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We estimate the critical thresholds of bond and site percolation on nonplanar, effectively two-dimensional

graphs with Chimera-like topology. The building blocks of these graphs are complete and symmetric bipartite

subgraphs of size 2n, referred to as Kn,n graphs. For the numerical simulations we use an efficient union-find

based algorithm and employ a finite-size scaling analysis to obtain the critical properties for both bond and site

percolation. We report the respective percolation thresholds for different sizes of the bipartite subgraph and

verify that the associated universality class is that of standard two-dimensional percolation. For the canonical

Chimera graph used in the D-Wave Inc. quantum annealer (n = 4), we discuss device failure in terms of

network vulnerability, i.e., we determine the critical fraction of qubits and couplers that can be absent due to

random failures prior to losing large-scale connectivity throughout the device.

PACS numbers: 64.60.ah,64.60.F-,07.05.Tp,64.60.an

I. INTRODUCTION

In its most basic variant, the standard percolation model

comprises a very minimalistic model of porous media [1–3].

However, despite its simplicity, percolation can be applied to

problems across disciplines ranging from forest fires to cur-

rent flow in resistor networks, liquid gelation, network con-

nectivity, coffee brewing, simple configurational statistics [4],

transport phenomena in ionic glasses [5], string-bearing mod-

els that also involve a large degree of optimization, describ-

ing, for example, vortices in high Tc superconductivity [6, 7],

to name a few. Although conceptually simple, the configu-

rational statistics of the percolation problem feature a non-

trivial phase transition [8, 9]. To facilitate intuition, consider,

for example, random-bond percolation on a two-dimensional

square lattice where one studies a diluted system in which

only a random fraction p of the edges subsist. The connected

components [10] of the lattice can be seen as clusters that are

then analyzed with respect to their geometric properties. De-

pending on the fraction p of subsisting edges, the geometric

properties of the clusters change: Exceeding a lattice-structure

dependent critical threshold pc, the model transitions from a

disconnected phase with typically small clusters to a phase

where there is a single large cluster that interconnects a finite,

nonzero fraction of the lattice sites, thus achieving large-scale

connectivity. The appearance of this system-spanning cluster

can be described by a second-order phase transition [11].

Because the location of the percolation critical point is sen-

sitive to the topology of the underlying graph, there is gen-

eral interest in understanding these threshold values for rel-

evant model systems [12, 13]. In some cases it is possible

to derive these thresholds exactly by analytical calculations.

For example, in Refs. [14] and [15] a generating function

approach was developed to determine the statistical proper-

ties of random graphs with arbitrary degree distribution (e.g.,

Erdős-Rényi random graph ensembles). Unfortunately, this

FIG. 1: Topological representation of a Chimera graph with N =
128 sites, based on a 4×4 grid of K4,4 subgraphs, which corresponds

to the D-Wave One Rainier quantum annealer introduced in 2011.

is only typically possible for few exceptional cases and so it

is generally necessary to rely on numerical approaches (e.g.,

via Monte Carlo simulations) to calculate the precise percola-

tion thresholds via a finite-size scaling analysis on finite lat-

tices. In this regard, from a point of view of numerical sim-

ulations, significant algorithmic progress has been made by

using bookkeeping concepts based on union-find data struc-

tures [16] that led to highly-efficient algorithms for bond and

site percolation problems [17, 18]. For an extension of the

algorithmic procedure to continuum percolation models, de-

scribing spatially-extended, randomly-oriented and possibly

overlapping objects, see Ref. [19].
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Here, we perform numerical simulations to estimate the

thresholds for both bond and site percolation on nonplanar

effectively two-dimensional lattices, where the elementary

building blocks are given by Kn,n subgraphs, i.e., complete

bipartite subgraphs of size 2×n [10] (see Sec. II below for de-

tails). The particular choice of n = 4 is known as the Chimera

graph [20], which is the native (hardware) topology of the

special-purpose quantum annealing device developed by D-

Wave Systems Inc. [21]. Our motivation to study percolation

on the Chimera graph stems from the possible existence of

fabrication defects or trapped fluxes that might lead to either

malfunctioning qubits (see, for example, Figure 1 in Ref. [22])

or couplers, thus restricting the size of embeddable problems

on the D-Wave chip [23]. From an alternative point of view,

adopted in the context of network robustness and vulnerability

[15, 24], the fraction f < fc = 1 − pc might be interpreted

as the fraction of sites or bonds that might be absent due to

random failures, such as fabrication defects, trapped fluxes

or operational errors, while still maintaining large-scale con-

nectivity throughout the chip. Above fc, however, large-scale

connectivity will be lost, leaving small-sized interconnected

qubit clusters only. This could also affect the functionality

of the chip and become an important issue for particular em-

beddings of problems where a large fraction of (randomly-

chosen) couplers are turned off [25].

There are multiple reasons to compute the percolation

threshold of Chimera-like lattices: First, the native [26]

benchmark problem to study the D-Wave device is an Ising

spin glass [27, 28] on the chimera lattice. Because true optima

need to be computed using classical simulation techniques to

verify that the device can, indeed, find the solutions of the

problems, efficient optimization techniques have to be used

[29, 30]. Often, not only is the minimum of the cost function

needed, but also the ground-state degeneracy. Monte-Carlo-

based methods, such as isoenergetic cluster moves [31] have

proven to be extremely efficient in studying systems with low

ground-state degeneracy, however, to improve the efficiency

of the algorithm, it is imperative to know the site percola-

tion threshold of the underlying lattice. Simple subgraphs

with known ground states, such as one-dimensional graphs

[32, 33] and spanning trees [34], have been investigated on

the D-Wave device. In addition, there have been attempts

to create hard benchmark problems using planted solutions

[35]. While these elegant approaches have the advantage that

the solution to the problem to be optimized is known a pri-

ori, the used construction procedures might lead to diluted

graphs in which only a finite fraction of edges on the lattice

are used. Although the construction procedure contains corre-

lations and the adding of edges is not purely random, the prob-

lem shares characteristics of random bond percolation and so

disconnected clusters might occur. Finally, next-generation

hardware might likely include a more interconnected topol-

ogy, i.e., larger values of n in the Kn,n building blocks. Un-

derstanding the possible failure rate of these more complex

architectures due to percolation is of great importance in the

design and scalability of future-generation devices.

Here, we numerically study the K4,4-based Chimera lattice

with up to N ≈ 20 000 sites and estimate the site-percolation

threshold by performing a finite-size scaling of the Binder

parameter [36] to be pc ≈ 0.3866(3) (see also the Supple-

mentary Material of Ref. [31]). In addition, we study general

Kn,n-based Chimera-like lattices with n = 2, . . . , 8 and esti-

mate the corresponding bond- and site-percolation thresholds

pc,n, as well as the associated critical exponents that describe

the percolation transition.

The paper is organized as follows. In Sec. II we introduce

Chimera graphs in more detail, followed by details of the sim-

ulations in Sec. III and results in Sec. IV. We summarize and

discuss our findings in Sec. V.

II. THE CHIMERA TOPOLOGY

We consider nonplanar, effectively two-dimensional lattice

graphs G = (V,E), consisting of a vertex set V , containing

N ≡ v(G) vertices, and an edge set E, containing M ≡ e(G)
undirected edges. The elementary building blocks of these

graphs areKn,n subgraphs, i.e., complete bipartite graphs [10,

37] containing 2×n sites. These subgraphs can be partitioned

into two vertex subsets V1 and V2 of size v1 = v2 = n and

have an edge set, consisting of all possible v1 × v2 undirected

edges with one terminal vertex in V1 and one in V2.

To compose the full Chimera graph G with N = 2 × n ×
Lx ×Ly vertices, Kn,n subgraphs are arranged on a Lx ×Ly

grid. For horizontally (vertically) adjacent subgraphs Kn,n

and K ′

n,n, and following an ordering of the vertices in the

respective vertex subsets V1,2 and V ′

1,2, vertices out of V1 (V2)

are joined to their respective mirror-vertex in V ′

1 (V ′

2 ). The

particular choice with n = 4 yields the canonical Chimera

graph. A topological representation of such a Chimera graph

with Lx = Ly = 4 is shown in Fig. 1.

Subsequently, we consider Chimera-like graphs of size

N = 8192 (Lx = Ly = 32) up to N = 294912 (Lx =
Ly = 192) in order to perform a finite-size scaling analy-

sis for different subgraph sizes and to determine the respec-

tive thresholds for bond, as well as site percolation. Note that

there is a difference between the practical (small) graph sizes

to which the D-Wave chip architecture is currently limited to

(see Ref. [21]), as opposed to large systems that, from a point

of view of statistical physics, display a decent finite-size scal-

ing behavior. Given that between 2011 and 2015 the number

of sites increased from N = 128 (Rainier chip, see Fig. 1) to

N = 1152 (Washington chip) on the D-Wave device, we can

expect [38] to see chips of the order of sites studied in this

work by 2019.

III. NUMERICAL DETAILS

For the numerical simulations we use the highly-efficient

algorithm by Newman and Ziff [17, 18] based on a union-find

data structure [16]. In particular, we implemented union-by-

rank and path-compression for the find-part of the bookkeep-

ing procedure.

Within the bond-percolation study, one sweep of the algo-

rithm goes as follows: First, a random permutation of the
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FIG. 2: Instances of bond percolation configurations on a Chimera

graph with N = 128 sites. From left to right: p = 0.2, p = 0.38 ≈

pc, and, p = 0.42. The vertices and edges belonging to the largest

connected component are colored black and the remaining vertices

and subsisting edges are colored gray.

TABLE I: Critical parameters of bond percolation (BP) and site per-

colation (SP) for n = 4 Chimera graphs. From left to right: Critical

percolation threshold pc, critical exponents ν and β (obtained from

a finite-size scaling of the order parameter), as well as γ (obtained

from the order parameter fluctuations and the scaling behavior of the

average size of the finite clusters). For details see the main text.

Type pc ν β γ

BP 0.2943(1) 1.34(2) 0.146(8) 2.42(2)

SP 0.38722(7) 1.34(3) 0.145(5) 2.41(2)

edges in the edge set E of G is obtained by means of a Fisher-

Yates shuffle [16] [having algorithmic complexityO(M) with

M the number of edges]. Initially, each vertex is its own

single-site cluster. Edges from the shuffled edge set are added

one at a time and for each edge it is checked whether its in-

cident vertices belong to different clusters. If this is the case,

the respective clusters are merged using the union-by-rank ap-

proach. Once all edges have been probed, one lattice sweep is

completed. We measure the size of the largest cluster and the

average size of all finite clusters. Because of the previously-

described approach, these can be measured very efficiently

with a resolution of ∆p = 1/M . However, to keep the amount

of raw-data manageable, we consider only approximately 80
values of p in the vicinity of the critical point. Error bars are

computed by averaging over 5 × 104 sweeps for each system

size studied.

Note that while the bond percolation variant of the algo-

rithm only requires an edge list representing E—i.e., the edge

set of the underlying graph—the site percolation variant of the

algorithm relies on an adjacency list of G, i.e., a collection of

lists of neighbors for each node [16].

IV. RESULTS

We illustrate our approach and data analysis in detail us-

ing a finite-size scaling analysis of the canonical K4,4-based

Chimera lattice. However, we have performed the same algo-

rithm for all Kn,n lattices with n = 2, . . . , 8.

A. Bond percolation on n = 4 Chimera graphs

The observables we consider can be rescaled following a

generic scaling assumption, i.e.,

y(p,N) = N−b/2 f [(p− pc)N
1/(2ν)], (1)

where ν and b represent dimensionless critical exponents (or

ratios thereof, see below), pc is the critical threshold, and

f [·] denotes an unknown scaling function [9, 39]. Follow-

ing Eq. (1), data curves of the observable y(p,N) computed

at different values of p and N fall on top of each other, if the

scaling parameters pc, ν, and b are chosen properly. The val-

ues of the scaling parameters that yield the best data collapse

determine the numerical values of the critical point and the

critical exponents that govern the behavior of the underlying

observable y(p,N).
To determine the optimal data collapse for a given set of

data curves we perform a computer-assisted scaling analysis

[40, 41]. Here, the “quality” of the data collapse is measured

by the mean-square distance of the data points to the master

scaling curve S, described by the scaling function, in units

of the standard error of the data points [42]. It is a quan-

titative measure for the quality of a data collapse that is far

superior than the commonly used eyeballing scaling analysis.

It is common practice to limit the analysis to the larger system

sizes, for which corrections to scaling are less pronounced,

and to discard small system sizes that are typically affected

by stronger systematic corrections to scaling [39]. In general,

systematic corrections to scaling result in a scaling behavior

that deviates from that predicted by the scaling assumption,

Eq. (1). Note that such corrections are not taken into account

here. Furthermore, while S can be influenced by potential

corrections to scaling, it might not be interpreted as a measure

for these corrections. Here, if not stated explicitly, the scaling

analysis is limited to the three largest systems simulated.

Example instances of bond percolation configurations in

the subcritical, critical and supercritical regime for Chimera

graphs with N = 128 sites are shown in Fig. 2. The resulting

numerical estimates of the critical percolation thresholds and

corresponding critical exponents for bond and site percolation

are listed in Tab. I.

1. Analysis of the Binder ratio

First we consider the relative size of the largest cluster of

connected vertices smax. The dimensionless ratio, known as

the Binder parameter [43], is defined via

b(p) =
1

2

[

3−
〈s4max(p)〉

〈s2max(p)〉
2

]

. (2)

Here, 〈· · · 〉 represents an average over sweeps. Because the

system-size dependent part of the scaling function in Eq. (1)

cancels out in the Binder ratio, it has a simple scaling form

that follows Eq. (1) with b = 0. When p = pc the argument

of the scaling function f is zero and thus system-size inde-

pendent. This means that data for different system sizes N
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cross at p = pc; see inset to Fig. 3(a). Determining the correct

thermodynamic values of pc and ν results in a data collapse,

as can be seen in the main panel of Fig. 3(a). There are visi-

ble corrections to scaling in the nonpercolating phase, i.e., for

p < pc. To account for this, the scaling analysis is performed

in the interval ǫ ∈ [−0.25, 1.75] on the rescaled p-axis to ac-

centuate the region where b(p) scales well. Consequently, the

best data collapse yields pc = 0.2946(2) and ν = 1.34(2)
with a quality S = 1.10 of the data collapse [44]. Note that

the numerical value of the correlation length exponent ν is in

good agreement with ν = 4/3 ≈ 1.333, the standard value

for percolation in two-dimensional lattices.

2. Analysis of the order parameter

The scaling of the disorder-averaged order parameter

Pmax(p) = 〈smax(p)〉, (3)

is expected to follow Eq. (1) with b = β/ν. Here, β refers to

the percolation strength exponent that governs the growth of

the largest cluster with increasing system size at fixed p = pc.

The best data collapse (obtained in the range ǫ ∈ [−0.5, 0.5])
yields pc = 0.2943(1), ν = 1.37(4), and β = 0.146(8)
with a quality S = 1.10, see Fig. 3(b). If we fix the nu-

merical values of the critical exponents to their exact val-

ues for two-dimensional percolation (ν = 4/3 ≈ 1.333 and

β = 5/36 ≈ 0.139) we are left with only one adjustable pa-

rameter, resulting in the estimate pc = 0.2944(6) with (ex-

pectedly worse) collapse-quality S = 4.5. However, both nu-

merical values are still in good agreement.

3. Analysis of the order parameter fluctuations

A third critical exponent can be estimated from the scaling

of the order parameter fluctuations χ(p), i.e.,

χ(p) = N [〈s2max(p)〉 − 〈smax(p)〉
2]. (4)

The fluctuations χ(p) are expected to scale according to

Eq. (1) allowing one to determine the fluctuation exponent γ
through b = −γ/ν. Here, so as to perform the best possible

data-collapse, the nonsymmetric range ǫ ∈ [−0.3, 1.0] is cho-

sen. This is motivated by the observation that the peaks of the

data curves are located in the super-percolating regime, with

the precise location of the peaks approaching their asymptotic

value from above. Hence the aforementioned asymmetric in-

terval accentuates the region around the peaks, resulting in

the estimates pc = 0.2944(2), ν = 1.33(1), and γ = 2.42(2)
with a quality S = 0.74, see Fig. 3(c) for a scaling collapse.

Note that the numerical value of the fluctuation exponent is in

reasonable agreement with the expected exact value for two-

dimensional percolation, namely γ = 43/18 ≈ 2.389.
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FIG. 3: Finite-size scaling analysis of the relative size smax of the

largest cluster of sites for the bond-percolation problem on Chimera

graphs. The main panels always show the scaled data according to

Eq. (1), whereas the insets display the unscaled data in the vicinity of

the critical point. (a) Binder ratio b(p), (b) disorder-averaged order

parameter Pmax(p), and, (c) fluctuation χ(p) = N × var(smax) of

the order parameter. Note that the insets feature two additional data

curves, illustrating the statistical properties of small Chimera graphs

of current quantum annealing machines with N = 512 N = 1152
qubits/sites.
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B. Site percolation on Chimera graphs

The analysis of the site-percolation problem is analogous

to the analysis performed for bond percolation (Sec. IV A).

Note that, as discussed in Ref. [31], the location of the site-

percolation threshold is pivotal for the efficient and correct

performance of cluster algorithms designed to simulate spin-

glass models in arbitrary space dimensions. In Ref. [31], the

authors simulated Chimera lattices with up to N = 20 000
sites, and estimated the site-percolation threshold from the

finite-size scaling of the Binder parameter, finding pc ≈
0.3866(3) with ν = 1.39(1).

We perform an analysis of the order parameter using sys-

tems of up to N = 294912 = 8 × 1922 sites. By increasing

the system sizes by approximately one order of magnitude in

comparison to the study of Ref. [31] we are able to verify that

the exponent ν is very likely in the two-dimensional percola-

tion universality class. From an analysis of the Binder ratio

we obtain pc = 0.3871(1), which, compared to the estimate

of Ref. [31], turns out to be slightly larger.

Although the associated critical exponent ν = 1.33(2) is in

good agreement with the two-dimensional percolation value,

the data-collapse quality S = 3.73 is rather large, reflecting

that there are deviations from the expected scaling behavior,

similar to the difficulties encountered in the analysis of bond

percolation in Sec. IV A.

To ensure that our analysis of the order parameter and its

fluctuations is as precise as possible, we increased the number

of samples studied to 5 × 105. Our estimates of the criti-

cal parameter for site percolation on the K4,4-based Chimera

lattice are pc = 0.38722(7), ν = 1.34(3), β = 0.145(5)
(ǫ = [−0.20 : 0.20]; S = 1.00). Furthermore, the pa-

rameter estimates obtained from the order parameter fluctu-

ations are pc = 0.3870(2), ν = 1.34(1), γ = 2.41(2)
(ǫ = [−0.70 : 0.70]; S = 2.50). Note that both estimates

of pc are in agreement with each other and in agreement with

the Binder cumulant values estimated above. In both cases,

the critical exponent ν is in agreement with the exact value

of two-dimensional percolation and β and γ are in reason-

able agreement with their exact two-dimensional values (i.e.,

within two standard deviations). Despite the numerical values

of β and γ not matching the known values of 2D percolation

exactly, we believe, based on the other exponents and our gen-

eral expectations on this short-ranged percolation model, that

the transition is actually of the universality class of 2D random

percolation.

C. Percolation thresholds on generalized Chimera graphs

For Kn,n-based generalized Chimera graphs one might in-

tuitively expect that the percolation threshold is a decreasing

function of the average vertex degree and thus of n (however,

note that counterexamples can be constructed [45] on planar

lattices). Here, we perform a finite-size scaling analysis for

the disorder-averaged relative size of the largest cluster, i.e.,

the order parameter [Eq. (3)], to determine the thresholds for

n = 2 through 8 (the standard Chimera graph has n = 4).

Therefore, for each value of n, we consider three system sizes

with up to N = 131044 sites (the precise value of N depends

of the choice of n, of course). Furthermore, we consider 104

different permutations of the edge set or the vertex set for both

bond and site percolation to compute 〈smax(p)〉. As can be

seen in Fig. 4, the thresholds decrease with increasing n and

can be fit well by functions of the form f(n) = a·(n−∆n)−b.

In this regard we find a = O(1), ∆n = O(1) and b ≈ 1
[b ≈ 0.5] for bond [site] percolation. For the bond-percolation

variant one might further rephrase this scaling in terms of the

number of internal Kn,n edges, i.e., m = n2, to also find

a scaling with a characteristic exponent b ≈ 0.5. In either

case, this suggests that in the asymptotic limit, pc → 0 as

n → ∞. The results of the finite-size scaling analysis are

listed in Tab. II, (the results for the canonical Chimera lattice

are again listed for n = 4).

The quality of the data collapse is somewhat sensitive to

the scaling interval ǫ chosen in the course of the analysis.

For example, for the critical point pc,2 for site percolation on

the K2,2 Chimera graph we obtained estimates in the range

pc,2 = 0.5124(1) (ǫ = [−1.00 : 0.75]; S = 1.54) to pc,2 =
0.5129(2) (ǫ = [−0.50 : 0.50]; S = 1.97). Generally, we

expect that a narrower scaling interval ǫ—enclosing the criti-

cal point without extending too far into the off-critical region

where deviations from the scaling behavior are expected—

should lead to a more reliable estimate of pc. For example,

for the given statistics (e.g., 104 samples), restricting the scal-

ing interval further to the range ǫ = [−0.20 : 0.30] results

in pc,2 = 0.51301(15), ν = 1.32(5) and β = 0.145(7)
(S = 1.84). The scaling exponents are also in agreement

with the exact two-dimensional values. Increasing the statis-

tics by a factor of 10 to 105 independent samples effectively

allows us to add one digit of precision, i.e., pc,2 = 0.51294(7)
(ǫ = [−0.30 : 0.30]; S = 0.30), a result that is in good agree-

ment with an independent estimate by R. Ziff [46].

What does this mean for architectures built from Kn,n sub-

graphs? From a point of view of network robustness and vul-

nerability, increasing n leads to a hardware topology that is

less vulnerable to a random failures of qubits. For example,

while the native D-Wave design with n = 4 allows for a ran-

dom failure of approximately 62% of the qubits (70% of the

TABLE II: Percolation thresholds on generalized Chimera graphs

built from Kn,n elementary cells of size n = 2 through 8. From

left to right: Size n of the Kn,n elementary cell (each cell contains

2n sites), critical points pc,n obtained from an analysis of the or-

der parameter for bond percolation (BP) and site percolation (SP),

respectively.

n pc,n (BP) pc,n (SP)

2 0.44778(15) 0.51294(7)

3 0.35502(15) 0.43760(15)

4 0.29427(12) 0.38675(7)

5 0.25159(13) 0.35115(13)

6 0.21942(11) 0.32232(13)

7 0.19475(9) 0.30052(14)

8 0.17496(10) 0.28103(11)
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FIG. 4: Bond and site percolation thresholds for Chimera-like graphs

built from Kn,n subgraphs. The percolation thresholds decrease with

increasing average vertex degree and thus of n, the cell size. The

dashed lines represent fits to functions of the form f(n) = a · (n −

∆n)−b (see text for details).

couplers) without losing large-scale connectivity, this value

rises to about 72% (83% in case of couplers) if the size of the

elementary building blocks is scaled up only by a factor of 2
to n = 8. Therefore, using topologies that have high con-

nectivity or, for example, small-world properties [47] is key

in designing quantum annealing machines robust to random

failures of qubits and couplers.

D. Small-world enhanced Chimera graphs

We now discuss how to improve the stability of Chimera-

like lattices by merely increasing the average degree by one

via the addition of N/2 “small-world” (SW) bonds to the ex-

isting regular Chimera graph. This results in a super-graph

G′ of G, which we refer to as a small-world Chimera graph

(SWCG). Our aim is to determine the location of the site-

percolation threshold for the ensemble of SWCGs and to as-

sess the gain in network robustness. The additional SW bonds

that make up an instance of a SWCG are obtained by the fol-

lowing three-step procedure: (i) generate a list of N integers

that represent the vertices of the (plain) Chimera graph, (ii)

obtain a random permutation of the list, and, (iii) interpret

subsequent pairs of integers as the end-vertices of N/2 addi-

tional bonds that, in turn, are added to the initial graph. In

doing so, the degree of each vertex increases by exactly one

[48]. The resulting percolation thresholds can be expected to

decrease with decreasing average degree, and, consequently,

the ensemble of SWCGs can be expected to be less vulnerable

to random qubit failures. This is in agreement with the con-

tainment principle due to Fisher [4], stating that if G results

from G′ by removing a fraction of its bonds (i.e., G being a

spanning subgraph of G′, see Ref. [10]), then pG
′

c ≤ pGc for

both bond and site percolation.

For the SWCGs, it is anticipated that there is a scaling win-

 0.005

 0.01

 0.02

 0.04

 0.08

5⋅103 2⋅104 8⋅104 32⋅104

(a)

pc
∞ = 0.207(4)

∝  N-0.32(9)

p c(
N

) 
- p

c∞

N

 0.1

 0.2

 0.4

β(N)-β∞

5×103 2×104 8×104 N

β∞=1

∝  N-0.20(1)

 0

 5

 10

 15

 20

 0.18  0.2  0.22  0.24  0.26  0.28  0.3

(b)

χ(
p)

p

N = 4608
8192

18432
32768
73728

131072
294912

 0.21

 0.22

 0.23

pmax

 0 1×105 2×105 3×105

pmax(L) = pmax
∞  + a N-b

pmax
∞  =0.2014(2)

a =0.54(3) 
b =0.341(7)

N

FIG. 5: Finite-size scaling analysis of the relative size smax of the

largest cluster of sites for the site-percolation problem on the small-

world enhanced Chimera graphs (see Sec. IV D). Panel (a): Scaling

of the effective system-size-dependent estimate of pc(N). The inset

shows a scaling of β(N), as discussed in the text. Panel (b): Fit of

5th-order polynomials to the finite-size fluctuations to estimate the

system-size-dependent peak positions pmax(N). The inset shows

the extrapolation to the asymptotic critical point p∞max, as discussed

in the text.

dow around pc that has mean-field exponents. A proof of such

scaling window exists on quasi-random graphs [49]. Figure

5 illustrates a finite-size scaling analysis of the order param-

eter and its associated finite-size susceptibility for the site-

percolation problem on SWCGs. In the vicinity of the critical

point we expect the unscaled order parameter data to scale as

Pmax(p) ∼ |p− pc|
β . (5)

From the data corresponding to different system sizes, we ob-

tain the system-size-dependent effective estimates pc(N) and

β(N). From the effective critical points we extrapolate to the

asymptotic critical point p∞c by fitting the data to

pc = p∞c + aN−b, (6)

with p∞c = 0.207(4), a = 0.5(3), and b = 0.32(9), as shown
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in the main plot of Fig. 5(a). Similarly, the sequence of expo-

nents β(N) is fit well by

β(N) = β∞ + aN−b, (7)

where β∞ = 1.20(16), a = −1.21(7), and b = 0.10(4) if the

fit is restricted to systems of size N > 104. Upon successively

excluding the smaller system sizes from the fit we find that the

value of β∞ approaches the expected mean-field value β = 1
[50]. For example, restricting the analysis to N > 2 × 104

yields β∞ = 1.06(7), a = −1.5(4), and b = 0.16(4), see the

inset of Fig. 5(a). Note that in the figure we fixed β∞ = 1.

An additional estimate of the critical point can be obtained

from the position of the peaks of the finite-size susceptibility

χ(p). We have located the individual peak positions pmax(N)
by fitting a polynomial of 5th order to the unscaled data

curves. This is illustrated in Fig. 5(b), where the main plot

shows the raw data with the respective fits and the inset shows

the scaling behavior of the peak-positions, where a fit to the

function

pmax(N) = p∞max + aN−b (8)

yields p∞max = 0.2014(2), a = 0.54(3), and b = 0.341(7).
The value of p∞max is in reasonable agreement with the above

estimate based on the analysis of the order parameter. Further-

more, the numerical value of the critical point compares well

with an estimate pc = 0.201(1) obtained using a data-collapse

analysis (not shown).

Note that both estimates, p∞c and p∞max are in reasonable

agreement and are located significantly below the threshold

value pc = 0.38675(7) of the standard Chimera graph. Con-

sequently, SWCGs provide a topology that is significantly

less vulnerable to random failures of qubits, i.e., while the

standard Chimera graph exhibits a fragmentation threshold

fc = 1 − pc ≈ 0.62 and thus allows for a random failure

of approximately 62% of the qubits without losing large scale

connectivity, this value increases to fc ≈ 0.80 for the ensem-

ble of SWCGs. Finally, we note that the critical exponents

for percolation on SWCGs assume mean-field values when

O(N) small-world bonds are added, as demonstrated in the

presented study.

Finally, note that Chimera topologies are the archetypal ar-

chitecture used in current quantum annealers. While, from a

point of view of robustness, a fully-connected topology would

be desirable, a hardware implementation seems not possible at

present. To be precise, only a finite number of fabrication lay-

ers for the chips are available. Having a fully-connected graph

would require O(N) layers, which is prohibitive for current

chip designs with ∼ 1000 qubits. Given the flux qubit struc-

ture used in current quantum annealing machines, Kn,n-like

topologies might be used for multiple upcoming generations

of these devices.

V. SUMMARY

We have performed numerical simulations to determine

the bond- and site-percolation thresholds on nonplanar, ef-

fectively two-dimensional lattice graphs, where the elemen-

tary building blocks are complete bipartite subgraphs Kn,n

(n = 2, . . . , 8). The simulations have been performed using

a highly efficient percolation algorithm [17, 18] based on a

union-find data structure [16]. From a finite-size scaling anal-

ysis we have obtained the critical points pc and the three crit-

ical exponents ν, β and γ, thus locating the critical bond- and

site-percolation thresholds and allowing us to verify that the

transition is in the two-dimensional percolation universality

class. In either case, the percolation threshold is a decreasing

function of n and our results suggests that in the asymptotic

limit pc → 0 as n → ∞.

The particular choice of n = 4 is the canonical Chimera

graph, i.e., the hardware topology of the D-Wave quantum

annealing device, developed at D-Wave Systems Inc. [21].

The native (no embedding required) benchmark (optimiza-

tion) problem for the D-Wave device is an Ising spin glass

[27, 51] and recently, much effort was put into the simulation

of Ising spin glasses on the Chimera topology [29, 30, 52].

As discussed in Ref. [31], the location of the site-percolation

threshold is crucial for the efficient and correct performance

of cluster algorithms designed to simulate spin-glass models

on, e.g., the above graph topology.

Finally, referring to the implementation of, e.g., the D-

Wave chip and adopting the point of view of network robust-

ness and vulnerability, the above results suggest that the native

D-Wave design, as analyzed in Secs. IV A and IV B, allows

for a random failure of approximately 62% of the qubits (70%
of the couplers) prior to losing large-scale connectivity on the

chip. Similarly, embedded problems that turn off a sizable

fraction of couplers randomly, might lead to loss of connectiv-

ity. Bear in mind that the above figures are valid in the asymp-

totic limit. In general, for finite-sized graphs of no more than

103 sites, finite-size effects result in effective thresholds that

differ slightly from the asymptotic values quoted in Table II.

To illustrate this, one might, e.g., define effective, system-size

dependent critical points from the peak locations of the finite-

size fluctuations χ (see Sec. IV A 3). In this regard, for bond

[site] percolation on a lattice with N = 512 sites we observe

pχ−max(N = 512) ≈ 0.307 [pχ−max(N = 512) ≈ 0.408],

i.e., shifting towards smaller values as N → ∞. Similarly,

for N = 1152, pχ−max(N = 1152) ≈ 0.304 for bond per-

colation and pχ−max(N = 1152) ≈ 0.403 for site percola-

tion. Finally, for the largest system sizes studied in this work,

pχ−max(N = 131072) ≈ 0.296 for bond percolation and

pχ−max(N = 294912) ≈ 0.389 for site percolation. Al-

though the asymptotic peaks seem to be located slightly above

pc (within the superpercolating regime), this might neverthe-

less lead to expect that the finite-size values of pc for bond and

site percolation for the N = 1152 Chimera graph are within a

5% interval of the asymptotic critical point.

In addition, we have found that by extending the plainK4,4-

based Chimera graph using N/2 small-world bonds—thereby

effectively increasing the average vertex-degree by one—the

respective percolation threshold decreases to pc = 0.207(4).
Thus, small-world-extended Chimera graphs provide a topol-

ogy that allows for a random failure of approximately 80% of

the qubits before the large-scale connectivity of the device is
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lost. As pointed out earlier, using topologies that have higher

connectivity, such as the above extended Chimera graphs,

might be key in designing quantum annealing machines ro-

bust to random failures of qubits and couplers.
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Z. Rácz, Synchronization landscapes in small-world-connected

computer networks, Phys. Rev. E 73, 066115 (2006).

[48] If N is odd, one qubit does not have a small-world bond.

[49] A. Nachmias, Mean-field conditions for percolation on finite

graphs, Geometric and Functional Analysis 19, 1171 (2009).

[50] C. Moore and M. E. J. Newman, Exact solution of site and bond

percolation on small-world networks, Phys. Rev. E 62, 7059

(2000).

[51] A. K. Hartmann and H. Rieger, Optimization Algorithms in

Physics (Wiley-VCH, Berlin, 2001).

[52] M. Weigel, H. G. Katzgraber, J. Machta, F. Hamze, R. S. An-

drist, and Octomore Collaboration, Erratum: Glassy Chimeras

could be blind to quantum speedup: Designing better bench-

marks for quantum annealing machines [Phys. Rev. X 4, 021008

(2014)], Phys. Rev. X 5, 019901 (2015).

[53] W. Vinci, T. Albash, G. Paz-Silva, I. Hen, and D. A. Lidar,

Quantum annealing correction with minor embedding, Phys.

Rev. A 92, 042310 (2015).

[54] Z. Zhu, A. J. Ochoa, F. Hamze, S. Schnabel, and H. G. Katz-

graber, Best-case performance of quantum annealers on native

spin-glass benchmarks: How chaos can affect success proba-

bilities (2015), (arXiv:1505.02278).

[55] A. Perdomo-Ortiz, B. O’Gorman, J. Fluegemann, R. Biswas,

and V. N. Smelyanskiy, Determination and correction of per-

sistent biases in quantum annealers (2015), (arXiv:quant-

phys/1503.05679).

[56] A. Perdomo-Ortiz, J. Fluegemann, R. Biswas, and V. N.

Smelyanskiy, A Performance Estimator for Quantum An-

nealers: Gauge selection and Parameter Setting (2015),

(arXiv:quant-phys/1503.01083).


