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In this response we provide additional results which allow a better comparison of the diffusion
forecast and the PNF approach for the El Nino index. We remark on some qualitative differences
between the diffusion forecast and PNF, and we suggest an alternative use of the diffusion forecast
for the purposes of forecasting the probabilities of extreme events.

First, we would like to apologize for misinterpreting
the results in [1] which caused the comparison in [2] to
be misleading, and we thank the authors of [1] for clar-
ifying their results. In particular, the authors of [1] are
completely correct that we mistakenly cited the RMS er-
ror of the incorrect curve in Fig 2 of [1] (RMS 1.4 listed
in our manuscript should have been 0.99). Second, it was
misleading of us to compare our results on the El Nino
3.4 index to the results of [1] on the El Nifo 3 index. This
oversight was caused by our inability to find a El Nino 3
index time series which matched Figure 3 of [1] and we
mistakenly used a El Nino 3.4 index which looked similar
to Figure 3 of [1] (see Figure 1 below). We would like to
note that the caption for Figure 3 of [1], which contains
the plot of RMS error for the PNF forecast, refers to the
metric simply as “RMS” and the phrase “normalized by
the variability” is not attached to RMS specifically and
is not explained except in the Comment [3]. While the
choice of metric is up to the authors, we would note that
this normalization makes comparisons ambiguous since
it is sensitive to the choice of dates over which the vari-
ability is estimated empirically (e.g. the entire data set,
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FIG. 1. Result copied from [1] (top) and identically scaled
plots of El Nino 3 and El Nino 3.4 indices from NOAA [4]
(bottom).

the training data set, or the validation data set). We
mention these points only to explain how such significant
oversights were made, not to excuse them.

In order to allow a better comparison we have com-
puted the metric of [1] using variability estimated over
the entire data set. For the El Nifo 3.4 index [4], at 14-
month lead time our forecast has a normalized RMS of
0.77 and a correlation of 0.64. We have also applied the
diffusion forecast (using the same choices for parameters)
to the El Nino 3 index [4] to allow a valid comparison to
[1], using the normalized RMS metric. At the 14-month
lead time our forecast has a normalized RMS of 0.80 and
a correlation of 0.41. This shows a less biased forecast
(reduced RMS error compared to 0.99 in [1]) and a com-
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FIG. 2. El Nifo 3.4 index [4] 14-month lead forecast (top)
Correlation (middle) and Normalized RMS (bottom, RMS di-
vided by the climatological standard deviation)
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FIG. 3. El Nifio 3 index [4] 14-month lead forecast (top)
Correlation (middle) and Normalized RMS (bottom, RMS di-
vided by the climatological standard deviation)

parable correlation.

With these corrections, and for such a short validation
time series, we agree with the conclusion of the Comment
[3] that we cannot claim a significant improvement over
the method of [1]. However, we disagree with claim that
the PNF forecast provides better prediction of ‘extreme’
episodes. While the PNF forecast does correctly predict
the extreme episodes of late 2002 and 2008, it also erro-
neously predicts an extreme episode in late 2004. This
suggests that the PNF forecast, does not have superior
skill in extreme episode prediction, but is merely a more
biased forecast which more often makes extreme predic-
tions. This is also shown by the error metric which shows
that the diffusion forecast has a reduced RMS error due
to the more conservative mean forecasts as pointed out
in the Comment [3]. While a more biased forecast model
may be preferable in some applications, we would sug-
gest that this is not an objectively preferable property.
Moreover, we should emphasize that the method of [2]
is a generic “black-box” forecast which used only the 1-

dimensional time series of the El-Nino index, as opposed
to PNF which uses a significantly larger training data
set incorporating SST fields. As pointed out in [2], the
diffusion forecast can be a valuable diagnostic tool for
minimum acceptable model skill. In this case, the diffu-
sion forecast performance suggests that PNF is not able
to gain any additional information from the SST field
data that was not already present in the 1-dimensional
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FIG. 4. El Nifo 3.4 index [4] 14-month lead forecast proba-
bility of the index being great than 0.5 (solid) and probability
of the index being less than -0.5 (dashed)

El Nino index. If one has access to the full field rather
than just the index, then the corresponding Laplacian
eigenfunctions (which are used as data-driven basis func-
tions in [2]) correspond to physically meaningful patterns
of SST variability including ENSO, the Pacific Decadal
Oscillation, the North Pacific Gyre Oscillation, and other
modes [5]. The diffusion forecast is likely to be success-
ful for predicting the spatiotemporal patterns associated
with these modes, but if one is interested in forecasting
the full field at small lengthscales and short timescales,
the diffusion forecast is unlikely to be successful for pre-
dicting such a high-dimensional data set as mentioned in

[2].

Finally, we would like to point out that the diffusion
forecast actually forecasts a distribution, which enables
one to estimate the variance of the forecast and produce
the error bars shown in Figures 2 and 3. This allows
additional tests for the statistical validity of the diffusion
forecast approach, for example in Figure 2 the truth falls
within the forecast error bars 78% of the time and 81% of
the time in Figure 3. Moreover, the forecast distribution
can also be used to compute the probability of an extreme
event as shown in Figure 4, meaning that the diffusion
forecast does not have to rely on a biased mean forecast to
indicate extreme episodes as advocated in the Comment
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