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A skewness of the probability for instantaneous current fluctuations, in a nonequilibrium steady
state, is observed experimentally in a dusty plasma for the first time. This skewness is attributed
to the spatial asymmetry, which is imminent to the nonequilibrium systems due to the external
hydrodynamic gradient. Using the modern framework of the Large Deviation theory, we extend the
Onsager-Machlup ansatz for equilibrium fluctuations to systems with a preferred spatial direction,
and provide a novel Modulated Gaussian probability distribution, which is tested by simulations.
This new probability distribution is also of potential interest for other statistical disciplines. Con-
nections with the principles of Statistical Mechanics, due to Boltzmann and Gibbs, are discussed as
well.

Keywords: large deviation; probability distribution; asymmetry; current; nonequilibrium; fluctuation

I. INTRODUCTION

Recently a non-Gaussian structure of fluctuations was
reported for the electric charge density and currents in
quantum and nanoscale systems [1–3]. In particular, the
skew asymmetry of the fluctuations probability distribu-
tion was found not only for the nonequilibrium current
[3], but also for the charge density of an equilibrium sys-
tem in the presence of an external magnetic field. This
discovery contradicts the original theory of fluctuations
due to Onsager and Machlup [4, 5], who predicted a
Gaussian probability distribution of the equilibrium fluc-
tuations.

In this paper we provide the first evidence of the skew
fluctuations for a manifestly macroscopic system in a
Non-Equilibrium Steady State (NESS), using laboratory
experiments. We study a hydrodynamic shear flow of a
2-Dimensional (2D) dusty plasma, a complex noble gas
plasma with massive charged dust particles [6–9]. The
fluctuating quantity will be the instantaneous value of a
current, which persists in the NESS system due to an
externally applied constant gradient. In our study, the
current is the xy-component of the pressure tensor Pxy

or, in other words, the viscous flux of the x-component
of the linear momentum in the y-direction. The momen-
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tum flow is maintained by the shear rate, a transverse
gradient of the streaming velocity.

To illustrate the skewness of a distribution, we sketch
in Fig. 1 three probability densities as functions of a vari-
able J : (a) is symmetric about zero; (b) has the same
shape as (a), but is displaced from the origin without
skewness; (c) is both shifted from the origin and skewed.
We will find that the probability distributions of instanta-
neous current fluctuations in a NESS are not only shifted,
with respect to the equilibrium case, but also skew, as
sketched in Fig. 1(c).

The skewness of a distribution is characterized by the
third probability moment. For a sample of M measure-
ments, the skewness is calculated from

1

Mσ3

M∑
i=1

(Ji − J̄)3, (1)

where Ji, J̄ and σ are, respectively, i-th value of the mea-
surements, the sample mean and its standard deviation.

In the presence of a hydrodynamic gradient, there is
a preferred spatial direction of the flow, which reduces
the space symmetry of the system with respect to that
of its equilibrium state. This leads to a bias of the cur-
rent fluctuations, so that their probability distribution is
skew in the direction of the flux. Hence the fluctuations,
which enhance the flow, are favored over the opposite
ones. While being subtle, this bias remained unnoticed
by earlier theories and experiments, which were mainly
concentrated on the near equilibrium regimes. Nonethe-
less, it becomes quite evident in far from equilibrium sys-
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FIG. 1. Illustration of probability distributions p, as a func-
tion of J , with and without skewness: (a) a Gaussian distri-
bution symmetric about the origin with p(J) = p(−J); (b) a
Gaussian distribution, which is symmetric about J = A with
p(A + J) = p(A − J) and satisfies the Gallavotti-Cohen re-
lation Eq. (2); (c) an asymmetric Skew-normal distribution
[10], which is skew to the left. For the curve c) there is no
constant B, such that p(B + J) = p(B − J) for any J . Its
negative skewness implies that p(A − ∆A) > p(A + ∆A) for
any ∆A > 0.

tems, where both the strength of the macroscopic current
and the skewness fluctuations increase substantially.

As already mentioned, a similar observation was made
not only for a NESS current. In [3] fluctuations of the
charge distribution was found skew for an equilibrium
system, subject to an external magnetic field. There it
was argued that the presence of the magnetic field re-
duces the symmetry of the system and alters statistical
properties of the microscopic stochastic noise. Conse-
quently, the Gaussian noise, considered by Onsager and
Machlup in their dynamical theory of fluctuations, may
not be adequate to describe systems with a preferred spa-
tial direction.

To make a progress, we disregard the issues of fluctu-
ations dynamics, which still needs a substantial revision.
Using a suitable extension of the Onsager-Machlup orig-
inal ansatz, we developed a novel Modulated Gaussian
(MG) distribution to account for the skewness of fluctu-
ations. This new MG distribution is a natural model of
the time-independent probability density for fluctuations
in systems with a preferred spatial direction. A special
case of the MG is the normal distribution, used in [4, 5],
thus the earlier theory of Onsager and Machlup is con-
sistent with ours.

We expect that the MG will describe the fluctuations of
instantaneous currents in a variety of physical systems.
While our theory concludes with the prescription that
the Modulated Gaussian (MG) describes the instanta-
neous fluctuations, its parameters have only a statistical
meaning. Their physical interpretation might not be pos-
sible, until the original stochastic dynamics of Onsager

and Machlup is properly generalized for asymmetric sys-
tems.

Note that the temporal asymmetry, predicted for the
trajectories of the fluctuations in the NESS by the Macro-
scopic Fluctuation Theory (MFT) [11, 12], differs from
the bias of the time-independent probabilities of the
NESS fluctuations, studied here. The MFT uses the time
irreversibility of the NESS, which generalizes the time
reversibility of an equilibrium system in the Onsager-
Machlup theory of fluctuations. This approach, among
other things, predicts various properties for the evolution
of the NESS current fluctuations. Nonetheless, it alone
might not be able to provide a model for their probabil-
ity distribution, analogous to the Gaussian model in the
Onsager-Machlup theory. The MG we proposed fills in
this gap between the present theories of equilibrium and
the NESS fluctuations of currents.

The topic of this paper is also different from fluctu-
ation relations, such as the Galavotti-Cohen fluctuation
theorem [13–18]. These relations deal with a distribution
p(J), which is asymmetric in a way that

p(J)/p(−J) = exp{−κAJ}, (2)

where κ and A are constants.
For example, this relation is satisfied by a Gaussian

(b) centered at A in Fig. 1 (e.g. [19]). In other words,
the Gallavotti-Cohen fluctuation theorem Eq. (2) can be
satisfied by a distribution with zero skewness [20, 21].
The class of such functions p(J) is actually not limited
to the Gaussian family.

The fluctuation relations do not apply to instantaneous
currents, since they describe distributions that have been
averaged over a significant time interval. However, one
can use the MG expression to model the probability den-
sity of these time-averaged currents. In [22, 23], their dis-
tribution was characterized by the cumulants. The time-
averaged currents should, in principle, have the same
kind of skew bias, which implies a non-vanishing third
cumulant. This might lead to a connection between the
MG parameters and the results of MFT. Nontheless, this
idea is not pursued in the present study.

Our laboratory evidence of the skew asymmetry is
supported by our Molecular Dynamics (MD) simula-
tions. These computations were carried out for a 2D
system, which imitates our experiments, with particles
interacting through the Debye-Hückel (DH) potential.
To demonstrate a broader extent of our theory, also 3D
simulations of a fluid were conducted, using the Weeks-
Chandler-Andersen potential (WCA, [24]) [25].

In particular, we consider further a system with N
particles of equal mass m. The current Pxy, caused by
an externally applied shear rate γ, is[26]:

Pxy = L−D
N∑
i=1

(pxipyi
m

+ Fxiyi

)
. (3)

Here LD is the area or volume of the system, depend-
ing on the number of its physical dimensions D; for the
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i-th particle, yi, pxi, pyi, Fxi are, respectively, the y coor-
dinate, the x and y components of the peculiar [27] linear
momentum, and the force acting in the x direction due
to the interactions with all other particles.

Finally the MG distribution, derived in this
manuscript, in principle, could also be relevant for other
disciplines, which use the Large Deviation (LD) theory
[28]. The LD theory studies deviations of an average over
a large number of random variables, from its most likely
value. Our formulation of the MG relies solely on this
approach [28]. Thus we regard the current of interest as
a randomly fluctuating quantity, which satisfies the prin-
ciples of the LD theory. Therefore the MG probability
distribution is not limited to its applications in physics.

II. NON-GAUSSIANITY OF THE CURRENT
FLUCTUATIONS

The experimental results, discussed in this section,
were previously published in [29]. There, we observed
a shear flow, driven by laser manipulations in a mono-
layer of a dusty argon plasma. The motion of dust par-
ticles was confined to a plane and tracked using video
cameras, which allowed us to study properties of this
system at a level of detail, similar to that of MD simu-
lations. Below we provide a further analysis of the data,
acquired earlier in [29]. We computed long time series of
Pxy for three separate regions of the flow with the shear
rate γ = 3.4 s−1 and average particles number 〈N〉 = 58.
This allows to neglect the time correlations in the col-
lected sample of measurements.

The histogram for Pxy in Fig. 2, obtained from our
experiments after subtracting the sample average P̄xy to
emphasize its skew asymmetry, reveals a skewness, which
we attribute to the presence of the applied shear. The
bias of the probability density towards the negative val-
ues is small, which is possibly a reason that it remained
unnoticed so far by experimenters.

To confirm the statistical significance of our experi-
mental result we applied the statistical framework of hy-
pothesis testing [30, 31] as well as the bootstrap tech-
niques [32]. These showed, that the probability of error
in the assessment of skewness was less than 1%.

The MG distribution, which will be derived in Sec. III,
accounts for the skewness (skw{Pxy}) and the excess kur-
tosis (krt{Pxy}) [33] of the sample, with an accuracy up
to the 5th significant digit. It fits the experimental data
better than the Gaussian, with its error δMG

err being three
times smaller than δGerr for the Gaussian, as reported in
Fig. 2 [34].

Our MD simulations show that the asymmetry of
p(Pxy) increases with the magnitude of the shear rate.
In Fig. 3 the observed skewness, indicated by the cross
symbols, becomes progressively negative with increasing
γ [35]. Indeed, comparing panels a) and b) of Fig. 4, one
observes that the Gaussian model is quite inaccurate for
the larger shear rate of γ = 7.681 s−1 due to the notable
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FIG. 2. Histogram for p(Pxy − P̄xy) from our experimental
measurements. The skewness of the distribution can be de-
tected by looking at the peak of the Gaussian fit at the origin,
which is shifted slightly to the left from the maximum of the
probability density. The inequality P̄xy < P̃xy agrees with
the observed negative skewness.

skew asymmetry of the underlying probability distribu-
tion. To neglect the effects of time correlations, we made
long pauses between consecutive measurements of Pxy.
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FIG. 3. Skewness of a time series Pxy(t) as a function of γ for
our 2D DH plasma simulations in SI units. The circles refer
to the skewness computed from Eq. (1), with the error bar
estimated by the bootstrap [32]. The crosses stand for the
skewness of the MG fit.

The MG model agrees very well with the histogram
data of our simulations in Fig. 4. The fitting error δerr
is reduced more than three-fold at a low shear rate of
0.961 s−1 by using the MG instead of Gaussian model,
and it is reduced twelve-fold at a higher shear rate of
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FIG. 4. Histograms for the probability density p(Pxy) from our 2D DH plasma simulations in SI units (N = 60 and N/LD =
4.7mm−2): (a) a low shear rate, (b) a high shear rate. The fitting error of the MG δMG

err is of the same order at the low and
high shear rates, while the fitting error of the Gaussian δGerr notably grows for the larger γ, which indicates the increase of
non-Gaussianity with the shear rate.

7.587 s−1. While, of course, the Gaussian cannot account
for the skewness of the distribution, the MG does it quite
well, as follows from the close agreement between the
skewness observed in Pxy data and the skewness of their
MG fit in Fig. 3.

The skew asymmetry of p(Pxy) is a characteristic prop-
erty of the current fluctuations in a NESS. The skewness
of their probability distribution has the same sign as the
average P̄xy and the most likely value P̃xy, as can be seen
in Fig. 4. When approaching equilibrium conditions, the
bias of p(Pxy) gradually disappears. It vanishes com-
pletely only at the equilibrium point, γ = 0.

The skew asymmetry of the fluctuations appears in
the third order probability moment and, consequently,
is more subtle than the phenomenon of the fluctuations
themselves, which are of the second order. This implies,
that when the size of the system approaches a macro-
scopic limit, while the variance of the current probability
distribution decreases, the skewness decays even faster.
However the asymmetry of the distribution still persists.

III. MODULATED GAUSSIAN DISTRIBUTION

To account for the deviations from the Gaussian struc-
ture of fluctuations, which was suggested in the theory
of Onsager and Machlup, we repeat their initial ansatz,
Eq. (2-11) in [4]. Namely, we are looking for a probability
density function of a fluctuating variable x in the form:

p(x) = exp{S(x)

kB
}, (4)

where kB is Boltzmann’s constant and S is some function
of x.

The theoretical justification of the treatment that fol-
lows below is provided in the context of LD theory and
can be found in the Appendix with other details. Here
we only mention that Onsager and Machlup interpreted

S(x) as the entropy of the macroscopic state x. Since
we are going to extend their idea to NESS, S can not be
connected with the equilibrium entropy. In the modern
framework of the LD theory [28], S(x) is related to the
LD function.

As in [4] we proceed expanding the function S(x) from
Eq. (4) in a power series about the most likely (macro-
scopic) value x̃, which is the global maximum of S(x), up
to a prescribed order n. Denoting Si = diS(x)/dxi|x=x̃,
we obtain:

S(x)

kB
' S(x̃)

kB
+

n∑
i=1

Si

i!kB
(x− x̃)i

def
= − S̃

kB
+

∆S(∆x)

kB
, respectively, (5)

which defines a constant S̃ and a fluctuation cost function
∆S(∆x) of the deviation ∆x = x− x̃.

Since S(x) is expanded in Eq. (5) about its global max-
imum x̃, we have S1 = 0. Due to the symmetry, which
does not favor any direction of fluctuations in equilibrium
systems considered by Onsager and Machlup, it follows
that ∆S(x − x̃) = ∆S(−x + x̃). Hence, using a trivial
substitution y = x − x̃, one can easily find that in such
systems S3 = 0.

Summarizing the above arguments, the approxima-
tion order n = 2 in Eq. (5), as chosen by Onsager and
Machlup [4], is actually accurate up to the 4th order.
Absence of the third order term S3, as it occurs in a
system without a preferred spatial direction, leads to an
approximate Gaussian structure of fluctuations.

Naturally, to account for the skewness we have to use
a higher order of approximation, retaining only the prop-
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erty S1 = 0:

∆S(∆x) =
S2

2
∆x2 +

n∑
i=3

Si

i!
∆xi

=
S2

2
∆x2

{
1 + 2

n∑
i=3

Si

i!S2
∆xi−2

}

=
S2

2
∆x2Σn, (6)

where we call the expression between the curly braces
a modulating factor Σn, to which the MG distribution
owes its name.

Then Eq. (4), together with Eqs. (5 and 6), give:

p(x) = exp{− S̃

kB
+

∆S(∆x)

kB
}

= exp{− S̃

kB
+
S2Σn

2kB
∆x2}, (7)

where the normalization of the total probability requires
that

exp{ S̃
kB
} '

∫ ∞
−∞

dx exp{∆S(x− x̃)

kB
}.

For p(x) to be integrable in Eq. (7), n has to be re-
stricted to even integers. When n = 2, i.e. Σn ≡ 1,
Eq. (7) turns into a Gaussian distribution. Taking the
next admissible order of approximation n = 4, we replace
the three parameters Si (i = 2, 3, 4) in Σ4 by another set
of three parameters: scale Π > 0, asymmetry A and
non-Gaussianity B ≥ 0, respectively. These parameters
acquire a clear statistical interpretation, when used in
Eq. (7):

p(x) ∝ exp{∆S(x)

kB
} = exp

{
−∆x2

2Π2

[
1− 2

√
2/3AB

∆x

Π
+B2 ∆x2

Π2

]}
. (8)

Equation (8) is the Modulated Gaussian distribution.
The dimensionless constant B controls the level of non-
Gaussianity [36]. Furthermore, A causes the asymme-
try of p(Pxy), which is skew to the left (right), when

A < 0 (A > 0), respectively. The coefficient 2
√

2/3 of
the term with A in Eq. (8) was chosen to make ∆S(x)
a non-concave function of x for −1 ≤ A ≤ 1 [37]. Vio-
lation of the non-concavity condition would admit more
sophisticated shapes of the probability density because of
additional critical points [38]. Unless there is a physical
argument for these special points, when fitting a statis-
tical sample, numerical artifacts may emerge due to the
approximate nature of Eq. (8). To avoid this, the de-
sired MG expression should be restricted to non-concave
solutions.

The superior accuracy of MG over the Gaussian ap-
proximation was already demonstrated in Sec. II. The
above theoretical arguments, though, miss a proper gen-
eralization of the stochastic dynamics suggested by On-
sager and Machlup, which would lead to the skew time-
independent probability distribution of fluctuations.

IV. CONCLUSION

Our experiments and numerical simulations demon-
strate the skewness of the probability distribution for in-
stantaneous fluctuations of the viscous shear current in
a NESS. We attribute this property to the asymmetry of

our system in the presence of a preferred spatial direction
of the flow. By the same argument, the skewness of in-
stantaneous current fluctuations, as well as that of their
time averages, should also be expected in similar situa-
tions, e.g. for a heat flux in the presence of a constant
temperature gradient.

The skewness of NESS current fluctuations notably in-
creases for large externally applied forces, as observed
in our study and similar experiments [1–3]. Therefore
a non-Gaussian probability distribution is especially im-
portant to describe fluctuations far from equilibrium or
equilibrium systems subject to a large external potential
fields.

The new MG probability distribution accurately de-
scribes the probability of fluctuations and, in particular,
their skew asymmetry. This model is justified here using
the LD theory. It extends the Onsager-Machlup original
idea, by considering higher order terms in a power series
expansion of the LD function. We verified its accuracy
experimentally and numerically.

The skew asymmetry of the fluctuations probabilities
poses a new constraint on the LD function of the cur-
rent fluctuations. Since this function must manifest this
asymmetry, it should consist not only of a quadratic form,
which leads to the normal distribution, but involve some
asymmetric contributions. This is consistent with partic-
ular results found for some simple mathematical models
of the NESS [39, 40] and prior experimental observations
in quantum and nano scale systems [1–3].
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In Appendix the probability of current fluctuations is
also characterized by their entropy cost in the Boltzmann
approach to Statistical Physics [41]. The entropy cost
was identified as the decrease of the LD function pro-
duced by a fluctuation from the most likely state of the
system. This approach may be further related with that
of a fluctuation free energy cf [31].

A possible direction for future developments is the dy-
namical theory of current fluctuations [21]. A suitable
correction of the Langevin equation, suggested by On-
sager and Machlup for equilibrium fluctuations [4, 5], is
a viable approach to deal with this problem. There are
various modifications of the Langevin equation, which
produce a skew time-independent probability distribu-
tions, e.g. a non-Gaussian noise. Thus a proper dynami-
cal representation, which would account for the preferred
spatial direction and the time irreversibility, addressed in
the MFT approach, remains yet to be found.

The work at the University of Iowa was supported by
NSF and the Department of Energy.

Appendix A: The Modulated Gaussian and the
Large Deviation theory

In this Appendix we provide the theoretical details of
Eq. (4) for x = Pxy. Considering each term of the sum-
mation operator in Eq. (3) as a random variable, we as-
sume that the spatial average Pxy satisfies the LD prin-
ciple. From this assumption it follows (cf. [28]) that:

1. There exists a non-negative rate function, which is
also called the LD function:

I(Pxy)
def
= − lim

N→∞
[S(Pxy)/(NkB)], (A1)

for the exponential decay of the probability density

p(Pxy) ∼ exp[−NI(Pxy)]. (A2)

2. This rate function has a global minimum at the
most likely value of Pxy = P̃xy, which satisfies:

I(P̃xy) = 0. (A3)

Since by definition ∆S(∆Pxy) in Eq. (5) is zero for the

most likely value P̃xy, Eqs. (A1, A3 and 5) suggest:

I(P̃xy) = lim
N→∞

S̃

NkB
= 0

I(Pxy) = − lim
N→∞

∆S(∆Pxy)

NkB
. (A4)

Moreover, invoking Eq. (A2) of the LD principle, for
a finite N we pose that Si ≈ −NdiI(Pxy)/dP i

xy|Pxy=P̃xy
.

Then it follows, that the first derivative S1 vanishes and
that the second derivative S2 is positive [42], because

I(P̃xy) is the global minimum of the rate function by

definition. This allows us to express ∆S(∆Pxy) as done
in Eq. (6).

These developments can be readily connected with Sta-
tistical Mechanics. According to the Boltzmann princi-
ple, given a measure of system’s microstates w(Pxy), for
a given value of Pxy, and the total number of accessi-
ble microstates W =

∫∞
−∞ w(Pxy)dPxy under the spec-

ified macroscopic constraints of temperature, shear rate
etc., the time-independent probability density of a steady
state p(Pxy) and the Boltzmann entropy SB(Pxy) are
given by:

p(Pxy) =
w(Pxy)

W
SB(Pxy) = kB lnw(Pxy). (A5)

Due to the existing controversies on the entropy con-
cept for nonequilibrium systems, we have to note that
the Boltzmann entropy can be always defined for a
steady state using its time-invariant probability density
via Eq. (A5) [41]. In particular, this approach neither
relies on, nor verifies thermodynamic relations for equi-
librium systems or their widely criticized formal expan-
sions. Equations (A5) may be regarded merely as the
“frequentist” interpretation of the probability.

Using the notion of a total entropy Stot = kB lnW
after [41], we deduce from Eq. (A5) that:

kB ln p(Pxy) = kB lnw(Pxy)− kB lnW

= SB(Pxy) − SB(P̃xy) + SB(P̃xy)− Stot

= ∆SB(Pxy) + SB(P̃xy)− Stot, (A6)

where in the second equality we added and subtracted
SB(P̃xy), to introduce the Boltzmann entropy difference

∆SB(Pxy) = SB(Pxy)− SB(P̃xy).
Comparing Eq. (7) with Eq. (A6), one sees that

−kB ln p(P̃xy) = S̃ = Stot − SB(P̃xy)

∆S(Pxy − P̃xy) = ∆SB(Pxy), (A7)

because ∆SB(Pxy) and ∆S(Pxy − P̃xy) are both zero at

Pxy = P̃xy by definition.
Equation (A7) provides the physical interpretation of

∆S(∆Pxy) as well as of the constant S̃. The most likely

value of Pxy = P̃xy maximizes the Boltzmann entropy
(cf. Eq. (A5)). Consistently, ∆S(∆Pxy) ≤ 0 is the en-

tropy cost of a fluctuation Pxy = P̃xy + ∆Pxy [43]. The

constant S̃ is the remaining total entropy, after subtract-
ing the Boltzmann entropy of the most likely macrostate.
It is opportune to note, that one may restate the deriva-
tion of MG distribution, using the principle of maximum
Boltzmann entropy, instead of the global minimum of the
LD function, as done above.

Finally, the Gibbs entropy, given by a functional SG[p],
for the distribution Eq. (7) is

SG[p(·)] = −kB
∫ ∞
−∞

dPxyp(Pxy) ln p(Pxy)

= −kB〈ln p(Pxy)〉 = S̃ − 〈∆S(Pxy)〉, (A8)
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which provides S̃, up to a constant term 〈∆S(Pxy)〉.
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