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Alternative first principles calculation of entropy for liquids
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(Dated: March 24, 2016)

We present an alternative method for interpreting the velocity auto-correlation function (VACF)
of a fluid with application to extracting the entropy in a manner similar to the methods developed
by Lin et al. [J. Chem Phys. 119, 11792 (2003)] and improved upon by Desjarlais [Phys. Rev.
E 88, 062145 (2013)]. The liquid VACF is decomposed into two components, one gas and one
solid, and each contribution’s entropic portion is calculated. However, we fit both the gas and solid
portions of the VACF in the time domain. This approach is applied to a single-component liquid
(a two-phase model of liquid Al at the melt line) and two different two-component systems: a
superionic-to-superionic (BCC to FCC) phase transition in H2O at high temperatures an pressures
and a metastable liquid state of MgO. For all three examples, comparisons to existing results in the
literature demonstrate the validity of our alternative.

PACS numbers: 02.70.-c,65.20.-w

I. INTRODUCTION

In order to describe the phase diagram of liquids it is essential to know the entropy and free energy. Calculating
these quantities from first principles for liquid systems remains a challenge. Even in molecular dynamics (MD), which
implicitly accounts for entropy, directly calculating entropy remains elusive. A myriad of approaches to the problem
have been considered. Thermodynamic integration[1–5] is a preferred method for calculating entropies, but it comes at
great computational cost due to the many ab initio simulations one must perform shifting from the actual simulation
to the reference system with known properties. In addition, one needs a good reference system otherwise there could
be too many integration points along the thermodynamic integration path.
Several methods have been developed to treat explicitly the conditions around melt such as two-phases [6–10], the

Z-method [11–14], and the heat-until-it-melts (HUM) and hysterisis methods [15, 16], approaches that proceed by
directly categorizing the phases of constiuents in MD simulations. By monitoring the relative populations of the two
phases - liquid and solid - as simulation parameters are varied, the melt line can be mapped. While these methods
yield valuable and important results, some are computationally expensive while others are susceptible to metastablity
and relatively larger errors. We seek a more general formulation that perfoms over a broader range of liquid conditions.
Such a new, computationally efficient two-phase thermodynamic (2PT) method for calculating entropy is that of

Lin et al[17, 18]. Only the primary MD simulation is used to compute the entropy and free energy. Entropy is
obtained by decomposing the velocity auto-correlation function (VACF), and the related vibrational density of states,
into solid- and gas-like subsystems. The original formulation of Lin et al. was developed and used with Lennard-Jones
potentials[18–20]. However, when applied to liquid metals the result was over-estimated[21] (a few percent compared
to experiment) thus requiring the introduction of the memory function approach of Desjarlais[22].
With the improved 2PT memory function (2PT-MF) model [22] for calculating entropies for liquid systems, molec-

ular dynamics (MD) calculations are being pushed with vigor to studying systems near liquid-solid phase bound-
aries [23]. As mentioned, the approach relies on calculating the VACF of the system, which tells us about the
“phonon” density of states in the liquid. We use the term “phonon” loosely here since the method relies on separating
the liquid into a gas-like and a solid-like portion. It is the solid-like portion with which we would associate any
phonon-like modes. However, we cannot discount structure which might form in the gaseous state.
Comparisons between methods like thermodynamic integration [1–4] and 2PT-MF were done in Ref. [22] for liquid

Na and Al. Application to the melt curve of Al at 4000K was performed in Ref. [23]. The key characteristic is that
the entropy can be calculated directly from the molecular dynamics simulation without the need of some intermediate
integration step. Therefore, knowing the energy, pressure, volume, and entropy of two systems from the corresponding
MD simulation allows one to make comparable estimates of which system has the lower Gibb’s free energy and is
therefore thermodynamically more stable. This saves considerable computational cost.
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The location of melting curves goes well beyond liquid metals, being important to planetary science [24], inertial
confinement fusion [25], and other condensed/soft matter applications. When confronted with the daunting task of
a large pressure-temperature space to explore, and many phases to consider, a computationally efficient method
to determine the entropy, such as the 2PT-MF method of Desjarlais, is a must. The 2PT method in its simplest
form [17, 18] is a unique step in approaching the problem of extracting thermodynamic properties from MD-derived
VACFs, which lead to a vibrational density of states. The 2PT method considers the fluid nature of the system,
especially the effects at low frequency, together with quantum corrections to the ionic motion in order to extract the
desired thermodynamic information. The 2PT-MF method [22] goes further by providing a more rigorous algorithm,
using the Gaussian ansatz for the memory function of the gas portion of the VACF, which preserves sum rules and
corrects the the high frequency behavior of the hard-sphere model used in the 2PT method. This leads to better
accuracies for softer inter-atomic potentials.
However, the model attributes all structure in the VACF to the solid-like portion by assuming that the gas-like

portion satisfies a Gaussian ansatz. In both 2PT and 2PT-MF, the remainder of the non-fitted gas-portion must be
due to the solid and is treated numerically, which leaves a gap in understanding within the models for what the solid
portion is contributing. Yet, a real gas can and does have structure that should be taken into account. Additionally,
having a model for the form that the solid portion takes will alleviate the high frequency noise associated with the
tail of the Fourier transform of the VACF; this can be due to the time step in the MD simulation, length of MD
trajectory as well as numerical noise. In the method we develop in this paper, we use an analytic formulation for the
solid portion of the VACF which allows us to perform the Fourier transform against a weighting function smoothly
without the associated noise of numerical integration. In addition, our model is constructed so as to satisfy sum rules
up to third-order guaranteeing at least a 1/ω6 decay in the high-frequency spectrum.
In what follows we will present an alternative derivation of the 2PT-MF model using a memory function approach

based on the itinerant oscillator model [26]. This gives a natural breakdown of the VACF into two components, a
gas-like contribution which contains the diffusive nature of the system, and a solid-like contribution, which contains
the phonon-like nature of the system. We first derive the VACF in Sec. II and then walk through examples from the
literature as a test of the method. In Sec. IV we examine the Al melt curve at 4000K as in Ref. [23], the difference in
states of superionic water for various P and T as in Ref. [27], and MgO at 10000K for various P as in Ref. [28]. We
then conclude and give areas for future consideration.

II. MEMORY FUNCTION

Our starting point will be the itinerant oscillator model of Sears [26] as expanded upon by Damle, Sjölander, and
Singwi [29]. The basic concept is that there is a particle of interest, denoted with the subscript 0 connected to a bath
denoted with a subscript 1. Through a basic stochastic set of equations as outlined in Refs. [26, 29, 30], one arrives
at a memory function (MF) that the velocity auto-correlation function (VACF) of the particle of interest must obey.
This MF is given by

K̃(p) = µ0(p) +
λ2
01(p+ µ̃1(p))

p(p+ µ̃1(p)) + λ2
10

, (1)

where the ∼ represents that this function is in Laplace space. The coupling parameters λ01 and λ10 are how the
particle of interest couples to the bath and are related to each other by the fluctuation-dissipation theorem and
Newton’s third law[29]. The two terms µ̃0(p) and µ̃1(p) describe how the free particle and medium “remember” their
histories, i.e. they are friction terms in the stochastic oscillator equations.
From the MF, we obtain the VACF in Laplace space as

φ̃(p)

φ00

=
1

p+ K̃(p)
, (2)

with φ00 the overall scale of the VACF which is given by the zero time value, 3 kB T/M0, where M0 is the mass of the
particle of interest.
The zero-frequency limit of φ̃(p) is related to the diffusion of the particle. By taking the p → 0 limit of Eq. (2)

using the form of Eq. (1) we arrive at

µ̃0(0) +
λ2
01

λ2
10

µ̃1(0) =
kBT

M0D
, (3)

where D is the diffusion coefficient. Eq. (3) gives us a hint as to what forms µ̃0(p) and µ̃1(p) should take. The MF
nicely separates into two pieces, and the low frequency limit does as well. We want to associate µ̃0(p) with the gas-like
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diffusion of the system and µ̃1(p) with the solid-like behavior. This means that any choice of the auto-correlation
function (ACF) must have µ̃1(0) = 0. A natural choice is a cosine, which is a traditional choice for a solid.
Additionally, there is a high frequency limit which we can find by taking the p → ∞ limit. Matching powers of the

Laplace transform of the moment expansion of the VACF we find that

lim
p→∞

〈ω2〉 = p µ̃0(p) + λ2
01. (4)

The second moment of the power spectrum will be given by the gas term and by the constraints on the parameter
λ2
01. This parameter will be fit in the end, but is related to the solid. So the high frequency limit has contributions

from both the solid- and gas-like components in this model.
A key tenant of the two-phase thermodynamic model (2PT) is that the VACF can be split into two components,

a gas and a solid portion. In the itinerant oscillator model, so far, that cannot be done since it is the MF which
naturally separates into gas and solid portions. However, in the limit that the coupling of the particle to the medium
is small, λ01 ≪ 1, we can expand Eq. (2) to find

φ̃(p)

φ00

=
1

p+ µ̃0(p)
− λ2

01

(p+ µ̃0(p))2
p+ µ̃1(p)

p(p+ µ̃1(p)) + λ2
10

, (5)

=
φ̃gas(p)

φ00

+
φ̃solid(p)

φ00

(6)

What remains is to choose a form of the friction term µ̃0(p) as well as to take the inverse Laplace transform of the
equation to get the VACF in real space.
An exponential is a typical choice for the ACF that leads to µ̃0(p), it in turn leads to a violation of the first moment

relation, i.e. the first derivative of the VACF with respect to time will not be zero at t = 0. Once can use the
continued fraction approach for µ̃0(p) and the Laplace, but the inverse Laplace transforms become untenable beyond
a two levels. Using the second continued fraction for the ACF of µ0(t) and a cosine for µ1(t) leads in Laplace space to

µ̃0(p) =
a2

p+
b2
1

p+
b2
2

p+δ

, (7)

µ̃1(p) =
c2p

p2 + η2
, (8)

and generates tractable solutions for both the gas and solid portions. While not trivial, the inverse Laplace transforms
of Eqs. (7) and (8), when inserted into Eq. (5) can be taken. We make substitutions to bring the polynomials into
regular forms for inverting Laplace transforms. Then some minor algebraic manipulation of the gas portion and major
manipulation of the solid portion leads to

φgas(t)

φ00

= fgas

(

γ2(γ
2
2 + ϕ2)

(γ1 + γ2)((γ2 − 2γ1)2 + 4ϕ2)
e−γ1t (9)

+e−γ2t/2

(

γ1
γ1 + γ2

4(ϕ2 + γ2
1)− 3γ2

2

4ϕ2 + (γ2 − 2γ1)2
cos(ϕt) +

γ1γ2
2ϕ(γ1 + γ2)

12ϕ2 + 4γ2
1 − γ2

2

4ϕ2 + (γ2 − 2γ1)2
sin(ϕt)

))

,

φsolid(t)

φ00

= fsolid





1

1− β√
β2+η2

e−βt(1− βt)− β(β +
√

β2 + η2)

η2
e−

√
β2+η2t

(

cos(ηt)−
√

β2 + η2

η
sin(ηt)

)



 .(10)

The time constants β, γ1, and γ2, vibratory constants ϕ and η as well as constants fgas and fsolid are all fit parameters,
but they can be related back to the parameters in the itinerant oscillator model contained in Eqs. (5), (7), and (8).
The terms fgas and fsolid are related. The numerical prefactors in front of the exponentials and sines and cosines
are chosen in a very specific manner such that

∫

∞

0
Fgas(ν)dν = 3, due to the number of degrees of freedom, and

Fgas(ν) = (1/fgas)
∫

∞

0
φgas(t) cos(2πνt)d t. The same is true for Fsolid. In addition, both the gas and solid portions

satisfy the first and third derivative of the VACF being zero at t = 0 ensuring at least a 1/ω6 decay in the frequency
spectrum at high frequencies. With the requirement that

φtotal(0)

φ00

=
φsolid(0)

φ00

+
φgas(0)

φ00

= 1, (11)
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we get that fsolid = 1− fgas. With these normalizations the factors fgas and fsolid act like gas and solid fractions.
In deriving Eq. (10) we made an approximation to ignore the oscillating terms which did not have exponential

dampening. While in principle these terms could be extracted from a fit to a VACF, the numerical noise is usually
too great, and we therefore chose to exclude them from the model. Additionally, we allow the time scale in the solid
to vary freely from that in the gas even though they should be related. This was a consequence of requiring each
component to individually satisfy the derivative rules.
Solving Eq. (3) for D yields

D = fgas
kBT

M0

γ2

(

1

γ2
1 + γ1γ2

+
4

γ2
2 + 4ϕ2

)

. (12)

As the gas fraction diminishes so too does the diffusion constant. Additionally, as the vibratory timescale, ϕ, be-
comes longer than the exponential timescale with which it moves through the medium,γ2, the amount that this term
contributes to diffusion also tends to zero. Upon solving Eq. (4), the second moment is given by

〈ω2〉 = fgas
γ1

γ1 + γ2

γ2 + 4ϕ2

4
+ fsolidβ

(

2
√

β2 + η2 − β
)

, (13)

which clearly has the gas and solid terms as expected.

III. TWO PHASE THERMODYNAMIC MODEL

The 2PT model as developed in Refs. [17, 18] and expanded to use the MF in Ref. [22] (referred to as the 2PT-MF
model) has been used to calculate entropy of liquids near melt curves with some degree of accuracy (10-20%) [23].
The key tenant of the model is that the VACF of a liquid can be broken down into a gas and solid set of components
and then separately integrated against their respective weighting functions and summed to get the total entropy.
In the 2PT-MF model, the gas fraction fgas is a fitting parameter as in our model, but the model assumes a very

simple form (a Gaussian) for the gas-like portion. This does not allow for the gas to have any structure and therefore
relies on averaging through oscillations when fitting with the Gaussian. In the present model, structure in the gas is
accounted for by the vibratory terms seen in Eq. (9). Additionally, unlike the 2PT-MF model, there is a prediction
for the form of the solid piece as given by Eq. (10).
The details of the 2PT-MF method are well outlined in Refs. [22, 23] and therefore only the pertinent changes are

given here. The gas-like fraction starts with the assumptions of hard spheres. A good starting point is the Carnahan-
Starling equation of state[31]. This takes the excess entropy for a hard sphere fluid from the packing fraction χ. In
the 2PT-MF model, we must solve the hard sphere packing fraction [17]

2(1− χ)3

2− χ
− χ2/5∆3/5 = 0, (14)

where

∆ =
8

3

(

6

π

)2/3

D

√

πM0

kBT

(

N

V

)1/3

, (15)

and D is given by Eq. (12). (By construction the solid-contribution to the diffusion constant is identically zero.) Once
we have χ we know the entropy from the gas contribution

Sgas = 3N kBfgasWgas, (16)

where Wgas is the sum of the Sackur-Tetrode ideal gas and excess

Wgas = WIG +Wx,

3WIG =
5

2
+ ln

[

(

M0kBT

2π~2

)3/2
V

fgasN

]

, (17)

3Wx = ln

[

1 + χ+ χ2 − χ3

(1− χ)3

]

+
χ(3χ− 4)

(1− χ)2
. (18)

Next we evaluate the solid portion. In the traditional 2PT-MF, one would subtract from the numerical VACF the
Gaussian fit obtained by matching the low and high frequency constraints. Here, we have already obtained a form
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for the solid portion of the VACF, and there is thus no need for numerical integration. The solid contribution to the
entropy is then given by

Ssolid = N kBfsolid

∫

∞

0

Fsolid(ν)Wsolid(ν)d ν, (19)

with Fsolid the Fourier transform of φsolid(t) and Wsolid(ν) the harmonic weighting function [32]. The total entropy
for the liquid is then

Sliquid = Ssolid + Sgas (20)

We can fit the VACF from the MD simulations to the combined forms in Eqs. (9) and (10) in terms of our fitting
parameters, and we can now calculate the entropy of a liquid by fitting the VACF in the time-domain. This has the
advantage that we know the long-time behavior of the VACF, as it must approach zero. The fits will be dominated
by the structure that appears in the early-time behavior of the VACF. The late-time behavior takes the longest to
converge in a MD simulation and with this approach we are able to reduce the number of time steps needed, even
more so than is already done in the 2PT-MF method [23] because we don’t need as small a time step to resolve the
high-frequency behavior.

IV. APPLICATIONS

We test our version of the 2PT-MF approach by comparing with calculations on Aluminum [23] that use the original
formulation[22]. In addition, we apply the method to water in two phases [27] and to MgO [28]. The application to
water involves a superionic mixture, in which the hydrogen are mobile and the oxygen are in a solid lattice. Thus
we integrate the whole oxygen VACF against the harmonic weighting function. Finally, MgO at 10000K between
200GPa and 400GPa has both components in a meta-stable liquid-like state.
For all calculations, we use the Vienna ab initio Simulation Package, (VASP) [33–36], version 5.2.12. The elec-

tronic wave-function is determined from Finite-Temperature Density Functional Theory within the Kohn-Sham con-
vention [37–42]. Projector-augmented wave (PAW) pseudo-potentials [43, 44] are used to model the electron-ion
interaction in addition to the exchange-correlation functional of Perdew, Burke, and Ernzerhof [45] (GGA). The
electron temperature, in local thermodynamic equilibrium with the ions, was introduced through the Mermin[39]
prescription and set by a Fermi-Dirac weighting of the occupied bands[41].

A. Aluminum

In Ref. [23] the authors analyzed Aluminum along the FCC melt curve at T = 4000K, which we aim to reproduce
using this complete VACF fitting method. We used 108 Al atoms starting in the FCC geometry at densities of 3.0,
3.2, 3.6, 4.0, and 4.4 g/cm3. We employed the PAW pseudopotential that contains 3 valence electrons for Al with a
fixed cutoff energy of 300 eV. We applied velocity scaling at each step to fix the temperature to 4000K. Our time step
was 1 fs, in accordance with the convergence test performed in Ref. [23].
In Fig. 1 we plot the VACF for the ρ = 3.0 g/cm3 at T = 4000K for Al. In the top panel, we present both the

results from the VASP simulation and the fit using Eqs. (9) and (10). As is evident, the fit captures well the essential
structural features of the VACF, reproducing the first minimum and maximum.
Additionally, we can separate the VACF into the constituent parts (middle panel Fig. 1). The gas portion is seen

to be the dominant part and also captures a large portion of the vibratory pattern. Physically, one can think of the
vibratory pattern as hindered diffusion of the particle due to the medium. The solid portion encapsulates how much
of that hindrance is actually more of a permanence.
In the bottom panel of Fig. 1, we plot the power spectrum (Fourier transform) of each component. As expected

the gas component gives the zero frequency value, and the solid component rapidly approaches zero at zero frequency
playing no part in diffusion. However, both the solid and gas components play a part in the high frequency behavior
of the tail of the VACF as constructed in this model, as both fall off with a 1/ω6 tail by construction.
The general fitting procedure requires an MD simulation for a trajectory long enough to converged the VACF.

First we take an initial Fourier transform of the data and look for frequencies in the signal which will give possible
starting guesses for ϕ and η. Good starting guesses for γ1 and γ2 can be obtained from the 1/e time of the VACF.
If oscillations are not strong about the time axis, fgas is likely larger than fsolid. As oscillations get stronger, i.e.,
cross the axis multiple times, larger values for fsolid become more appropriate. A standard non-linear fitting routine
such as Levenberg-Marquardt or Conjugate-Gradient will suffice for finding the optimum parameters. We apply a
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FIG. 1: (color online) Al at T = 4000K and ρ = 3.0 g/cm3. Top panel is the raw QMD data (green plus) and the fit (solid line)
which is the sum of Eqs. (9) and (10). Middle panel are the individual contributions to the VACF: gas (green solid line) and
solid (blue dashed line). Bottom panel is the power spectrum for both the gas (green solid line) and solid (blue dashed line).
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weight function of exp(−t/τwindow), where τwindow is the window over which we collected data on the VACF, necessary
because the early-time portion of the VACF is better converged than the late-time portion of the VACF. We tried
other forms of the weight function such as exp(−t/2τwindow) and exp(−2t/τwindow) with little change in the result.

fgas (Constant) 0.79(6)

γ1 (fs−1) 4.49(6) × 10−2

γ2 (fs−1) 5.64(3) × 10−2

ϕ (fs−1) 8.286(5) × 10−2

fsolid (Constant) 0.21(6)

β (fs−1) 6.24(4) × 10−2

η (fs−1) 3.85(7) × 10−2

TABLE I: Fit parameters for the case of Al at T = 4000K and ρ = 3.0 g/cm3. All values are in units of fs−1 except fgas and
fsolid which are unitless. The number in parentheses is the standardized fit error in the last digit. The overall adjusted-R2

value is 0.999914.

In Table I, we give the results of the fitting procedure for the case presented in Fig. 1 of Al at T = 4000K and
ρ = 3.0 g/cm3. The model produces a very good fit with an adjusted-R2 near unity. The sum of fgas and fsolid is
unity as expected, but was not enforced in the fit.
We now apply this fitting procedure to the remaining densities in Table II. Our entropies agree well with those of

Ref. [23] given that both results are expected to be accurate to the 10-20% level. We only compare our model to that
of the liquid results under the assumption that the coupling between the particle of interest and medium is small.
With the onset of solidification, or in the case of an actual solid, it is not clear that this assumption is valid.

ρ S (This Work) S (Ref. [23])

(g/cm3) (kJ/K/kg) (kJ/K/kg)

3.0 3.73 3.55

3.2 3.42 3.44

3.6 3.17 3.25

4.0 2.79 3.08

4.4 2.50 2.94

TABLE II: Entropic results S for the liquid phase along the melt curve at T = 4000K of Al for density ρ. Comparison between
the present method and the 2PT-MF presented in Ref. [23].

In the case of the solid-side of the melt curve, we can take the numerical cosine transform and then integrate
the result against the solid weighting function to extract the entropy. We obtain 2.92 and 2.80kJ/K/kg, at 4.0 and
4.4 g/cm3, respectively, for the solid-side of the melt-curve of Al; this compares favorably to the values 2.86 and
2.73kJ/K/kg found in Ref. [23]. Using our fitting model to extract the gas-like and solid-like fractions, we get small
values for fgas as expected which in turn leads to small values of the diffusion coefficient D. However, small, but
non-zero, values of D and fgas can lead to large, varying terms for Sgas via Eqs. (16), (17), and (18). Therefore, in
situations where D is known, or at least expected to be zero, we find it prudent to treat the system purely as a solid.

B. Water

Recently Wilson, Wong, and Militzer [27] studied a superionic to superionic (BCC to FCC) phase transition of
water at several pressures and temperatures, where the O atoms form a lattice and the H atoms diffuse freely. We
aim to reproduce some of those results as a proof of principle of this method. In order to calculate the entropy of the
mixture, one must compute the VACF for each component of the system; in this case the H and O atoms. Our aim
is to compare the entropies between the BCC and FCC phases at 100GPa and 3000K; 1000GPa and 5000K; and
4000GPa and 5000K.
The convergence tests in Ref. [27] suggest using a 2x2x2 Γ-centered k-point grid and a cubic cell. We optimized

each cell in each phase so that the pressures matched to within . 1% and then run each simulation for 8000 (12000)
steps in the BCC (FCC) phases. The BCC (FCC) used 54 (32) molecules. Additionally we used a 0.25 fs (0.2 fs) time
step at 3000K (5000K) in accordance with the work in Ref. [27].



8

P T ∆G ∆U P∆V -T∆S

(GPa) (K) (eV/mol) (eV/mol) (eV/mol) (eV/mol)

Present 100 3000 0.071 0.0039 0.016 0.051

[27] 0.002(11) -0.037(20) 0.017(16) 0.023(28)

Present 1000 5000 0.090 0.165 0.001 -0.076

[27] 0.065(8) 0.102(18) 0.054(24) -0.095(31)

Present 4000 5000 0.105 0.168 0.002 -0.065

[27] 0.180(11) 0.188(18) 0.033(19) -0.042(28)

TABLE III: Errors in our T∆S term encompass zero in every case. See text for details. The pressure P , temperature T , change
in Gibbs free energy ∆G = ∆U +P∆V − T∆S, change in internal energy ∆U , change in volume P∆V , and change in entropy
T∆S are all calculated using MD trajectories and parameters optimized as discussed in the text. Errors are in parentheses and
show the uncertainty in the digits immediately to the left.

The comparison in Table III shows decent agreement between our results for the entropy and those of Ref. [27]
where thermodynamic integration was used to find the Gibb’s free energy and then extract the entropy. The key
comparison is the entropy value, for which we are within one sigma of the quoted value in Ref. [27] in each instance.
The error in the value of the difference of the entropies in our case is hard to estimate. Each VACF integration has
error associated with finite sampling [46], as in the case with deriving mass transport properties such as diffusion. In

the case of a pure exponential function, the error is given by
√

2/(γTtraj) where γ is the inverse time constant and
Ttraj is the length of the integrated MD trajectory. Corrections[30] apply when the ACF is not purely exponential. In
the differences that go into Table III, there are four individual error estimates to arrive at T∆S of which the oxygen
VACFs contribute the most since they have the smallest γ2 values. However, in each case the statistical error is large
enough in any one component to make the summed difference between BCC and FCC encompass zero. We cannot
constrain our error bars on ∆S nearly as tightly as Ref. [27].
We note that our findings for P∆V and ∆U are different from Ref. [27]. The main difference lies in P∆V , which

we attribute to the interpolation on a finite density-temperature grid used in Ref. [27] compared to running at the
same pressure in the present work. Our simulations were run to within the same pressures by 0.5%, 0.5%, and 0.2%
for the (100GPa and 3000K), (1000GPa and 5000K), and (4000GPa and 5000K), respectively. The uncertainties in
these terms are therefore expected to be much smaller than the 10%-30% found in [27].
Because the oxygen are in a solid, we numerically performed the oxygen VACF transformations to extract the

solid entropy contribution (as discussed in the Al case). Fitting the functional forms in Eqs. (9) and (10) results in
numerical noise due to the zero value of diffusion expected from the oxygen. The value of S is dependent on the size
of the fit window due to the oscillations about zero in the tail of the oxygen VACF. Systems with pronounced phonon
modes should be treated as pure solids in this method.
The lowest pressure-temperature point lies right at the BCC-FCC transition and should have the largest fluctuations.

Indeed, our VACFs in the oxygen component have long time constants associated with the oscillatory behaviors which
lead to a large uncertainty estimate for the entropy. It is not too surprising for our result to disagree the most here. At
1000GPa and 5000K we find a slightly smaller result for the entropy difference but note that statistically the results
agree. At the higher pressure point but same temperature, we find a slightly smaller entropy difference but yet again
within the error margin quoted in Ref. [27]. Given that only 2 MD runs are needed at each (P , T ) point to establish
the phases (with careful monitoring of the pressure, the pair distribution function, and energy to define the state),
this can represent a vast time savings over thermodynamic integration which requires multiple runs along integration
paths between the system of interest and the known system. We also note that these results, while in agreement for
54 (32) molecules in the BCC (FCC) phases, could be particle number dependent for the phase boundary, and that
a study at 128 (108) molecules might reveal deviations from these values.

C. MgO

Boates and Bonev determined the metastable liquid state of MgO in their studies of MgSiO3 [28]. At 10000K
and pressures between 200GPa and 400GPa the liquid state has higher entropy than the B1 solid state of MgO. To
study the liquid state we started with a collection of 50 MgO molecules with an average molecular bond distance
rMgO = 1.75 Å, randomly oriented in a cubic box at a density of 5.5 g/cm3. This was our starting configuration for
the 280GPa calculation. We let the system equilibrate using a time step of 0.75 fs, sampling at the Γ-point, and an
875 eV plane wave cut-off energy, consistent with the convergence criteria used in Ref. [28].
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We could only run the 280GPa simulation for roughly 4 ps, after a 200 fs equilibration time, because the system
began to drift toward the more stable B1 solid phase. The simulation at 200GPa used as a starting configuration a
sample from the middle of the 280GPa equilibrated run (about 1.5 ps), but with randomized initial velocities according
to a Boltzmann distribution. The 240GPa run was similarly started from an equilibrated configuration of the 200GPa
simulation.
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FIG. 2: (color online) Comparison of entropy vs pressure for liquid MgO with the work of Ref.[28] at 10000K. The agreement
is better than 5%. Only statistical error is considered since it is the dominant contribution to the uncertainty.

We present our results in Fig. 2 and compare with the data extracted from Figure 2d in Ref. [28]. The agreement
between our method and their results is good, to within 5% save the highest pressure point. The largest limitation to
improving the error is the finite trajectory due to drift to the lower B1 solid state. Therefore, we must carefully monitor
the pressure and only average over the data for which the drift in the pressure/energy is minimal. In practice, we
could average over a few shorter, randomized MD runs with the same pressure/energy profile to gather more statistics.

D. Al Along Ambient Isobar

As a final comparison to the method of Desjarlais[22], we compare our revised 2PT-MF method to two points,
943K and 1200K, along the Al ambient isobar. We ran our simulations using the Baldereshci point and an energy
cut off (augmentation) of 241 (291) eV along with a 2 fs time step, consistent with the parameters of [22]. We used
the volumes/atom provided by Desjarlais which produced pressures of −0.16GPa and 0.037GPa at 943K and 1200K
respectively. In addition, we ran a simulation at 943K with a smaller volume that produced a total pressure of
−0.024GPa.
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At the two temperatures sampled we added the electronic portion to the entropy and found values of Stot =
9.1(4) kB/atom at T= 943K and Stot = 9.8(4) kB/atom at T= 1200K using the volumes provided by Desjarlais. Our
smaller volume at T = 943K produced an entropy of Stot = 8.8(4) kB/atom, more in line with the ambient isobar
value. Differences in the pressure might be due to a difference in the number of bands chosen. We used 224 (256) at
943K (1200K). These values are larger than found in Ref. [22], but within our quoted statistical error. As pointed
out by Desjarlais [22], the 2PT method has a long tail in the frequency spectrum going as ω−4 and this leads to over-
estimation of the entropy. Our method has a tail of order ω−6, and is susceptible to the same over-estimation due to
the fact that it violates the property of the third derivative (and higher order odd-derivatives) being zero at t = 0 for
the VACF. However, because it satisfies the first derivative property, it is expected to have less over-estimation errors
in the entropy values.
This also suggests routes to improve this method. First, we could take additional Padé approximants (or continued

fractions) to the value of µ̃0(p). Each succesive order gives one more odd-derivative being zero at t = 0 and hence
tightens the ω−n fall off by increasing the value of n. However, this method drastically increases the complexity
and ability to analytically perform the inverse Laplace transforms of the gas and solid pieces as well as provides an
increase in the number of requisite fitting parameters. Additionally, the tail in the power spectrum is not necessarily
a power law and forcing higher order convergence in powers of ω−n may not increase the accuracy of the entropy
values obtained.
A second approach to improving the method would be to use a Gaussian for µ̃0(p), which would preserve to all

orders the odd-derivative property of the memory function at t = 0. However, the trade-off is the inverse Laplace
transform cannot be performed analytically for 1/(p+ µ̃0(p). The fits would now have to be performed in frequency
space using the property

F (ω) =
1

2

(

1

K̃(ıω) + ıω
+

1

K̃(−ıω)− ıω

)

(21)

where K̃(p) is the total memory function including both solid and gas contributions from µ̃0(p) and µ̃1(p). Another
advantage to this method of fitting in the frequency spectrum is there is no need to expand for small coupling
parameters of the bath to the medium; we can use Eq. (1) with the Laplace transform of a Gaussian for µ̃0(p) and the
Laplace transform of a cosine for µ̃1(p). Then after the fit, determine if λ2

01 is small, and thus whether an expansion is
valid for separating the VACF into gas and solid like portions, i.e. whether the gas and solid portions evolve according
to their individual memory functions.
A Gaussian falls off rather quickly as a memory function, much faster than a pure exponential does. Thus, to recover

the exponential behavior, but keep the even nature of K(t), we can use a sech(t/τ) or sech2(t/τ) memory function,
both of which have analytic Laplace transforms. Then as done in Ref. [22], we can apply the method of moments to
match the power spectrum to the coefficients in each of µ0(t) and µ1(t). These approaches will be explored in future
work.

V. CONCLUSIONS

We have presented a method to fit the entire VACF from an MD simulation to an analytic form which separates
cleanly into a gas-like and solid-like portion. These two components can then be treated as separate entities in
entropic calculations and brought together in the end to provide a total entropy for the ionic contribution. This is an
alteration to the 2PT-MF method [17, 18, 22] where only the gas portion was fit. We provide a model which accounts
for structure in the gas and solid portions. Extending to multi-component systems is naturally contained within the
fitting parameters of the model.
We’ve applied the model to the liquid side of the FCC Aluminum melt curve at T = 4000K and found good

agreement to within quoted errors of the work of Robert et al. [23]. We also applied the model to a two-component
mixture of superionic water and found decent agreement for the entropy, but mixed quality regarding the Gibb’s free
energies which could be traced to the P∆V term. In the case of MgO, another two-component system, we find strong
agreement in the calculation of the entropy for the metastable liquid state at 10000K and various pressures between
200GPa and 400GPa.
In future work this method can be used to extract entropic information of relevance to planetary interiors[47]

such as ice giants, where more complicated mixtures of methane, ammonia, and water gallivant around in myriad and
complicated ways. The ability to calculate accurate entropies will be of use to planetary interior models. Additionally,
complex molecular mixtures and their entropic properties are of relevance to dense plasmas in regards to inertial
confinement fusion, warm dense matter, and conventional and nuclear weapons physics.
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