aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Predicting the outcome of the growth of binary solids far
from equilibrium
Ranjan V. Mannige and Stephen Whitelam
Phys. Rev. E 93, 042136 — Published 27 April 2016
DOI: 10.1103/PhysRevE.93.042136


http://dx.doi.org/10.1103/PhysRevE.93.042136
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The growth of multicomponent structures in simulations and experiments often results in kinet-
ically trapped, nonequilibrium objects. In such cases we have no general theoretical framework
for predicting the outcome of the growth process. Here we use computer simulations to study the
growth of two-component structures within a simple lattice model. We show that kinetic trapping
happens for many choices of growth rate and inter-component interaction energies, and that qual-
itatively distinct kinds of kinetic trapping are found in different regions of parameter space. In a
region in which the low-energy structure is an ‘antiferromagnet’ or ‘checkerboard’, we show that
the grown nonequilibrium structure displays a component-type stoichiometry that is different to the
equilibrium one but is insensitive to growth rate and solution conditions. This robust nonequilib-
rium stoichiometry can be predicted via a mapping to the jammed random tiling of dimers studied
by Flory, a finding that suggests a way of making defined nonequilibrium structures in experiment.

I. INTRODUCTION

Molecular self-assembly is the spontaneous organiza-
tion of components, which move around under e.g. Brow-
nian motion but are otherwise left undisturbed, into
ordered structures. Self-assembly holds considerable
promise for materials science [1-4]. The goal of molec-
ular self-assembly in the laboratory is often to make an
equilibrium structure, and the laws of statistical mechan-
ics indeed dictate that components undergoing Brownian
motion will eventually build themselves into the struc-
ture of least free energy. In practical terms, however,
slow dynamical processes can prevent equilibration from
happening on the timescale available to the process in
question [5]. In such circumstances the processes of nu-
cleation and growth lead instead to the formation of ki-
netically trapped, nonequilibrium structures. Multicom-
ponent systems, i.e. systems composed of more than
one type of component, are particularly susceptible to
kinetic trapping because the slow rearrangement of com-
ponent types within a solid structure can prevent them
from achieving their equilibrium arrangement as the solid
structure grows. Frequently, the outcome of the nucle-
ation and growth of multiple component types is an or-
dered crystal structure within which component types
are arranged in a nonequilibrium way [6-10]. Such struc-
tures have potentially useful properties. However, pre-
dicting their component-type arrangements is not possi-
ble in general, because we cannot predict the outcome of
self-assembly when that outcome is not the equilibrium
structure.

Here we use simulation and analytic theory to study
the component-type arrangements formed during the
growth of two-component structures within a simple lat-
tice model. In accord with several experimental re-
sults, growth results in the formation of nonequilibrium
structures for a large range of growth rates and inter-
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component interaction energies. In some regions of pa-
rameter space the properties of nonequilibrium struc-
tures vary continuously with growth rate, while in other
regimes of parameter space these properties are insensi-
tive to growth rate. This qualitative behavior is similar to
that seen in spinodal decomposition in the Ising antifer-
romagnet [11]. In a region of parameter space in which
the low-energy structure is a binary ‘checkerboard’ we
show that the grown nonequilibrium structure displays a
component-type stoichiometry that is insensitive both to
growth rate and to the abundance of component types in
solution. We show that this robust nonequilibrium stoi-
chiometry can be predicted via a mapping to the jammed
random tiling of dimers studied by Flory. These findings
suggest a route to the rational design of defined nonequi-
librium structures in experiment.

II. MODEL AND SIMULATION METHODS

Kinetic trapping of component types within growing
multicomponent structures has a simple physical origin
— the slow dynamics of particles within a solid — and
so can be reproduced by simple physical models that
account for this slow dynamics [6-9]. Here we con-
sider a lattice model of growth similar to the models
used in Refs. [10, 12, 13]. Lattice models have been
widely used to study fundamental processes like nucle-
ation and spinodal decomposition [14-17] and irreversible
growth [18, 19]. We focus on growth in a 2D system, but
we will also present results for higher dimensions. As
sketched in Fig. 1a (also see Fig. S1[20]), lattice sites can
be unoccupied (white) or occupied by a particle of one of
two types (red or blue). Red and blue particles (or com-
ponents) experience color-dependent nearest-neighbor in-
teractions (see Appendix A) of energy €.y, €pr, and epp,
in units of kT (which we shall set equal to unity). On
a fully-occupied lattice (one without white sites), and in
the absence of a chemical potential difference between
red and blue states these interactions are equivalent to
the Ising model with magnetic field h = (&, — epp)/4
and coupling constant J = €y, /2 — (& + €pp)/4 [13, 21].
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In Fig. 1 we use J and h to indicate in an approximate
fashion the regimes of phase space considered in recent
simulations and experiments.

In the present paper the white, blue, and red sites also
receive energetic penalties p, —In f§ and —In(1 — f5),
respectively. Here p sets the thermal weights of colored
and white sites in notional ‘solution’ (i.e. in the absence
of energetic interactions), and f§ is the notional solution
fraction of colored blocks that are blue. The thermo-
dynamic parameter p can also be used to influence the
rate of growth of a colored structure if one starts from
a ‘white’ simulation box. We evolved this model using
a grand-canonical Monte Carlo procedure that respects
detailed balance, and that resolves the stochastic bind-
ing and unbinding of red and blue components. Unbind-
ing dynamics is naturally slow when components possess
many colored neighbors; we also imposed a kinetic con-
straint that prevents any change of state of a lattice site
that possesses only colored neighbors. This constraint,
which preserves detailed balance, is intended to model
the fact that relaxation dynamics within solid structures
is slow. In what follows we shall describe growth simula-
tions done in the presence and absence of the kinetic con-
straint. The latter type of simulation represents a conve-
nient way to assess the outcome of growth on timescales
longer than we could otherwise access. The dynamics
of internal relaxation in the presence and absence of the
kinetic constraint is different (see Appendix A) — it is
much faster in the absence of the constraint — but in some
regimes of parameter space the two protocols lead to sim-
ilar kinetically trapped structures (Fig. S2). At infinite
times, i.e. in equilibrium, the two protocols must produce
the same structure, because they satisfy detailed balance
with respect to the same energy function. In most sim-
ulations described below we used a 2D square lattice of
40 x 400 lattice sites whose long edges were periodic and
whose short edges were not. We began simulations in
the presence of a ‘seed’ at the left-hand short edge of the
simulation box, with the rest of the box left white, so
that we could study growth without waiting for nucle-
ation to happen. By varying u we could change the rate
of growth of the colored assembly. In what follows we
refer to ‘growth’ simulations in which the simulation was
stopped after 90% of the box become occupied by col-
ored components, and ‘maturation’ simulations in which
structures grown in this manner were allowed to evolve
for an additional 103 — 10° Monte Carlo cycles.

Note that in thermodynamic terms this lattice model
is equivalent to the Blume-Emery-Griffiths model and is
similar to the three-state Potts model (see e.g. [22, 23]).
However, it is perhaps more useful to think of the present
model as a ‘growing version’ of the Ising model. For one,
we operate in a thermodynamic regime in which white
states are strongly disfavored, and so equilibrium lat-
tices are effectively fully occupied (i.e. all sites are red
or blue). The thermodynamics of the model is then to a
good approximation simply that of the Ising model. For
another, the behavior on which we focus is dynamic in
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Figure 1. (Color online) (a) Schematic of the lattice model
and Monte Carlo protocol we use in this paper to study
growth. (b) Distinct kinds of kinetic trapping can be found
for different combinations of red-blue interaction energies (see
definitions of J and h in the text). In this paper we focus
on the region of phase space to the left of the dotted line,
where the low-energy structure is a red-blue checkerboard
(‘red’ components are shown pink in images so that figures
are clear when rendered in black and white). We also com-
ment on growth at points M [13], A [8], and ¢ [10], considered
in previous studies.

nature, and results from the particular dynamic protocol
we use, which is intended to model growth of structures
from solution. In particular, this protocol does not allow
the interconversion of red and blue sites (which would
correspond physically to a change of conformation of a
component); if we do allow such interconversion, then
relaxation to equilibrium is rapid, and the kinetically
trapped states described in this paper do not arise.

IIT. GROWTH SIMULATIONS

Growth carried out using different choices of the inter-
component energetic parameters J and h [24], shown in
Fig. 1b, is similar in the following respects (see Fig. 2).
At vanishing rates of growth a structure resembling the
equilibrium one is generated; at large rates of growth a
‘solid solution’ is obtained, i.e. red and blue components
are arranged randomly on the lattice in proportion to
their solution proportions; and at intermediate rates of
growth one obtains nonequilibrium structures that dif-
fer from both of these limiting cases. These nontrivial
nonequilibrium structures can be different in different pa-
rameter regimes. For instance, using the ‘ferromagnetic’
energy scale hierarchy shown by the symbol ¢ on Fig. 1b,
nonequilibrium structures include ‘critical” arrangements
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Figure 2. (Color online) The outcome of (a) growth and (b) growth-and-maturation simulations for symmetric (top panel:
ebr < 0 = & = €bp) and asymmetric (bottom panel: en,y < 0 = € < €pb) interaction energy hierarchies reveals the existence
of ‘mature’ nonequilibrium structures whose stoichiometry is insensitive to growth rate (b, top panel) and growth rate and
solution stoichiometry (b, bottom panel). Here fi, is the fraction of colored components in the grown structures that are blue,
and p is a chemical potential: the larger is p, the more rapid is the rate of growth. Growth simulations were done using three
distinct solution fractions of blue components, f; = 0.2, 0.5, and 0.8 [red (lightly-shaded), black (solid), and blue (unfilled)
circles, respectively]. Panels (c¢) and (d) show that near-equilibrium and far-from-equilibrium regimes are separated by a regime
of large fluctuations of color and energy (measured using 10° independent simulations at each value of p).

in which red and blue component domains of a broad
size distribution are present [10] (this behavior may be
related to that seen in certain irreversible cellular au-
tomata [18, 19]). At the parameter combination labeled
A, nonequilibrium structures consist of large domains of
the blue component within which a small red impurity
fraction is found (see Fig. S3). This impurity fraction is
only weakly sensitive to growth rate over some range of
growth rates, a result that reproduces the qualitative out-
come of growth in experiments and off-lattice simulations
done by other authors [8]. The reproduction of these re-
sults by the present model suggests that it captures key
physical aspects of real growth processes. Finally, at the
parameter combination labeled B on Fig. 1b, growth re-
sults in a nonequilibrium component-type stoichiometry
identical (on an nbo lattice) to that seen in a certain
metal-organic framework; this stoichiometry is insensi-
tive to growth rate and component solution stoichiome-
try over some range of those parameters [13]. As we shall
show, robust nonequilibrium stoichiometry is also seen in
other parameter regimes left of the dotted line in Fig. 1.
Here we aim to provide a partial physical understanding
of this behavior.

We start by showing in Fig. 2 the outcome of growth
simulations done in the aforementioned regime of pa-
rameter space, where the red-blue energetic interaction
is lower in energy than both of the like-color interac-
tions. Here the low-energy structure, and the thermo-
dynamically stable structure for the parameter values
we shall consider, is an alternating red-blue ‘antiferro-

magnet’ or ‘checkerboard’. In the top panel of Fig. 2
we show results for the parameter combination h = 0
(meaning that red-red and blue-blue interactions are of
equal strength), while in the bottom panel we consider
an asymmetric energy hierarchy for which h #£ 0. At low
rates of growth, in both cases, the structure generated dy-
namically, upon 95% filling of the simulation box (panel
(a)), is close in nature to the equilibrium structure, and
so possesses a blue fraction (fraction of colored compo-
nents that are blue) fi, = 1/2. For large rates of growth
the structures obtained are kinetically trapped arrange-
ments of components whose blue fraction is related to
that of the notional solution (we considered three differ-
ent solution stochiometries, shown as black, red, and blue
lines). At intermediate rates of growth the blue fraction
of the grown structure interpolates smoothly between
these limiting cases. Configuration snapshots are shown
in Fig. S4. However, when allowed to further evolve or
‘mature’ for 10* Monte Carlo sweeps (panel (b)) (in the
absence of the kinetic constraint so as to effectively al-
low access to longer timescales), structures generated at
intermediate growth rates did not evolve to equilibrium,
but instead became kinetically trapped in configurations
whose blue fractions display plateaux as a function of
growth rate. That is, the stoichiometry of those nonequi-
librium structure is insensitive to growth rate. Further-
more, in the case of the asymmetric energetic hierarchy
(bottom panel) this stoichiometry was also insensitive to
solution stoichiometry. Near-equilibrium and far-from-
equilibrium regimes are separated by a regime of large
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Figure 3. (Color online) Fast growth followed by maturation
results in ‘magic number’ structures. (a) The blue fraction
fov for freshly-grown structures varies smoothly with growth
rate between equilibrium and far-from-equilibrium limits. If
allowed to evolve further, structures grown at a range of rates
evolve to nonequilibrium structures that possess the same
‘magic number’ stoichiometry. (b) and (c) show ‘grown’ and
‘mature’ structures corresponding to the points indicated on
the top panel. See also Figs. S4, S5 and S6 (artificially disal-
lowing additional nucleation at high u also resulted in a simi-
lar magic number plateau; Fig. S7). Maturation was stopped
at 10* Monte Carlo cycles in (a); stopping the simulations be-
tween 10% and 10° cycles yield similar plateaux (d; Fig. S8).

fluctuations of color and energy (panels (c) and (d)), sug-
gesting the existence of a nonequilibrium phase transition
similar to that seen in the ‘ferromagnetic’ regime of pa-
rameter space [10].

Structures generated dynamically in the presence of
certain energetic interactions therefore display a stoi-
chiometry that is different to the 1:1 equilibrium one,
but that is robust with respect to changes of growth rate
and solution stoichiometry over a considerable range of
those parameters. We call these robust nonequilibrium
stochiometries ‘magic numbers’. The existence of magic

numbers has potential application for materials science,
because it suggests that one can grow two-component
solids, out of equilibrium, in a predictable manner. Magic
number materials may have already been synthesized.
One particular two-component metal-organic framework
(MOF), called MOF-2000, displays a stoichiometry that
is robust to solution stoichiometry over a considerable
range [13]. The numerical value of this stoichiometry
can be reproduced by the growth of magic-number struc-
tures using the present model on a 3D framework whose
topology is appropriate to the crystal structure of MOF-
2000 [13].

In physical terms, nonequilibrium structures emerge
because microscopic contacts that are not the equilib-
rium or ‘native’ red-blue one (such as red-red contacts)
can appear stochastically during growth and can become
trapped by the arrival of additional material. In some
regions of parameter space the properties of the result-
ing kinetically trapped structures vary continuously with
growth rate and solution stoichiometry; in the magic
number regime they do not. As shown in Fig. 3, magic
number configurations, reached upon ‘maturation’ of a
structure after its initial growth, are long-lived: evolu-
tion to the equilibrium checkerboard structure does not
happen on the timescale of simulation (Fig. 3d; Fig. S8).
Magic number structures can also be generated by zero-
temperature, single-spin-flip Monte Carlo sampling of
fully-occupied lattices; that is, magic number structures
are also inherent structures of the lattice Hamiltonian.
These inherent structures are accessible from a wide
range of initial conditions (they have a large basin of
attraction), and the numerical values of the associated
magic numbers are dependent upon lattice connectivity
and dimensionality (Fig. S9).

IV. MAPPING TO JAMMED DIMER SYSTEMS

The interaction energies used to obtain the magic num-
bers seen in Fig. 2 satisfy the hierarchy ey, < €, < €pp.
In words, the blue-red contact is the ‘native’ or equilib-
rium one; red-red contacts are higher in energy but can
occur during growth; and blue-blue contacts are so un-
favorable that they cannot form at reasonable rates of
growth. In one dimension this energetic hierarchy results
in the growth of red-blue arrangements, such as those
shown in Fig. 4a, that map to a tiling of dimers with
voids. ‘Dimers’ are red-blue pairs, and ‘voids’ are red
particles. The particle-to-dimer mapping produces one of
two equivalent void arrangements, as shown. The long-
time outcome of our growth process then becomes equiv-
alent to that of random sequential absorption (RSA) of
dimers on a one-dimensional lattice. This problem was
studied by Flory [25], who computed the dimer filling
fraction to be 1 — e~2. The mean blue fraction of our
equivalent red-blue structure is then half of this value,
ie. fi = (1 —e 2)/2 ~ 0.432. This value is indeed the
mean value of the stoichiometry of inherent structures of
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Figure 4. (Color online) (a,b) In d = 1 the inherent structures
of the lattice model with no white sites are, for the energetic
hierarchy ep; < 0 = €y < €pb, equivalent to those produced
by random sequential absorption (RSA) of dimers on a lat-
tice. (c,d) This equivalence does not hold in higher dimen-
sions, but there we can nonetheless use the jamming result
to approximate the inherent structure result via the graphi-
cal construction shown (see text). The resulting prediction,
Eq. (1), is in reasonable accord with inherent structure re-
sults for d < 3 (see Fig. 5). Because the long-time outcome
of growth simulations for this energetic hierarchy are inher-
ent structures of the lattice model with no white sites, the
same magic numbers are seen in our growth simulations, i.e.
in Fig. 2b (bottom) and Fig. 3. Thus, the nonequilibrium
stoichiometry resulting from growth can be predicted via a
mapping to a jammed system of dimers.

our lattice model (recall that in this regime of parameter
space the ‘matured’ growth configurations are also inher-
ent structures of the model with no white sites), which we
shown in Fig. 4b. Thus, the nonequilibrium stoichiome-
try resulting from growth can be predicted via a mapping
to a jammed system of dimers.

The equivalence between our growth process and dimer
deposition does not hold in dimensions greater than one.
Nonetheless, we can use the Flory result to estimate nu-
merically the magic number ratio seen in our growth
simulations in 2D and 3D. Consider a periodic hyper-
cubic lattice that possesses N lattice sites or nodes in
each dimension, and so has N¢ nodes in total. Each
node may be occupied by one red or one blue particle.
Let V' be the number of void sites that exist on a con-
nected row of NV nodes in any given dimension, and as-
sume that V/N = e~2 [25]. Assume further that each di-
mension is independent, so that each void site connects
to a continuous chain of void sites that extends inde-
pendently into each of the remaining d — 1 dimensions;

see Fig. 4(c,d). Thus, each void region contains in total
VN1 voids. Summed over all independent dimensions
there therefore exist dV N9~! voids in total, meaning that
the void density is dV/N = de~2. We therefore predict
the nonequilibrium ‘magic number’ stoichiometry of our
red-blue structure, grown in d dimensions, to be

fil=(1—de™?)/2. (1)

The magic number structures seen in the 2D growth pro-
cesses whose results are reported in Fig. 2b (bottom)
and Fig. 3 have a stoichiometry (magic number blue
fraction) of 0.364 £ 0.0035. The estimate of Eq. (1) is
J2 = (1—2e72)/2 ~ 0.365, which agrees closely with our
inherent simulation results (Fig. 5) and with the plateaux
seen in our growth simulations (Fig. 3 and Fig. 2b, bot-
tom). Thus the expression (1) can be used to predict,
approximately, the nature of a kinetically trapped struc-
ture generated in 2D by two-component growth. In 3D
the estimate (1) predicts a magic number blue fraction
of f2 = 0.297; our inherent structure simulations done in
3D display a similar magic number ratio of 0.3 & 0.0026;
see Fig. 5. The predictions of Eq. (1) become increas-
ingly inaccurate as the spatial dimension increases (see
Fig. 5), signaling the breakdown of the approximations
we used to derive the equation. But in dimensions rel-
evant to laboratory self-assembly, for square and cubic
crystal structures, we can predict approximately the sto-
ichiometry that results from two-component kinetic trap-
ping by analogy to a jamming problem.

We have shown that of a lattice model of two-
component growth displays a rich range of phenomenol-
ogy, key aspects of which reproduce behavior seen in ex-
periments [8, 13]. Growth can result in near-equilibrium
structures and far-from-equilibrium structures. In cer-
tain regimes of parameter space the component-type sto-
ichiometry of these nonequilibrium structures is indepen-
dent of growth rate and solution stoichiometry, and the
numerical value of this stoichiometry can be predicted via
a mapping to a jammed tiling of dimers. These obser-
vations suggest that one can grow, far from equilibrium,
defined two-component structures in experiment.

Appendix A: Further details of simulation methods

Our lattice model has energy function

sites

€c(iy-c(j) + Z Ko (i

interactions

by

(2%

E= (A1)

The first sum runs over all distinct nearest-neighbor in-
teractions, and the second sum runs over all sites. C(7)
in Eq. (A1) can be either w (white), b (blue) or r (red),
depending on the color of node #; €c(;)—c(;) is the interac-
tion energy between colors C(i) and C(j); and the chem-
ical potential pc(;) is p, —In(f) and —In(1 — f3) for w,
b and r, respectively. In the absence of pairwise energetic
interactions (i.e. in notional ‘solution’), the equilibrium
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Figure 5. (Color online) Our approximate extrapolation of
Flory’s dimer-packing result, Eq. (1) (red line), matches with
reasonable precision the nonequilibrium ‘magic number’ sto-
chiometries seen in inherent structures of the lattice model
in d < 3 dimensions when component interactions satisfy the
hierarchy epy < €+ < €pb. The plateux seen in growth simu-
lations in Fig. 2b (bottom) and Fig. 3 have numerical values
similar to the point at d = 2 here. For dimensions d > 4 the
analytic and numerical results deviate.

likelihood that a given site will be white, blue or red is
respectively {pw,pn,pr} ={e ", fo,1— fo} (1 + e’“)fl.

Monte Carlo simulations were done as follows. We
started with a simulation box that is 400 sites wide
and 40 sites high (400 x 40), with the first six columns
populated with the equilibrium checkerboard structure
(Fig. S10 shows that simulations done using larger sim-
ulation boxes, e.g., those of dimensions 800 x 80 and
1400 x 140, result in nearly identical outcomes). We se-
lected a node at random, and proposed a change of color
of that node. If the chosen node was white, we attempted
to make it colored; if the chosen node was colored, we at-
tempted to make it white. If the chosen node was white,
then we proposed to make it blue with probability fg;
otherwise, we proposed to make it red. No red-blue in-
terchange was allowed, mimicking the idea that unbind-
ing events are required in order to relax configurational
degrees of freedom. To maintain detailed balance with re-
spect to the stated energy function, the acceptance rates
for these moves were as follows (AFE is the energy change
resulting from the proposed move):

r — w:min(l, (1 — f5) exp[-AE));
w — 1 :min(1, (1 — f§) ! exp[-AE]);
b — w: min(1, f; exp[-AE]);

w — b :min(1, (f)~! exp[~AE]).

The notional solution abundances of red and blue are
controlled by the chemical potential term that appears
in Eq. (A1) and therefore in the term AE. Our choice
to insert blue particles with likelihood f does not by
itself result in a thermodynamic bias for one color over
the other (because this bias in proposal rate is countered
by the non-exponential factors in the acceptance rates).
Instead, we bias insertions so that the dynamics of as-
sociation is consistent with the thermodynamics of the
model. For instance, if blue particles are more numerous
in solution than red ones, we consider it to be physi-

cally appropriate to insert blue particles into the simu-
lation box more frequently than red particles. Consider
the limit of large positive p: the ‘solid solution’ that re-
sults as the box fills irreversibly with colored particles
will have a red:blue stoichiometry equal to that of the
notional solution only if blue particles are inserted with
likelihood fg. (As a technical note, the chemical poten-
tial term present in AFE ends up simply canceling the
non-exponential factors in the acceptance rates, but we
have chosen to write acceptance rates as shown in order
to make clear which pieces are imposed by thermody-
namics, and which pieces we have chosen for dynamical
reasons). Note that temperature is not defined explicitly,
but can be considered to be subsumed into the energetic
parameters of the model.

We also imposed a kinetic constraint that prevents any
change of state of a lattice site that possesses only col-
ored neighbors. This constraint, motivated by work done
on kinetically constrained models of glass-forming lig-
uids [26, 27], respects detailed balance. Detailed balance
requires that the rates W of forward and reverse moves
between microstates p and v satisfy

p()W(p—v) =W(v = pw)p(v), (A2)
where p(u) is the thermal weight of microstate p. To
impose a kinetic constraint for any particular forward-
reverse move pair (here any move-pair in which the site
undergoing a change of state has as its nearest neighbors
only colored sites) we scale both rates W in (A2) by Wy <
1; in this case we take Wy = 0. This constraint does
not affect the ergodicity of the system provided that one
wall of the simulation box is open; otherwise, microstates
corresponding to fully-occupied lattices are disconnected
from microstates that possess at least one unoccupied
site. (One could also consider the rule that forbids a
change of state from red <> blue to be a kinetic constraint
applied to a more general spin-flip protocol.)

The kinetic constraint is intended to model the fact
that relaxation dynamics within solid structures is slow.
Relaxation dynamics within solid structures is then me-
diated by white ‘vacancies’, which effectively diffuse
throughout the structure mediating local flips red <«
white <+ blue. The characteristic time for a vacancy to
diffuse a distance L is ~ L%, and therefore this, with L
being the inter-vacancy separation, is the basic timescale
for internal relaxation dynamics in the presence of the ki-
netic constraint. In some simulations we omit the kinetic
constraint in order to assess the outcome of slow internal
evolution on timescales longer than we could otherwise
access. In this case a similar local dynamics (red <> white
+ blue) occurs, but now on a basic timescale that does
not scale with the distance between vacancies. In some
regimes such constraint-free evolution leads rapidly to
equilibrium, while in others it does not. For instance, for
the inter-component interaction energies used to obtain
Fig. S3, grown structures evolve quickly to equilibrium if
the kinetic constraint is not used. The kinetic constraint
is therefore needed in order to capture the physical char-



acter of growth seen in experiments. By contrast, for the
interaction energies used to obtain Fig. 2, grown struc-
tures evolved even in the absence of the kinetic constraint
fail to reach equilibrium, because of the deep kinetic traps
associated with interaction energies large on the scale of
kgT. There we can omit the kinetic constraint in order
to effectively simulate longer, and still obtain nontrivial
results.

The parameter values (epp,€pr,€rr) Obtained from
Refs. [10], [8] and [13] and marked on Fig. 1 are
(—3.5,—2,-3.5), (—4.0,—3.21, —2.8) (also see Table S1),
and (70,—7,0).

Inherent structures in d = {1,...,6} used to make
Fig. 4b and Fig. 5 were obtained using zero-temperature
single-spin-flip moves [13] (also see Fig. S9) starting from
initial conditions in which all ~2000 sites of the periodic

system are randomly colored red or blue, with equal like-
lihood (Fig. S9). This procedure was carried out until
no more spin flips occurred. At least 100 independent
inherent structures were obtained for each datapoint. As
shown in Fig. S9d, the average value of the resulting fi,
is insensitive to system size.
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