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Abstract

Bombardment of a solid surface with a broad, obliquely-incident ion beam frequently produces

nanoscale surface ripples. The primary obstacle that prevents the adoption of ion bombardment as

a nano-fabrication tool is the high density of defects in the patterns that are typically formed. Our

simulations indicate that ion bombardment can produce nearly defect free ripples on the surface of

an elemental solid if the sample is concurrently and periodically rocked about an axis orthogonal to

the surface normal and the incident beam direction. We also investigate the conditions necessary

for rocking to produce highly ordered ripples and discuss how the results of our simulations can

be reproduced experimentally. Finally, our simulations show that periodic temporal oscillations of

coefficients in the Kuramoto-Sivashinsky equation can suppress spatio-temporal chaos and lead to

patterns with a high degree of order.
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Introduction The nanoscale patterns formed by bombardment of a solid surface with

a broad beam of noble gas ions have been a subject of interest for decades [1]. Ion bombard-

ment has the potential to be an extremely useful and economical way of producing patterns

which have a characteristic length of tens of nanometers and which are well ordered over

much longer distance [1]. A longstanding issue in this field, however, is the high density

of defects in the patterns that typically form. This problem is the primary obstacle that

prevents widespread use of ion bombardment as a nanofabrication tool, and much work

has been done toward the goal of producing very well ordered patterns [2–9]. To date, no

experiment has yielded highly ordered patterns on an elemental sample using a noble gas

ion beam.

In this Rapid Communication, we present the results of numerical simulations of an

elemental surface that is bombarded by a broad beam of noble gas ions with a polar angle of

incidence that varies periodically in time. In an experiment, this could be achieved by rocking

the sample about an axis orthogonal to the surface normal and the incident ion beam. We

assume that the target material is amorphous, or that a surface layer is amorphized by the

ion bombardment. We take the equation of motion in the absence of rocking to be the usual

anisotropic Kuramoto-Sivashinsky (AKS) equation [1, 10, 11]. Several of the coefficients in

this equation depend on the angle of incidence, and so periodic sample rocking has the effect

of making these coefficients periodic in time. We show that a remarkable and unforeseen

degree of order emerges for a broad range of parameters in both one-dimensional (1D)

and two-dimensional (2D) simulations. Thus, temporally periodic driving can lead to near

perfect spatial periodicity.

1D Results The equation of motion for the unrocked solid surface is the much-studied

AKS equation [12–15],

ut = v′
0
ux − Auxx + A′uyy −B∇4u+

(

λu2

x + λ′u2

y

)

/2, (1)

where u is the deviation of the surface height from its unperturbed steady-state value; x

and y are the horizontal coordinates parallel and perpendicular to the projection of the ion

beam direction onto the surface, respectively; t is the time; and the subscripts x, y, and t

denote partial derivatives. All of the constant coefficients A, A′, λ, λ′ and B will be taken

to be positive save for λ. The AKS equation has long been used as a model for the time

evolution of an ion bombarded surface [10, 11] and expressions that relate the coefficients to
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the underlying physical parameters have been given [11, 16, 17] . The term proportional to

the constant v′
0

in Eq. (1) may be eliminated by transforming to a moving frame of reference,

and so will be dropped for the remainder of this paper.

In this section, we specialize to the case in which h is independent of y. This reduces

Eq. (1) to the 1+1 dimensional Kuramoto-Sivashinsky (KS) equation,

ut = −Auxx −Buxxxx + λu2

x/2. (2)

For the case of time-independent coefficients, the KS equation can be rescaled to a completely

parameter-free form by setting

u = (A/λ) ũ, t = (B/A2) t̃, and x =
√

B/A x̃, (3)

where ũ, t̃, and x̃ are the dimensionless surface height, time, and lateral coordinate, respec-

tively.

To investigate the effects of periodic rocking on the pattern formation, we focus on the

special case in which the sample is bombarded for a time t = π/ω at an angle of incidence θ1,

then for an equal time at an angle of incidence θ2, and so forth. Without loss of generality,

we may express the values of A and λ at these angles as

λ(θ1) = λ0 (1 + r1), A(θ1) = A0 (1 + r2), (4)

λ(θ2) = λ0 (1− r1), and A(θ2) = A0, (5)

where r1 > 0 and r2 are dimensionless parameters and λ0 and A0 are constants. While A(θ)

and λ(θ) are not simple functions of the angle of incidence θ, because we are switching the

angle of incidence discretely, we only need the values of A and λ at two angles.

Because neither λ(θ) nor A(θ) is a monotone function [11] of θ, it is possible to choose

values of θ for which A(θ1) = A(θ2) and λ(θ1) 6= λ(θ2). Thus, by a suitable experimental

setup, a periodic, discrete variation in λ can be achieved while minimizing or eliminating

any variation in A. As shown below, oscillations in A can be detrimental to the formation of

highly ordered patterns, and should be minimized when possible. For simplicity, we assume

that B is independent of θ. This is the case for sample temperatures high enough that the

surface diffusion is thermally activated [1].

Using exponential time differencing [18, 19], we have performed numerical integrations

of Eq. (2) with λ and A periodically and discretely switching between the values given by
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Eqs. (4) and (5). We employed the rescaling given by Eq. (3) with A and λ replaced by A0 and

λ0, respectively. The initial condition was low amplitude spatial white noise. The results are

nothing short of astonishing. Figures 1 and 2 show the results of two simulations, one with

rocking and one without, in real space and Fourier space. While the KS equation without

rocking yields a surface which has a high degree of disorder, albeit with a characteristic

length scale, the rocked KS equation with dimensionless frequency ω̃ ≡ ωB/A2

0
= 0.15π

produces ripples that are almost perfectly periodic. Figure 3 shows spacetime plots of time

sequences taken from the same simulations. These demonstrate that without rocking the

system exhibits the spatio-temporal chaos characteristic of the KS equation [12, 13]. On the

other hand, following a brief transient state, the rocked sample displays an extremely high

degree of order which persists over time. Larger domain sizes L, finer spatial and temporal

discretizations, and much longer simulation times have been investigated numerically, and

give comparable results to those shown in Figs. 1-3.

FIG. 1: (Color online) Plots of the rocked surface in real space (inset) and in Fourier space

for r1 = 2, r2 = 0, dimensionless frequency ω̃ ≡ ωB/A2

0
= 0.15π, domain length L = 100,

and t̃ = 103.

The oscillations in ripple amplitude evident in Fig. 3(a) may be explained by a scaling

argument. As discussed above, if A and λ are time-independent constants, then Eq. (2) may

be written in a parameter-free form via the rescaling given by Eq. (3). This shows that the

characteristic ripple amplitude is proportional to |A/λ|. For the case in which the sample

is rocked and r2 = 0, we therefore expect that after a sudden change in the value of λ, the

amplitude of the ripple pattern will evolve toward the amplitude associated with the new

value of λ. When |λ| decreases the ripples grow larger in amplitude, and when |λ| increases
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FIG. 2: (Color online) Plots of the unrocked surface in real space (inset) and in Fourier

space for r1 = r2 = 0, L = 100 and t̃ = 103.

FIG. 3: (Color online) Spacetime plots of the surface for (a) r1 = 2 (rocked), and (b)

r1 = 0 (unrocked) respectively with ω̃ = 0.15π and r2 = 0. A shorter time scale was used

for the unrocked case so that the finer structure is visible. For clarity, these plots show the

deviation of the surface height from its average value.

the amplitude attenuates.

An intuitive understanding of the order produced by rocking may be gained by a heuristic

argument. Consider what happens to the surface when |λ| changes from a large value to a

small value at a time t1. In the moments before the switch, the term proportional to λu2

x in

the rocked KS equation is on average comparable to the linear terms −Auxx−Buxxxx since in
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the steady-state limit, the ripple growth rate averages to zero. Immediately after the switch,

therefore, the term λu2

x/2 will typically be small compared to the linear terms. Consequently,

we expect the Fourier transform of the surface height Ũ(k, t) to grow approximately as

Ũ(k, t) ≃ Ũ(k, t1) exp
(

(Ak2 − Bk4) (t− t1)
)

, (6)

where k is the wave number. Thus, periodically reducing the value of |λ| allows the surface

to periodically grow roughly as it would in the linear approximation. Ripples described by

Eq. (6) become increasingly well ordered because the peak in the Fourier spectrum becomes

higher and narrower as time passes. Conversely, when the value of |λ| is increased, the

amplitude gained during the stage of approximately linear growth attenuates according to

the scaling argument given above. This ensures that the ripple amplitude does not become

so large that higher order nonlinear effects would have to be taken into account. This

explanation suggests that good order will not be obtained if λ oscillates about an average

value of zero, since then there is no opportunity for nearly linear growth to take place.

The excitation of Fourier modes which are multiples of the selected wave number seen

in Fig. 1 arises as a consequence of the coupling between modes induced by the nonlinear

term λu2

x/2. A large amplitude mode with wavenumber k will directly excite the mode

of wavenumber 2k. The coupling between these two modes will then excite the mode of

wavenumber 3k, and so on.

To characterize the quality of the order produced by the rocking procedure, we fit the

peak surrounding the highest amplitude wavenumber in the Fourier spectrum to a Gaussian

and record its width. In order to avoid sampling at the same point in each rocking cycle, the

fits were performed at hundreds of randomly selected times throughout a given simulation

and then averaged.

Figure 4 shows the width of the highest peak in the Fourier spectrum as a function of

the rocking frequency for two values of r1. It is clear that the effect of rocking is strongly

dependent on the frequency with which the sample is rocked. However, within a broad range

of frequencies, the surface becomes highly ordered for r1 = 4, making this procedure feasible

to implement experimentally. One important conclusion drawn from our simulations is that,

just as our heuristic argument suggested, it is essential that r1 > 1 (so that λ changes sign

periodically) for good order to form. This is also illustrated by Fig. 4, since good order

is not obtained for r1 = 0.5. Increasing r1 further than r1 = 4 has the effect of slightly
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narrowing the band of frequencies which produce good order and reducing the amplitude of

the resulting ripples. Nevertheless, for 1.5 . r1 . 15, scaled frequencies f̃ ≡ ω̃/2π between

0.06 and 0.08 produce exceptionally good order.

FIG. 4: (Color online) Fourier peak width as a function of the scaled rocking frequency

f̃ ≡ ω̃/(2π) for two values of r1 and with r2 = 0. Each point represents a single simulation,

and the average for each value of the frequency is shown. Note that for r1 = 0.5 (upper,

lighter line), λ always has the same sign, while for r1 = 4 (lower, darker line), it changes

sign.

An important physical consideration is the effect that a periodic variation of the coefficient

A in Eq. (2) has on the order obtained by rocking. Since this coefficient depends on the

angle of incidence, it is likely to vary in general unless θ1 and θ2 are carefully selected. For

λ and A given by Eqs. (4) and (5), the characteristic width of the highest Fourier peak for

r1 = 4 and a range of r2 values is shown in Fig. 5. For small positive values of r2, the surface

still becomes well ordered, but larger positive values of r2 do not result in a well ordered

surface. If r2 < 0, on the other hand, the high degree of order develops even for relatively

large values of |r2|. Thus, the variation in A due to the rocking procedure is not expected

to be a significant impediment to producing virtually defect free ripples by sample rocking.

If the order seen in our simulations is to be achieved experimentally, it is crucial that the

rocking frequency be chosen within the frequency range discussed above. Fortunately, finding

the correct rocking frequency only requires that the linear growth rate be determined for

one of the two angles of incidence. The dimensional and nondimensional rocking frequencies

are related by f = 4σf̃ , where σ is the linear growth rate of the fastest growing mode for
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FIG. 5: (Color online) Fourier peak width for r1 = 4 and ω̃ = 0.15π for opposite signs of

r2. For r2 < 0 the surface continues to form nearly perfect ripples for relatively large values

of |r2|.

that angle of incidence. Experimentally, σ may be approximated by the rate at which the

surface roughens at early times, since this roughening will be dominated by the most linearly

unstable mode. Simulations indicate that the growth rate during the period where |λ| is a

minimum determines the optimal rocking frequency. Therefore, if r1 is greater (less) than

zero, then σ should be evaluated at θ2 (θ1).

As we have seen, for the rocking procedure to be effective, λ must change sign. There is

strong theoretical and experimental evidence that λ passes through zero at a critical angle

θc for unrocked samples [11, 20]. Typically, 60◦ < θc < 80◦. Given that the amplitude of

the surface roughness scales as |λ|−1, we expect that λ will vanish at the angle of incidence

which maximizes the surface roughness. Note that while solutions to the KS equation grow

without limit for a spatial white noise initial condition when λ = 0, the amplitude remains

finite in an experiment because a finite ion fluence is used.

The case in which A and λ vary sinusoidally in time has been explored numerically, and

was found to produce order comparable to discrete switching. Fig. 6 shows the results of

two simulations with sinusoidal and discrete variation in λ, respectively. It is clear that

discrete switching is not necessary to achieve the improvement in order. More complicated

time dependencies are beyond the scope of this letter, but are not expected to produce

substantially different results.

2D Results Given the degree of order that can form on a rocked surface in 1D, it is

natural to ask whether a 2D rocked surface will produce similar results. Physically, this
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FIG. 6: (Color online) Real space plots of surfaces produced by (a) a sinusoidal and (b) a

discrete variation of λ, respectively. For both surfaces ω̃ = 0.15π, r2 = 0, L = 100, and

t = 103. In (a) λ = 1 + 5 sin(ωt) whereas in (b) λ = 1 + 5sgn(sin(ωt)).

means we are no longer requiring that h be independent of y. We return to Eq. (1), keeping

v′
0
= 0. With temporally periodic coefficients, Eq. (1) is the rocked AKS equation. Panels

(a)-(c) of Fig. 7 show the surface for a particular set of parameters for which λ oscillates

between the values 10 and −6. As in 1D, the unrocked equation of motion displays spatio-

temporal chaos with a characteristic length scale (see Fig. 7 (d)). The rocked AKS equation,

on the other hand, initially forms a transient state which contains numerous defects. The

rocking procedure causes these defects to move together and annihilate. Eventually, even

long wavelength Fourier modes are suppressed. The full video from which these snapshots

are taken is available in Ref. [21].

The rocked AKS equation has more parameters than the rocked KS equation, and the

computational time required for a complete investigation of the parameter space of the

rocked AKS equation would be prohibitively long. However, variation in the coefficient λ′ is

likely unavoidable during rocking, since this coefficient also depends on the angle of incidence

θ. We therefore considered the effect of simultaneously varying λ′ and λ. The results of a

simulation for which λ′ = 2 + 0.2 sign(sin(ωt)) and λ = 2 + 8 sign(sin(ωt)) are shown in

Fig. 8. This simulation reveals that periodic oscillations of λ′ with this amplitude do not

have a detrimental effect on the resultant order for A, A′, B, and λ equal to their values in

the first three frames of Fig. 7.

Discussion The consequences of a time-periodic coefficient in the KS equation have been

considered in the context of annular fluid flow [22]. Due to computational limitations at the

time of that work, the phenomenon reported here was not discovered. In the first theoretical

study of a periodically rocked, ion bombarded surface [23], several important physical con-
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FIG. 7: (Color online) (Multimedia View) (a) - (c) A time series of a surface for a square

domain of side length L = 120 with A = A′ = 1, B = 1, λ = 2+ 8 sign(sin(ω̃t̃)), λ′ = 2, and

ω̃ = 0.15π at times t̃ = 106, 330, and 1840. (d) A simulation with the same parameters as

in (a) - (c) but with λ = 2 so that there is no rocking. The time is t̃ = 1840.

FIG. 8: (Color online) A plot of the surface for a square domain of side length L = 120

with A = A′ = 1, B = 1, λ = 2 + 8 sign(sin(ω̃t̃)), λ′ = 2 + 0.2 sign(sin(ω̃t̃)), and ω̃ = 0.15π

at time t̃ = 1840.

tributions to the dynamics were neglected, including curvature dependent sputtering [16]. In

a later theoretical treatment of ion bombardment with sample rocking [24], nonlinear terms

were omitted from the equation of motion and consequently no increase in order was found.

Experiments have not yet been performed in which a sample was bombarded while being

periodically rocked. Our results give a compelling motivation for conducting experiments of

that kind. By contrast, azimuthal sample rotation during ion bombardment has been stud-

ied intensively, and gives a means of producing ultra-smooth surfaces [25–28], generating

hexagonal order [29], and controlling ripple patterns [30].
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Conclusion Our simulations demonstrate that if a sample is bombarded with a broad

noble gas ion beam while simultaneously being rocked, nearly perfect nanoscale ripples can

result. Unlike other methods [8, 9], ours can be used to produce highly ordered surface

ripples on an elemental material and does not require the implantation of an undesirable

second atomic species or a high sample temperature. We also discussed how optimal values

of the rocking frequency and the angles of incidence may be determined in an experiment.

R.M.B. is grateful to the National Science Foundation for its support through grant

DMR-1305449. The authors thank Dan Pearson for stimulating discussions and for sharing
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