(η + iπ) = Λ(η) for all η ∈ C.

(b) The singularities of Λ(η) are located at η = η±1 + inπ, where n ∈ Z and η±1 = ±κ + iπ
2 . All

such singularities are poles of order 2.

(c) Λ(η) has simple zeros at η = η0 + inπ, where n ∈ Z and η0 =
iπ
2 .

(d) ΨN (η + iπ) = e−µNπΨN(η + iπ) for all η ∈ C.

(e) The singularities of ΨN (η) are are located at η = η0 + inπ, where n ∈ Z. All such singularities

are poles of order N .
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Thus we see that the integrand Λ(η)ΨN (τ) in (A5) has a pole of order N − 1 at η = η0 defined in

(c) and poles of order 2 at η±1 defined in (b). Moreover, one can show that there exists a constant

ρ > 0 such that

|Λ(±R+ iγ)ΨN (±R+ iγ)| ≤ ρe−ρR (A6)

when R > 2κ and γ ∈ [0, π].

Now let R > 2κ. By the residue theorem,

∫

CR

Λ(η)ΨN (η)dη = 2πi

1
∑

j=−1

Res(ΛΨN , ηj),

where CR is the closed positively oriented rectangular curve in C with bottom side given by the

interval [−R,R] along the real line, right and left sides given by τ = ±R+iγ, γ ∈ [0, π] and top side

given by the horizontal line segment from −R+iπ to R+iπ. In the limit R→ ∞, the estimate (A6)

implies that the integrals over the left and right sides of CR vanish. The relation (d) implies that

the integral over the top side is −e−µNπ times the integral over the bottom side of the rectangle.

Finally, as R→ ∞, the integral on the bottom side converges to the desired integral in (A5). Thus

we obtain

∫

∞

−∞

Λ(η)ΨN (η)dη = (1− e−µNπ)−12πi

1
∑

j=−1

Res(ΛΨN , ηj).

Together with (A5), this yields the following explicit expression for g(ǫN ):

g(ǫN ) =
4
√
2πi cosh(κ) sinh2(κ)

(1− e−µNπ)Ψ′

N (0)

1
∑

j=−1

Res(ΛΨN , ηj). (A7)
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