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Biological neuronal networks exhibit highly variable spiking activity. Balanced networks offer a
parsimonious model of this variability in which strong excitatory synaptic inputs are canceled by
strong inhibitory inputs on average and irregular spiking activity is driven by fluctuating synaptic
currents. Most previous studies of balanced networks assume a homogeneous or distance-dependent
connectivity structure, but connectivity in biological cortical networks is more intricate. We use a
heterogeneous mean-field theory of balanced networks to show that heterogeneous in-degrees can
break balance. Moreover, heterogeneous architectures that achieve balance promote lower firing rates
in neurons with larger in-degrees, consistent with some recent experimental observations.

Many neuronal networks exhibit noisy and irregu-
lar activity [1–3], which is the focus of many theoret-
ical studies [4–7], and also exhibit a balance between
positive (excitatory) and negative (inhibitory) interac-
tions [8–16]. Balanced network models offer a parsi-
monious model of this activity. In balanced networks,
chaotic or chaos-like dynamics produce irregular spik-
ing activity through transient fluctuations in the bal-
ance of strong excitatory and inhibitory currents [17–
21]. Most studies of balanced networks assume a homo-
geneous network architecture where connection proba-
bility depends only on cell polarity. This was recently
extended to networks with distant-dependent connec-
tion probabilities [22, 23], but biological networks ex-
hibit more diverse architectures [24–27].

In this communication, we use mean-field theory to
show that architectures with heterogeneous in-degree
distributions and homogeneous out-degree distribu-
tions can break the classical balanced state, consistent
with parallel studies [27–30]. We next show that bal-
ance can be restored, for example if out-degrees are also
heterogeneous. In each of the example architectures we
consider, neurons with higher in-degrees have lower
firing rates, consistent with recent experimental results
showing a negative correlation between firing rate and
local functional coupling strength in cortex [31].

a. Model description. We consider a network of N
integrate-and-fire neurons. The membrane potential of
neuron j obeys

dVj

dt
= f (Vj) + I j(t)

and each time Vj(t) exceeds a threshold at Vth, the neu-
ron spikes, the membrane potential is held for a refrac-
tory period τref and then reset to Vre. All simulations
use the exponential integrate-and-fire (EIF) model [39].
Synaptic input currents are defined by

I j(t) =
N

∑
k=1

J jk√
N

∑
n

αk(t − tk,n) +
√

NFj (1)

where, tk,n is the nth spike time of neuron k = 1, . . . , N.
Postsynaptic current waveforms satisfy αk(t) = 0 for
t < 0 and

∫

αk(t)dt = 1 [40]. The term Fj models feed-
forward input to the neuron from outside the network.

We are interested in the statistics of network activity
as N grows large. The N × N connectivity matrix, J, is
assumed random and our mean-field analysis only de-
pends on the expected value of the entries of J.

b. Heterogeneous mean-field theory of balanced networks.
We first extend the mean-field theory of firing rates in
balanced networks [17–19, 23] to account for heteroge-
neous structure. We consider random networks parti-
tioned into K populations and assume that the mean
strength of synaptic connections between neurons in
each pair of populations is known and O(1).

Specifically, assume that population m contains Nm

neurons with qm = Nm/N ∼ O(1) for m = 1, . . . , K.
The average input to neurons in population m is

Im = avg j∈G(m)

[

I j(t)
]

where j ∈ G(m) indicates that the average is taken over
all neurons in population m, and also over time. Define

Fm similarly and define rm to be the average spiking rate
of neurons in population m. Averaging Eq. (1) over each
population and over time gives the mean-field mapping

~I =
√

N
(

W~r + ~F
)

(2)

where ~I = [I1 · · · IK] is the vector of mean inputs and

similarly for~r and ~F. The K × K mean-field connectivity
matrix is defined by

W =
[

qn Jmn

]K

m,n=1

where

Jmn =
1

NmNn
∑

j∈G(m), k∈G(n)

J jk

is the mean connection strength from neurons in popu-
lation n to those in population m, assumed to be O(1).
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In the balanced state, ~r,~I ∼ O(1) as N increases.
From Eq. (2), however, this can only be achieved un-
der a cancellation between positive and negative (exci-
tatory and inhibitory) input sources in such a way that

W~r + ~F ∼ O(1/
√

N). This cancellation defines the bal-
anced network state [17, 18]. As N → ∞, firing rates are
given by the solution to the balance equation

W~r + ~F = 0. (3)

Thus, the existence of a balanced state requires that
Eq. (3) has a solution,~r, with positive components, rm >
0. When W is invertible, this solution can be written as
limN→∞

~r = −W−1~F.
The mean-field analysis above only considers the exis-

tence of a balanced fixed point, but this fixed point must
be stable for balance to be realized. When membrane
and synaptic dynamics are mostly homogeneous in the
network, stability can be approximated by considering
the dynamical mean-field equation [23, 32, 33]

τm~r
′ = −~r + f

(√
N[W~r + ~F]

)

(4)

where f (·) is a non-decreasing firing rate function
and τm is the neurons’ membrane time constant. For
integrate-and-fire models, we can assume that f is a
threshold-linear function and conclude that stability is
achieved for large N when all eigenvalues of W have
negative real part [23]. A more precise stability analysis
uses a diffusion approximation and accounts for synap-
tic kinetics [19, 34, 35], but the simpler approach here has
been successfully applied to balanced networks [18, 23].

c. A review of homogeneous balanced networks. For the
purpose of comparison, we first review networks with
homogeneous connection probabilities that depend only
on cell polarity (excitatory or inhibitory) as in [17, 18].
For this model, Ne = qeN of the neurons are excitatory
and Ni = qiN are inhibitory, where qe, qi ∼ O(1). All
excitatory neurons receive the same feedforward input,
Fj = Fe > 0, and all inhibitory neurons receive Fj = Fi >
0. The synaptic connection strength, J jk, from neuron k
in population y = e, i to neuron j in population x = e, i
are randomly assigned according to

J jk =

{

jxy with prob. pxy

0 otherwise
.

Here, pxy represents the connection probability from
population y = e, i to population x = e, i and jxy rep-
resents the strength of each such connection. Note that
jee, jie > 0 and jei, jii < 0.

Dividing the network into excitatory and inhibitory
populations and applying the mean-field theory out-

lined above gives the mean feedforward input, ~F =
[Fe Fi]

T and mean-field connectivity matrix

Wh =

[

wee wei

wie wii

]

(5)
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FIG. 1: A homogeneous balanced network. (a) Network
schematic. A population of Ne excitatory and Ni inhibitory
neurons (e and i) are randomly connected and also receive
feedforward input (Fe and Fi). (b) Raster of plot of 500 ran-
domly sampled excitatory neurons from a simulation of a bal-

anced network with Ne = 4 × 104 and Ni = 104. (c) Fir-
ing rates from simulations (solid curves) approach the values
predicted by solving Eq. (3) (dashed lines) as network size,
N = Ne + Ni, grows. d) Synaptic input to one representa-
tive excitatory neuron shows that strong excitatory currents
(blue) balance with strong inhibitory currents (red) to yield
a moderate total synaptic current (black). Synaptic currents
were convolved with a Guassian shaped filter (σ = 8 ms) and
normalized by the neuron’s rheobase.

where wxy = qy pxy jxy and the subscript h, for homo-
geneous, is used to distinguish this matrix from the
ones we will consider below. For this network, the bal-
ance equation (3) has a stable, positive solution when-
ever [17–19, 23]

Fe

Fi
>

wei

wii
>

wee

wie
. (6)

Computer simulations [41] confirm the predicted firing
rates and demonstrate the asynchronous, irregular spik-
ing characteristic of the balanced state (Fig. 1). We next
show that re-wiring this network to produce heteroge-
neous in-degrees can break balance.

d. Heterogeneous in-degrees can break balance. As a
first example of a heterogeneous network, we re-wired
the homogeneous network above to produce a bimodal
distribution of in-degrees. We first partitioned the exci-
tatory population into two equal-sized sub-populations,
e1 and e2. We then did the same for the inhibitory pop-
ulation, giving a total of K = 4 sub-populations which
we enumerate as e1, i1, e2 and i2.

A proportion cin = 1/5 of the incoming connections
to postsynaptic neurons in populations e1 and i1 were
randomly re-assigned to postsynaptic neurons in pop-
ulations e2 and i2 respectively. Thus, the average in-
degrees of neurons in populations e2 and i2 were larger
than those of neurons in populations e1 and i1 respec-
tively (Fig. 2a). The out-degrees and feedforward inputs
were unchanged from Fig. 1.
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FIG. 2: Heterogeneous in-degrees can break balance. (a) Net-
work diagram. Same as network in Fig. 1 except excitatory
and inhibitory populations were each split into two popula-
tions. Neurons in populations e2 and i2 have larger in-degrees
than those in e1 and i1. (b) Raster plot of 500 randomly se-
lected excitatory neurons, half from e1 and half from e2, from

a simulation with N = 5 × 104 neurons. (c,d) Mean firing rate
in each population as a function of network size (N).

In simulations of this network, the average firing rates
of neurons in populations e1 and i1 were larger than
the excitatory and inhibitory rates in populations e2 and
i2 (Fig. 2b-d). Thus, perhaps surprisingly, a higher in-
degree was associated with lower firing rates. Increas-
ing the network size while keeping connection probabil-
ity fixed exaggerated this effect as firing rates in popu-
lation e2 approached zero (Fig. 2c,d).

To understand this phenomenon intuitively, consider
a simplified network diagram in which the populations
with decreased in-degrees (e1 and i1) are grouped to-
gether (group 1) and those with increased in-degrees (e2

and i2) are also grouped together (group 2, Fig. 2a). The
increased in-degree of group 2 is then the equivalent of
an increase in the mean strength of its self-connections
and the mean strength of group-2-to-group-1 connec-
tions (indicated by thicker arrows in Fig. 2a).

In the balanced state, strong inhibition cancels
strong excitation, including excitatory feedforward in-
put. While both groups receive identical feedforward
input, group 2 receives more recurrent input than group
1 regardless of the firing rates of each population. Bal-
ance cannot be maintained in both groups because the
same level of feedforward input received by each group
cannot be simultaneously balanced by the two different
levels of recurrent input they receive. Group 2 receives
an excess of inhibition because recurrent connections are
net inhibitory in balanced networks [17, 18], explaining
why group 2 has lower firing rates than group 1.

A more rigorous understanding is provided by ap-
plying the heterogeneous mean-field analysis described
above. The 4 × 1 vector of mean feedforward inputs to

populations e1, i1, e2 and i2 is given by ~F = [Fe Fi Fe Fi]
T .

The 4 × 4 mean-field connectivity matrix is given in

block form by

W =
1

2

[

(1 − cin)Wh (1 − cin)Wh
(1 + cin)Wh (1 + cin)Wh

]

where Wh is the 2 × 2 matrix from Eq. (5).

Note that W is singular and its range does not con-

tain ~F. Thus, Eq. (3) does not admit a solution and this
network re-wiring destroys balance. As a result, firing
rates in group 2 approach zero as N → ∞ due to an
excess of recurrent inhibition. Thus, re-wiring a homo-
geneous network to achieve heterogeneous out-degrees
can destroy balance [27–30], causing highly connected
sub-populations to cease spiking.

This loss of balance was caused by the singularity of
W, which is a null-property of matrices since the per-
turbed matrix W + ǫA is almost surely invertible for
random matrices, A, with entries drawn independently
from an absolutely continuous distribution. However,
the perturbed firing rate vector, given by ~r = −(W +

ǫA)−1~F, is almost surely O(1/ǫ). Thus, connectivity
structures that are inconsistent with balance promote
large firing rates even when they are only approximately
realized. Moreover, balance requires that the firing rate
solutions are positive, so not all perturbations of a sin-
gular W give a balanced solution. Nevertheless, there
are numerous modifications of the network that can re-
cover balance. We next consider some examples.

e. Recovering balance promotes lower firing rates in neu-
rons with more synaptic inputs. The re-wiring of the ho-
mogeneous network considered above only altered in-
degrees of neurons. Starting from this rewiring, we now
also change the out-degrees by rewiring the source of
some edges. Specifically, a proportion cout = 4/5 of the
synaptic projections from presynaptic neurons in pop-
ulation e1 to postsynaptic neurons in population e2 are
rewired to emanate from randomly selected presynaptic
neurons in population e2, i.e. they now project from e2

to e2. Similarly, a proportion cout = 4/5 of projections
from neurons in x1 to neurons in y2 are rewired to form
x2-to-y2 projections for all pairings of x, y ∈ {e, i}.

This rewiring increases the average out-degree of neu-
rons in populations e2 and i2 by a proportion cout and
decreases the out-degrees of neurons in population e1

and i1 by the same proportion. Since e2 and i2 also have
larger in-degrees, this results in positively correlated in-
and out-degrees (Fig. 3a).

Simulating this network, we found that the average
firing rates of neurons in populations e1 and i1 were
larger than the rates in populations e2 and i2 respec-
tively (Fig. 3b-d), but the difference was less drastic
than the example with just heterogeneous in-degrees
(compare to Fig. 2). Increasing the network size while
keeping connection probability fixed caused rates to ap-
proach non-zero limits (Fig. 3c,d).

Repeating the mean-field analysis from above, the 4×
4 mean-field connectivity matrix is given in block form
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FIG. 3: Balance can be restored by heterogeneous out-
degrees. Same as Fig. 2, except out-degrees of neurons in
populations e2 and i2 were increased by rewiring a propor-
tion cout = 4/5 of the outgoing projections from populations
e1 and i1 to project from e2 and i2 instead. Dashed lines shows
the asymptotic firing rates predicted by Eq. (3).

by

W =
1

2

[

(1 − cin)Wh (1 − cin)Wh
(1 + cin)(1 − cout)Wh (1 + cin)(1 + cout)Wh

]

where Wh is from Eq. (5). For this example, the network
admits a stable balanced state, i.e. Eq. (3) has positive so-
lutions and the eigenvalues of W are negative. As pre-

dicted, the balanced firing rates given by~r = −W−1~F
agree with network simulations for large N (Fig. 3c,d).
Interestingly, neurons with larger in-degrees (those in
populations e2 and i2) have lower firing rates. We next
show that this is a prevailing feature of heterogeneous
balanced networks.

We have so far considered heterogeneous networks
constructed by breaking a homogeneous balanced net-
work into K = 4 populations (two excitatory and two
inhibitory), then modifying the connection probability
between each of the four populations. Generalizing this
approach, we can consider multiplying the connection
probability from populations ek and ik to populations e j
and i j by some factor a jk for j, k = 1, 2. This gives a
mean-field connectivity matrix of the form

W =

[

a11Wh a12Wh
a21Wh a22Wh

]

.

As before, we leave the feedforward inputs unchanged,
~F = [Fe Fi Fe Fi]

T.
See Supplemental Material at [URL will be inserted by

publisher] for a proof that this network admits a stable
balanced state only if populations project to themselves
with a higher probability than they project to each other
(a11 > a21 and a22 > a12) and that, under this condi-
tion, populations with higher in-degree have lower fir-
ing rates.

ra
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FIG. 4: Dependence of firing rates on in-degree in a scale free
network. (a) Raster plot and (b) firing rates as a function of in-

degree from a network of 5 × 104 neurons with a power-law
distribution of in-degrees. For the raster plot, 500 excitatory
neurons were sampled uniformly from the network and sorted
so that in-degree increased with “neuron index.”

Note that it is still possible to construct a balanced
network with two excitatory and two inhibitory popu-
lations such that populations with larger in-degree have
larger rates. For example, one could increase the feed-
forward input to neurons with larger in-degree. How-
ever, our results suggest that balance promotes lower
firing rates in neurons with more inputs. This can be ex-
plained intuitively by noting that recurrent input is net-
inhibitory in balanced networks, so neurons with more
local inputs tend to receive more inhibition.

So far, we have focused on networks with two excita-
tory and two inhibitory population. See Supplemental
Material at [URL will be inserted by publisher] for nu-
merical examples demonstrating that the negative corre-
lation between in-degree and firing rates persists when
a larger number of populations is considered.

In conclusion, networks with discrete populations can
achieve balance, but balance promotes lower firing rates
in neurons with higher in-degrees because recurrent
connections are net-inhibitory in balanced networks. We
next investigate whether this finding carries over to a
continuously indexed network.

f. Firing rates in a scale free network. We assign to
each neuron an in-degree, u, drawn independently from
a generalized Pareto distribution with density function

Q(u) =

{

1
σ

(

1 + u−µ
σ

ξ
)−(ξ−1−1)

u ≥ µ

0 u < µ

with shape parameter ξ = 0.25, location parameter µ =
5 and scale parameter, σ = (pN − µ)(1 − ξ), giving an
average connection probability, p = 0.05. We then draw
round(u) excitatory and inhibitory presynaptic neurons
randomly and uniformly from the network. Thus, in-
degrees obey a power-law distribution, but out-degrees
are approximately homogeneous. Feedforward input
strengths depend only on cell polarity, as above.

Simulating this network confirms that firing rates are
lower for neurons with higher in-degree (Fig. 4), analo-
gous to the networks considered above.

The heterogeneous mean-field analysis outlined
above can be applied by partitioning the network ac-
cording to in-degree and neuron polarity. In the limit
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of large N and finer partitions, the matrix equation (3)
is approximated by a system of integral equations (com-
pare to spatial networks in [23]),

∫

∞

µ
[wee(u, v)re(v)− wei(u, v)ri(v)]dv + Fe = 0

∫

∞

µ
[wie(u, v)re(v)− wii(u, v)ri(v)]dv + Fi = 0.

(7)

Here, rx(v) is the average firing rate of neurons in pop-
ulation x = e, i with in-degree round(v). The term

wxy(u, v) = Q(v) jxyp(u, v)

represents mean-field connectivity from neurons in pop-
ulation y = e, i with in-degree v to neurons in popula-
tion x = e, i with in-degree u where p(u, v) represents
the probability and jxy the strength of such a connection.
For the example considered here, connection probability
depends only on the in-degree of the post-synaptic neu-
ron so that p(u, v) = u/N. Note that u ∼ O(N) so that
p(u, v) ∼ O(1) on average. Thus Eqs. (7) become

u

N
[ jxere − jxiri] + Fx = 0, x = e, i

where rx =
∫

Q(v)rx(v)dv is the average firing rate
of neurons in population x = e, i. For balance to be
achieved, this equation must be satisfied simultaneously
for all u > µ, which is not possible. We conclude that the
network in Fig. 4 violates the balanced state.

Restoring balance in this example would require
building a family of networks indexed by N, where con-
nection probability, p(u, v) ∼ O(1), depends on pre-
and post-synaptic in-degree, u and v, in such a way that
Eqs. (7) are solvable with rx(v) ≥ 0. Balance could also
be restored by allowing feedforward input to depend
on in-degree, Fx → Fx(u), in such a way that Eqs. (7)
are solvable. However, unlike the matrix equation (3),
the system of integral equations in (7) are not generi-
cally solvable. Specifically, since Eq. (7) is an integral
equation of the first kind, for any connectivity kernels,
wxy(u, v), there are feedforward inputs, Fx(u), such that
Eq. (7) does not admit a solution [36].

g. Discussion. We used mean-field theory to ana-
lyze structured balanced networks. Similar to the theory
of homogeneous and spatially-extended balanced net-
works, firing rates in the limit of large network size are

determined by a linear equation [17–19, 23]. The solv-
ability of this equation determines the existence of the
balanced state in the thermodynamic limit.

We found that balance is promoted by architectures
where populations connect to themselves more strongly
than they connect to each other. Moreover, we showed
that balance promotes lower firing rates in neurons with
a larger number of inputs from the local network. This
is explained by the fact that recurrent input is net-
inhibitory in balanced networks [17–19]. This obser-
vation could explain the negative correlation between
firing rate and local population coupling recently ob-
served in cortical recordings [31].

Our mean field analysis only relied on the assumption
that synaptic integration is linear and that firing rates
are O(1) as N increases. Thus, our findings are appli-
cable to neuron models with more detailed membrane
dynamics, like the Fitzhugh-Nagumo model.

The imbalance created by heterogeneous in-degrees
suppresses spiking in some neurons and increases rates
in others as N → ∞ (Fig. 2). Biological networks are,
of course, finite in size. At sufficiently small N, rates
can be positive even if Eq. (3) has no positive solution
(as in Fig. 2c,d). Firing rates in such finite sized net-
works could potentially be approximated numerically
using a diffusion approximation that yields a system of
non-linear fixed point equations [19, 34].

A parallel study reached the same conclusion that bal-
ance can be broken by heterogeneous in-degrees, but
recovered balance through an adaptation current [27–
29]. This resolution requires that adaptation currents are

O(
√

N) to cancel excess synaptic input. This could be
reasonable at the finite sizes of biological networks.

Previous studies consider recurrent neuronal net-
works with various types of heterogeneous connectiv-
ity structures [37, 38], but not in the balanced state. Fu-
ture work will consider the application of our balanced
mean-field theory to these alternative architectures.
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